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ABSTRACT

The asymmetric total synthesis of (−)-callystatin A has been achieved. The key steps generating the stereogenic centers rely on the asymmetric
r-alkylation of aldehydes or ketones exploiting the SAMP/RAMP hydrazone alkylation methodology, as well as an enzymatic enantioselective
reduction of a 3,5-dioxocarboxylate. For the construction of the alkene moieties, highly selective Wittig or Horner−Wadsworth−Emmons reactions
were employed.

Callystatin A is a polyketide marine natural product isolated
by Kobayashi et al. from the spongeCallyspongia truncata
that shows remarkably high cytotoxic activity (IC50 ) 0.01
ng/mL against KB tumor cells).1 Shortly thereafter, the
Kobayashi group confirmed the absolute configuration of this
product via partial2 and total synthesis3 and also reported
the preparation of several structural analogues, which led to
further insight on structure-activity relationships.4 Subse-
quently, the total synthesis of (-)-callystatin A was reported

by Crimmins and King5 and most recently by the groups of
Smith,6 Kalesse,7 and Marshall.8

The limited quantities of (-)-callystatin A available from
natural sources, together with the possibility of preparing
analogues with improved biological activities, show the
imperative need for total synthesis. In this context, and as
an opportunity to demonstrate the scope and efficiency of
our SAMP/RAMP hydrazone alkylation methodology9 to-
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gether with an enzymatic enantioselective reduction devel-
oped recently,10 we resolved to engage in the task of pursuing
its total synthesis.11

Our retrosynthetic plan is shown in Scheme 1 and includes
disconnections of the C6-C7 and C12-C13 double bonds,
which can be built up by means of a highlyE-selective Wittig
olefination12 between allyltributylphosphorus ylide derived
from bromide3 and aldehyde2 and between ylide derived
from 4 with the aldehyde obtained by Swern oxidation of
the hydroxyl group present in3, respectively. Aldehyde2
should be accessible from ketoester5, which can be prepared
by enantioselective reduction of a 6-chloro-3,5-dioxohex-
anoate. With respect to bromide3, it can be obtained by
selective olefination of functionalized aldehyde6, which is
a suitable compound to be prepared by asymmetricR-alkyl-
ation of the corresponding (S)-1-amino-2-methoxymethyl-
pyrrolidine (SAMP) hydrazone. Finally, stereopentad4 can
be synthesized by means of asyn-selective aldol reaction
between the enolate derived from7 and aldehyde8, both
also suitable to be obtained as single enantiomers by SAMP/
RAMP hydrazone alkylation procedures.

For the synthesis of aldehyde2 (Scheme 2) we exploited
the already published enantioselective enzymatic reduction
of 3,5-dioxocarboxylates catalyzed by baker’s yeast.10b

Therefore, reduction oftert-butyl 6-chloro-3,5-dioxohex-
anoate proceeded with virtually full regiocontrol and high

enantioselectivity, affording the hydroxyketoester5, which
was easily converted into chlorinatedδ-lactone9 (94% ee
by HPLC) as described in Scheme 2. DIBAL-H reduction
of 9 and subsequent acetalization provided chloroacetal10,
which upon chloroacetoxy substitution reaction with tet-
rabutylamonium acetate (TBAA) followed by hydrolysis of
the ester moiety afforded hydroxyacetal11 in good yield.
The key synthetic intermediate2 was obtained after treatment
of 11 under standard Swern oxidation conditions.

Next we proceeded to the synthesis of the synthetic
intermediate3, which started with the asymmetricR-alkyl-
ation of aldehyde12via its corresponding SAMP hydrazone
13 (Scheme 3). Lithiation of13 with LDA in THF at 0 °C
followed by alkylation with iodomethane at-100 °C
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afforded theR-alkylated hydrazone in>95% de as indicated
by 13C NMR analysis of the crude reaction mixture. Ozo-
nolysis of this alkylated hydrazone cleanly yielded aldehyde
6. For the selective installation of the double bond in the
R,â-unsaturated ester14, a Horner-Wadsworth-Emmons
procedure was employed using different modified phospho-
nate reagents. Still-Gennari13 coupling with phosphonate
15ayielded the desired product with moderate diastereose-
lectivity (Z/E ratio of 8:1);5 however, it was greatly improved
(34:1) by changing to the modified reagent15b14 in both
cases with comparable yields. Subsequent DIBAL-H reduc-
tion of the ester moiety followed by bromination with CBr4/
PPh3 in acetonitrile provided the allylic bromide3. The ee
of the final compound was checked at the allylic alcohol
stage (after DIBAL-H reduction of14) and was found to be
>98% by GC analysis.

For the synthesis of the stereopentad4 (Scheme 4)15 we
proceeded first with the asymmetric alkylation of 3-pen-
tanone via its (R)-1-amino-2-methoxymethylpyrrolidine
(RAMP) hydrazone derivative17 with benzyloxymethyl
chloride (BOMCl), yielding ketone7 (96% ee by GC
analysis) after clean removal of the chiral auxiliary by a

standard ozonolysis procedure. The asymmetric synthesis of
aldehyde8 was performed in an analogous way by alkylation
of butanal-RAMP hydrazone16 with iodomethane. Subse-
quent Sn(II)-mediatedmismatchedaldol reaction16 between
7 and8 proceeded smoothly to provide hydroxyketone18
in 87% yield and excellent diastereoselectivity (Scheme 4).
After protection of the hydroxyl moiety as its TBS ether,
removal of the benzyl group by hydrogenolysis, and DIBAL-H
diastereoselective reduction of the obtainedâ-hydroxyketone,
it was possible to obtain compound19 as a stereodefined
single isomer after column chromatography. Swern oxidation
of 19 followed by Wittig olefination with Ph3PdC(CH3)CO2-
Et furnishedR,â-unsaturated ester20 in good yield and in a
fully selective way favoring the desiredE isomer. Subsequent
DIBAL-H reduction and bromination with CBr4/PPh3 in the
presence of 2,6-lutidine afforded the target stereopentad4.
In this case, the presence of a base such as 2,6-lutidine in
the bromination reaction was necessary in order to avoid
deprotection of the TBS ether.

Finally, we proceeded to the assembly of the obtained
synthetic intermediates in order to build up the skeleton of
(-)-callystatin A (Scheme 5). First, the allylic bromide3
was converted into the tributylphosphonium salt21, and
subsequently a Wittig reaction was performed by reacting it
with aldehyde2 in the presence of KOtBu to afford the triene
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22 in good yield and as a single diastereoisomer. Next,
deprotection of the alcohol moiety with TBAF in THF,
followed by Swern oxidation of the primary alcohol,
furnished cleanly aldehyde23, which was then coupled with
allylic bromide 4 using again a Wittig reaction. However,
in this case the use of KOtBu as the base that promotes the
formation of the phosphorus ylide did not afford the
olefination product and other bases had to be tested. In this
context, the use of LiCH2S(O)CH3 was found to give the
best results concerning both yield and diastereoselectivity
leading to pentaene24, as a singleE isomer. Afterward, PCC/
HOAc treatment of24 proceeded with oxidation of the free
alcohol functionality and concomitant hydrolysis/oxidation
of the acetal moiety. The asymmetric synthesis of (-)-
callystatin A was completed with the deprotection of the TBS
ether with HF‚pyridine in THF.

In summary, a highly efficient asymmetric total synthesis
of (-)-callystatin A has been accomplished. A very important
feature of this synthesis is the creation of the stereogenic
centers in the first stages by using the SAMP/RAMP
hydrazone alkylation protocol together with an enantiose-
lective enzymatic reduction. In this context it should be noted
that this constitutes the first non-ex-chiral pool synthesis of
this cytotoxic polyketide. It is also noteworthy that the
formation of C-C double bonds during the synthesis has
been performed with a very high degree of diastereoselection.

Consequently, this total synthesis can be favorably compared
with other published routes3,5-8 and is efficient enough to
allow the preparation of other modified analogues.
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