Supporting information

Clicked polycyclic aromatic hydrocarbon as a hybridization-responsive fluorescent artificial nucleobase in pyrrolidinyl peptide nucleic acids

Woraluk Mansawat,^a Chalothorn Boonlua,^a Khatcharin Siriwong,^b and Tirayut Vilaivan^{a,*}

^aOrganic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330, Thailand. ^bDepartment of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand.

*E-mail: vtirayut@chula.ac.th

1 H (a) and 13 C (b) NMR spectra of 4 Fig. S1 2 Fig. S2 Analytical HPLC chromatogram and MALDI-TOF mass spectrum of PNA1 3 4 Fig. S3 Analytical HPLC chromatogram and MALDI-TOF mass spectrum of PNA2 5 Fig. S4 Analytical HPLC chromatogram and MALDI-TOF mass spectrum of PNA3 Fig. S5 Analytical HPLC chromatogram and MALDI-TOF mass spectrum of PNA1 6 7 Analytical HPLC chromatogram and MALDI-TOF mass spectrum of PNA5 Fig. S6 Fig. S7 Analytical HPLC chromatogram and MALDI-TOF mass spectrum of **PNA6** 8 Fig. S8 Analytical HPLC chromatogram and MALDI-TOF mass spectrum of PNA7 9 Fig. S9 HPLC chromatogram of crude PNA3 and after click reaction 10 **Fig. S10** Thermal denaturation curves of hybrids with of PNA1 with DNA1-DNA4 11 Photographs of PNA1 and its hybrids with DNA1-DNA4 under black light **Fig. S11** 12 Selected snapshots of MD structures showing the hydrogen-bond formation **Fig. S12** 13 between Tz^{Py} and opposite base Fluorescence spectra of PNA5 (a) and PNA7 (b) in the absence (-) and 14 **Fig. S13** presence (...) of complementary DNA

Page

(b) **Fig. S2.** Analytical HPLC chromatogram (a) and MALDI-TOF mass spectrum (b) of **PNA1** (Bz-GCATTAXAGATAC-LysNH₂; $\mathbf{X} = Tz^{Py}$) obtained by pre-formed Tz^{Py} monomer (CCA matrix) (calcd. for $[M+H]^+$: m/z = 4779.2).

Fig. S3. Analytical HPLC chromatogram (a) and MALDI-TOF mass spectrum (b) of **PNA2** (Bz-GCATTAXAGATAC-LysNH₂; $\mathbf{X} = C$) (CCA matrix) (calcd. for $[M+H]^+$: m/z = 4621.0).

Fig. S4. Analytical HPLC chromatogram (a) and MALDI-TOF mass spectrum (b) of **PNA3** (Bz-GCATTAXAGATAC-LysNH₂; $\mathbf{X} = N_3$) (CCA matrix) (calcd. for $[M+H]^+$: m/z = 4552.9).

Fig. S5. Analytical HPLC chromatogram (a) and MALDI-TOF mass spectrum (b) of **PNA1** (Bz-GCATTA**X**AGATAC-LysNH₂; **X** = Tz^{Py}) obtained by post-synthetic click reaction (CCA matrix) (calcd. for $[M+H]^+$: m/z = 4779.2).

(b) **Fig. S6.** Analytical HPLC chromatogram (a) and MALDI-TOF mass spectrum (b) of **PNA5** (Bz-GCATTT**X**TGATAC-LysNH₂; $\mathbf{X} = \text{Tz}^{Py}$) (CCA matrix) (calcd. for $[M+\text{H}]^+$: m/z = 4761.2).

(b) **Fig. S7.** Analytical HPLC chromatogram (a) and MALDI-TOF mass spectrum (b) of **PNA6** (Bz-GCATTT**X**TGATAC-LysNH₂; $\mathbf{X} = \text{Tz}^{\text{Ph}}$) (CCA matrix) (calcd. for $[M+\text{H}]^+$: m/z = 4637.0).

Fig. S8. Analytical HPLC chromatogram (a) and MALDI-TOF mass spectrum (b) of **PNA7** (Bz-GCATTT**X**TGATAC-LysNH₂; $\mathbf{X} = \text{Tz}^{\text{An}}$) (CCA matrix) (calcd. for $[M+H]^+$: m/z = 4737.1).

Fig. S9. HPLC chromatogram of crude **PNA3** (Bz-GCATTAN₃AGATAC-LysNH₂) before (top) and after (bottom) click reaction with 1-ethynylpyrene.

Fig. S10. Thermal denaturation curves of hybrids between PNA1 (Tz^{Py}) with DNA1–DNA4 and PNA3 (azide) with DNA4. Conditions: 2.5 μ M PNA, 3.0 μ M DNA in 10 mM sodium phosphate buffer pH 7.0.

Fig. S11. Photographs of **PNA1** and its hybrids with **DNA1–DNA4** viewed under black light. Conditions: 2.5μ M PNA, 3.0μ M DNA in 10 mM sodium phosphate buffer pH 7.0.

Fig. S12. Selected snapshots of MD structures showing the hydrogen-bond formation between Tz^{Py} and opposite base for four simulated systems. The hydrogen bond acceptor-donor distances are shown.

Fig. S13. Fluorescence spectra of **PNA5** (a) and **PNA7** (b) in the absence (...) and presence (–) of complementary DNA (5'-GTATCAGAAATGC-3') (conditions: 2.5 μ M PNA, 3.0 μ M DNA in 10 mM sodium phosphate buffer pH=7.0, $\lambda_{excit} = 350$ nm).