

CHEMISTRY A European Journal

Accepted Article Title: Catalyst development for the synthesis of ozonides and tetraoxanes under heterogeneous conditions. Disclosure of an unprecedented class of fungicides for agricultural application Authors: Ivan A. Yaremenko, Peter S. Radulov, Yulia Yu. Belyakova, Arina A. Demina, Dmitriy I. Fomenkov, Denis V. Barsukov, Irina R. Subbotina, Fabrice Fleury, and Alexander Terent'ev

This manuscript has been accepted after peer review and appears as an Accepted Article online prior to editing, proofing, and formal publication of the final Version of Record (VoR). This work is currently citable by using the Digital Object Identifier (DOI) given below. The VoR will be published online in Early View as soon as possible and may be different to this Accepted Article as a result of editing. Readers should obtain the VoR from the journal website shown below when it is published to ensure accuracy of information. The authors are responsible for the content of this Accepted Article.

To be cited as: Chem. Eur. J. 10.1002/chem.201904555

Link to VoR: http://dx.doi.org/10.1002/chem.201904555

Supported by ACES

Catalyst development for the synthesis of ozonides and tetraoxanes under heterogeneous conditions. Disclosure of an unprecedented class of fungicides for agricultural application

Ivan A. Yaremenko,^[a,b,c] Peter S. Radulov,^[a,c] Yulia Yu. Belyakova,^[a] Arina A. Demina,^[a,d] Dmitriy I. Fomenkov,^[a,b] Denis V. Barsukov,^[a] Irina R. Subbotina,^[a] Fabrice Fleury,^[e] and Alexander O. Terent'ev^{*[a,b,c]}

Abstract: The catalyst H_{3+x}PMo_{12-x}⁺⁶Mo_x⁺⁵O₄₀ supported on SiO₂ was developed for peroxidation of 1,3- and 1,5-diketones with hydrogen peroxide with the formation of bridged 1,2,4,5-tetraoxanes and bridged 1,2,4-trioxolanes (ozonides) with high yield based on isolated product (up to 86 and 90% respectively) under heterogeneous conditions. Synthesis of peroxides under heterogeneous conditions is a rare process and represents a challenge for this field of chemistry, because on a surface of the catalyst peroxides tend to decompose. A new class of antifungal agents for crop protection, cyclic peroxides: bridged 1,2,4,5tetraoxanes and bridged ozonides, was discovered. Some ozonides and tetraoxanes exhibit a very high antifungal activity and are superior to commercial agro fungicides such as Triadimefon and Kresoxim-methyl. It is important to note that none of the agro fungicides used in agricultural chemistry contains peroxide fragment.

Introduction

Organic peroxides are important class of compounds for the development of drugs on their basis. Significant progress in medicinal chemistry of peroxides achieved in the development of drugs for the treatment of malaria.^[1] Artemisinin and its derivatives (Artemether, Arteether, Artesunate) for the past two decades are used to treat malaria. In 2015, the Nobel Prize in

- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation [phone +7 (499) 1356428; fax, +7 (499) 1355328, e-mail, terentev@ioc.ac.ru]
- [b] Dr. Ivan A. Yaremenko, Dmitriy I. Fomenkov, Prof. Alexander O. Terent'ev Faculty of Chemical and Pharmaceutical Technology and Biomedical

Products, D. I. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Square, Moscow 125047, Russia

[c] Dr. Ivan A. Yaremenko, Peter S. Radulov, Prof. Alexander O. Terent'ev

All-Russian Research Institute for Phytopathology, 143050 B. Vyazyomy, Moscow Region, Russia [d] Arina A. Demina

- Department of Chemistry, M. V. Lomonosov Moscow State University, 1-3 Leninskie Gory, Moscow 119991 Russian Federation
- [e] Prof. Fabrice Fleury Mechanism and regulation of DNA repair team, UFIP CNRS UMR 6286 Université de Nantes, 2 rue de la Houssinière, 44322 Nantes, France

Supporting information for this article is given via a link at the end of the document.

Medicine was awarded to Youyou Tu for the discovery and development of Artemisinin, a natural peroxide antimalarial drug.^[2] In 2012, the first commercial antimalarial drug was developed on the basis of synthetic ozonide Arterolane. Organic peroxides in addition to antimalarial activity possess a high anthelmintic^[3] and anticancer^[4] activity. Cyclic peroxides demonstrate anti-tuberculosis,^[5] antiviral,^[6] fungicidal,^[3g] and plant growth regulatory activity.^[7] However, until this work, organic peroxides had never been considered as crop protection agents.

The key reagents in the synthesis of organic peroxides are mainly ketones and aldehydes due to their availability and ease of reaction between the carbon atom of the carbonyl group and the highly nucleophilic oxygen atom of the peroxidizing agent. Peroxidation of ketones with hydrogen peroxide opened access to the synthesis of various classes of peroxides, such as geminal bis-peroxides,^[8] geminal bis-hydroperoxides,^[9] βhydroxy-hydroperoxides,^[10] tetraoxanes,^[11] cyclic triperoxides,^[12] tricyclic monoperoxides.^[13] The peroxidation of monoketones and their derivatives has been studied in detail.[1g, 8b, 9e, 9f, 14] Peroxidation of diketones was studied much less,^[11f, 15] which was associated with the formation of complex mixtures of inseparable peroxide products. For this reason, the selective synthesis of peroxides on the basis of diketones is a very difficult task. We have found that selective synthesis of peroxides can be carried out via peroxidation of β-diketones catalyzed by strong acids (H₂SO₄, HClO₄, HBF₄, and BF₃·Et₂O) and heteropolyacids (phosphomolybdic, phosphotungstic).^[11a, 11c] Peroxidation of β , δ' -triketones employing heteropolyacids as a catalyst leads to the formation of bridged keto-tetraoxanes, bridged keto-ozonides and tricyclic monoperoxides.[13a, 13b] Unfortunately, this method suffers from structural limitation, peroxidation occurs only if β,δ'-triketones bear a benzylic substituent in the α-position. In the case of any other substituent only tricyclic monoperoxides are formed. Recently, we developed an ozone-free approach to the synthesis of bridged 1,2,4-trioxolanes (bridged ozonides) from 1,5-diketones and H₂O₂ under homogeneous conditions.^[16] Generally all known ozonides are synthesized by ozonolysis of alkenes^[17] or by the reaction of O-methyl oximes with a carbonyl compound in the presence of ozone.^[18] In the literature, there are only a few examples of the synthesis of ozonides from carbonyl compounds and hydrogen peroxide.[5c, 9f, 19]

Generally, the peroxidation of carbonyl compounds is carried out under homogeneous conditions. On the contrary, under heterogeneous conditions on the surface of the catalyst,

 [[]a] Dr. Ivan A. Yaremenko, Peter S. Radulov, Yulia Yu. Belyakova, Arina A. Demina, Dmitriy I. Fomenkov, Dr. Denis V. Barsukov, Dr. Sci. Irina R. Subotina, Prof. Alexander O. Terent'ev

peroxides, including hydrogen peroxide, tend to decompose.^[20] There are only a few syntheses of peroxides under heterogeneous conditions proposed for more than a century: heminal bis-hydroperoxides,^[14q, 21] β -hydroxy-hydroperoxides,^[22] 1,2,4-trioxanes,^[23] peroxides from β dicarbonyl compounds,^[24] and β , δ '-triketones.^[13b]

This work discloses a methodology for the selective peroxidation of 1,3- and 1,5-diketones under heterogeneous conditions. Phosphomolybdic acid (PMA) was chosen as a catalyst. PMA is able, when interacting with H_2O_2 , to form peroxo-complexes with the -Mo-O-O- fragment.^[25] However, taking into account that the PMA/H₂O₂ system oxidizes alkenes, ^[25i, 26] alcohols,^[27] and dicarbonyl compounds, the result of the peroxidation of 1,3- and 1,5-diketones under heterogeneous conditions is *a priopi* unpredictable and not obvious. We have chosen SiO₂ as a support for the PMA, since it is one of the most convenient and available materials for various promotion and catalytic systems.^[28]

In this study, we succeeded to develop a mixed valence PMA catalyst ($H_{3+x}PMo_{12-x}$ ⁺⁶ Mo_x ⁺⁵ O_{40}) supported on SiO₂, which allows to carry out the peroxidation of 1,3- and 1,5-diketones with the selective formation of 1,2,4,5-bridged tetraoxanes and bridged ozonides. To the best of our knowledge, the ozone-free synthesis of ozonides under heterogeneous conditions was developed for the first time.

Another important achievement of this work is the discovery of a new class of fungicides for crop protection - cyclic peroxides. This finding was practically unpredictable, because none of the fungicides utilized in agrochemistry contained a peroxide moiety. Synthesized in this work ozonides and tetraoxane exhibit a very high fungicidal activity against phytopathogenic fungi and exceed widely used agrochemical fungicides such as Triadimefon and Kresoxim-methyl.

Results and Discussion

The peroxidation of 1,5-diketones **1a-k** with an ethereal solution of H_2O_2 under the action of a mixed valence PMA catalyst ($H_{3+x}PMo_{12-x}+^6Mo_x+^5O_{40}$) supported on SiO₂ in the presence solvents as toluene, benzene, CCl₄, CH₂Cl₂, Et₂O selectively produces stereoisomeric ozonides **2a-k** and **3a-k** (Scheme 1).

Scheme 1. Synthesis of stereoisomeric ozonides 2a-k and 3a-k from 1,5-diketones 1a-k.

The peroxidation of ethyl 2-acetyl-2-(4-chlorobenzyl)-5oxohexanoate **1h** was used to study an effect of the type of treatment and deposition of PMA ($H_3PMo_{12}O_{40} \times H_2O$) on the SiO₂ surface (Fig. 1), the amount of H_2O_2 , the duration of peroxidation, the amount of catalyst, the ratio of PMA:SiO₂, and the nature of a solvent on the yield of stereoisomeric ozonides **2h** and **3h** (Table 1). The source of H_2O_2 was a 7.4M solution of H_2O_2 in Et₂O. Toluene, benzene, CCl₄, CH₂Cl₂, Et₂O were chosen as solvents because PMA does not dissolve in them.

[a] A 7.4 M ethereal solution of H_2O_2 (1.0 – 3.0 mol H_2O_2 / 1.0 mol of 1,5-diketone **1h**) and PMA (0.105g, 0.046 mmol of $H_3PMo_{12}O_{40}$), PMA-**(A-C)** (0.084 g, 0.046 mmol of $H_3PMo_{12}O_{40}$) or PMA/SiO₂-**(D-G)** (0.01-0.15 mol $H_3PMo_{12}O_{40}$ / 1.0 mol 1,5-diketone **1h**) were successively added to a stirred

WILEY-VCH

solution of 1,5-diketone **1h** (0.300 g; 0.92 mmol) in toluene (10 mL) at 20-25 °C. The reaction mixture was stirred at 20-25°C for 1h (Procedures for the preparation of catalysts PMA-(A-C) and PMA/SiO₂-(D-G), see the Supporting Information).

[b] The ratio of ozonides $2h{:}3h$ was determined by the ${}^1\text{H}$ NMR spectroscopic data.

[c] Scaled to 1.0 gram of 1,5-diketone 1h

[d] Molar ratio H_2O_2 : $\mathbf{1h} = 1.0$: 1.0

[e] Molar ratio H_2O_2 : **1h** = 3.0 : 1.0

[f] The reaction mixture was stirred at 20-25°C for 0.5h

[g] The reaction mixture was stirred at 20-25°C for 24h

The peroxidation of diketone **1h** in toluene for 1 hour at room temperature using commercial yellow crystalline solid of PMA (H₃PMo₁₂O₄₀×H₂O, where the amount of water can reach 30 molecules per molecule of the acid^[29]) and a molar ratio of H₂O₂ : PMA : diketone = 1.5 : 0.05 : 1.0 produces target ozonides **2h** and **3h** only in trace amounts (Run 1, Table 1).

According to the literature, crystallization water eliminates from PMA at 150 °C.^[30] We carried out TGA analysis of a bulk PMA used in the present work. The results showed, that upon reaching 150 °C the crystallization water is completely eliminated. There is no significant change in weight in the temperature range of 150-800 °C, which indicates about formation of anhydrous PMA (See SI). Based on these results, we carried out heat treatment of PMA at 150 °C in air atmosphere for two hours at atmospheric pressure. This catalyst PMA-(A) allowed to obtain target ozonides with a yield up to 50% on isolated product with ratio 2h : 3h = 0.72: 1.0 (Run 2, Table 1). The ratio of ozonides 2h : 3h was determined by the ¹H NMR spectroscopic data (for ozonide **2h**, the characteristic peaks in the ¹H NMR spectrum include singlets at 1.48 ppm (s, 3H, CH₃CCH₂) and 1.79 ppm (s, 3H, CH₃CC) whereas for ozonide **3h**, they include singlets at 1.56 ppm (s, 3H, CH₃CCH₂) and 1.66 ppm (s, 3H, CH₃CC). The characteristic NMR spectral features of 2 and 3 compound series were carefully described in our previous papers^[16a,b]. Then we decided to carry out stepwise heating of PMA to 150 °C, first at 40 °C for 30 min., then at 60 °C - 30 min.; at 80 °C - 30 min.; at 100 °C - 30 min.; and then at 150 ° C for one hour. Thus PMA-(B) was prepared which permitted to obtain target products with yield up to 72% with ratio 2h: 3h = 1.13: 1.0 (Run 3, Table 1). Probably, in the case of stepwise heating of PMA, the layer-by-layer elimination of crystallization water leads to formation of more accessible active catalytic sites than in case of PMA-(A) preparation. In order to facilitate the elimination of water. H₃PMo₁₂O₄₀×H₂O had been dissolved in ethanol and then the solvent was evaporated at 150 °C and 1 atm. of air, and the resulting residue was heated additionally at 150 °C for 1 hour. Obtained catalyst PMA-(C) was

applied for the peroxidation of diketone 1h, but the yield of the target ozonides was only 18% (Run 3, Table 1). The data of the Raman spectroscopy of PMA-(C) showed that during the preparation of this catalyst, the Keggin structure of PMA was destroyed with the formation of orthorhombic α -MoO₃ (Fig. 2). Raman spectroscopy is a well-known technique to investigate supported and unsupported Keggin structures of heteropolyacids.^[31] Pure bulk PMA shows Raman bands at 990 cm⁻¹ and 979 cm⁻¹, which can be assigned to the symmetric and asymmetric stretching vibration of terminal Mo=Ot, respectively, and less intense bands at 877 cm⁻¹ (v_{as} Mo-Ob-Mo) and 593 cm⁻¹ (v_s Mo–Oc–Mo).^[27a] The Raman spectra of PMA-C differ from the spectra of the pure bulk PMA and the band at 815 cm⁻¹ becomes the most intensive (Fig. 2). The observed bands position at 990 cm⁻¹, 815 cm⁻¹, and 661 cm⁻¹ and intensity ratio are very close to Raman spectra of orthorombic molybdenum oxide – α -MoO₃ observed earlier^[31-32] with maxima at 995, 820 and 666 cm⁻¹. From the technological point of view, the use of PMA-(B) was inconvenient due to unequal spreading of PMA-(B) on the glass walls of the flask, and difficulties with its regeneration.

At the next stage, we decided to deposit commercial PMA (H₃PMo₁₂O₄₀×H₂O) on commercial silica gel SiO₂ 60 Å (0.060-0,200 mm, S=470-530 m²/g) in the amount of 10 wt.%. For this, PMA was dissolved in EtOH and SiO₂ was added with stirring, then the suspension was stirred for 15 min., and the solvent was evaporated on a rotary evaporator under vacuum of water jet pump at 30 °C. Then, the resulting PMA/SiO₂ was transferred to a Petri Dish without a lid and was heated as in the case of the preparation of PMA-(B). Obtained catalyst PMA/SiO₂-(D) was applied for the peroxidation of diketone 1h, but the yield of ozonides 2h and 3h on isolated product was only 26% (Run 5, Table 1). To our surprise it turned out that when preparing the catalyst PMA/SiO₂-(D), it was found that covering a Petri Dish with a Petri Dish lid after reaching 150 °C led to the formation of a more efficient catalyst PMA/SiO₂-(E). Using PMA/SiO₂-(E), the target ozonides 2h and 3h were synthesized with a yield of 90% (run 6, table 1).

Preparation of PMA/SiO₂-(E) with covered Petri Dish, on the one hand, led to incomplete removal of water from a sample. On the other hand, this procedure favors the retention of ethanol vapor, the interaction of Mo6+ with which led to the partial reduction of Mo⁶⁺ to Mo⁵⁺. It is known that the Keggin anion of PMA in the presence of reducing agent, including ethanol, can be reduced.^[30a, 30b, 33] This leads to formation negatively charged reduced PMA and accompanies by a color change from yellow to blue or green converting heteropolyanions to so-called heteropoly blues.^[22a, 27a, 33b, 34] It is believed that protons are attached to this reduced anion to compensate the resulting excess of negative charges.^[33a, 35] Indeed as can see from Fig. 1 the color of PMA/SiO2-(E) sample changes from yellow to dark green, and when hydrogen peroxide is added to PMA/SiO₂-(E), the color changes from green to yellow.

The data of Raman spectroscopy show (Fig. 2), that in the case of PMA/SiO2-(E) we can see Raman narrow band at 1011cm⁻¹ which corresponds to the stretching vibration of terminal Mo=O of PMA and broad Raman band with maximum at 825cm⁻¹, which might be assigned to molybdenum oxide mixtures of orthorhombic α -MoO₃ and monoclinic β -MoO₃ phases.^[31b]

H3PMo12O40xH2O

979 cm

877 cm

Raman Shift, cm⁻¹

PMA-(C)

815 cm⁻¹

800

990 cm

1000

990 cm⁻¹

1200

100000

90000

80000

50000

40000

30000

20000

10000

8000

7000

6000

5000

a.u.

0

593 cm⁻¹

661 cm⁻¹

600

a.u. 70000

Intensity 60000

WILEY-VCH

WILEY-VCH

The high frequency shift of the first band compared to the similar band for bulk PMA with maxima at 990 cm⁻¹ is typical for high loaded silica-supported 12-molybdophosphoric acid.^[36] Thus, it can be assumed that in the process of preparation of PMA/SiO₂-**(E)**, the Keggin structure of PMA is partially destroyed. However, this does not have a significant negative effect on catalytic activity in the synthesis of ozonides with a high isolated yield of 90%. On the other hand, the broad Raman band with a maximum at 825cm⁻¹ disappeared in the spectrum of PMA/SiO₂-**(E)** after peroxidation reaction of 1,5-diketone **1h**. Probably the water formed during this reaction promots regeneration of the Keggin structure of PMA after its partial destruction, as previously reported.^[37]

Successful immobilization of PMA on the SiO2 was confirmed by FT-IR analyses as shown in SI. Initial silica gel before any treatment exhibits such main IR bands as: bands at 801 and 468 cm⁻¹ (symmetric stretching and bending modes of bulk Si-O-Si bond.), the band at 970 cm⁻¹ (Si-OH stretching vibration of the surface silanol groups), the band at 1097 cm⁻¹ (asymmetric stretching vibration of the structural siloxane bond Si-O-Si). The band at ca. 1637 cm⁻¹ was due to the bending vibration of trapped water molecules. The broad band around 3442-3456 cm⁻¹ is due to the vibration of HO-H of water molecules adsorbed on the silica surface and the stretching vibration of SiO-H bond. [26b, 27a, 30b] The FT-IR spectra of bulk H₃PMo₁₂O₄₀×H₂O shows bands at 1065, 962, 871, and 784 cm⁻¹ which assigned to stretching vibrations $v_{as}(P-O_d)$, $v_{as}(Mo-O_t)$, vas(Mo-Ob-Mo) and vas(Mo-Oc-Mo), respectively. These bands are fully corresponding to the Keggin structure of H₃PMo₁₂O₄₀×H₂O.^[30a, 30c, 38] In the FT-IR spectrum of PMA/SiO₂-(E) the characteristic IR bands for $H_3PMo_{12}O_{40} \times H_2O$ is partly overlapped by SiO_{2.} The bands at 1065, 871, and 784 cm⁻¹, assigned to $v_{as}(P-O_d)$, $v_{as}(Mo-O_b-Mo)$ and $v_{as}(Mo-O_c-Mo)$, respectively is completely masked into the bands of the silica. However, the band at 962 cm⁻¹ (vas(Mo-Ot)) corresponding to the Keggin structure of H₃PMo₁₂O₄₀×H₂O is clearly identified. Based on obtained results, we can conclude that H_{3+x}PMo_{12-x}⁺⁶Mo_x⁺⁵O₄₀ supported on silica gel is mainly in the form of the Keggin structure and contains the fragment Mo=O.

We assume, that the difference in activity of PMA/SiO₂-(**D**) and PMA/SiO₂-(**E**) also depends on their different degree of hydration, which affects the mobility of the protons of PMA. The protons of can protonate diketone **1h** to facilitate the transfer of the peroxo group from the molybdenum peroxy complex to the carbonyl group. Thus we guess, that treatment of PMA/SiO₂-(**E**) with covered glass lid are optimal condition to provide the acid-catalyzed pathway of transformation of diketone **1h**.

From the wide angle XRD patterns of the supported sample PMA/SiO₂-(**E**), no peak for PMA crystalline phases was found, and only the broad characteristic peak centered around $2\theta = 22^{\circ}$ attributed to amorphous silica appeared. Perhaps PMA is highly dispersed on SiO₂ due to the high surface area of these support material. This phenomenon was also observed by impregnating heteropoly acid H₃PW₁₂O₄₀ onto MCM-41^[39] and PMA on mesoporous silica.^[40] No crystal diffraction peaks of MoO₃ phase in PMA/SiO₂-(**E**) sample were found in XRD patterns despite the fact that it is reflected in the Raman spectra

by the band at 825 cm⁻¹. This may be due to the low content of formed MoO_3 in PMA/SiO₂-(**E**) sample and due to finely dispersed, small particulate molybdenum oxide structure. According to XRD literature data^[41] the most intense diffraction patterns from crystalline molybdenum oxide become noticeable when the Mo loading level of MoO_3 on SiO₂ is increased to 20 wt %.

In addition, TEM characterization of $H_{3+x}PMo_{12-x}^{+6}Mo_x^{+5}O_{40}$ supported on SiO₂ (PMA/SiO₂-**(E)**) was carried out. The TEM image of PMA/SiO₂-**(E)** is shown in Fig.3.

The TEM data shows that $H_{3+x}PMo_{12-x}{}^{+6}Mo_{x}{}^{+5}O_{40}$ are nanoparticles on the SiO₂ support. The dark particles are $H_{3+x}PMo_{12-x}{}^{+6}Mo_{x}{}^{+5}O_{40}$. The average particle size is around 2.6 nm for a fresh catalyst and around 2.1 nm for the catalyst after reaction (Fig. 4).

Figure 4. Histograms generated from the TEM images of (A) fresh and (B) used PMA/SiO₂-(E) catalyst.

The effect of amount of PMA/SiO₂-(E), amount of H₂O₂, type of solvent, and the time of the reaction of peroxidation of diketone 1h on the yield of ozonides 2h and 3h was investigated. At molar ratio of PMA : 1h = 0.03 and 0.01, the yield of ozonides 2h and 3h was 65% and 8%, respectively (Runs 7 and 8, Table 1), at molar ratio of PMA : 1h = 0.10 and 0.15, the yield of ozonides increased to 95 % on the isolated product (Runs 9 and 10, Table 1). Growth in the amount of PMA/SiO₂-(E) by a factor of 2 to 3 slightly increased the yield of ozonides from 90% to 95%. Thus, the optimal molar ratio of PMA : 1h is 0.05 : 1.0. When using an equimolar amount of H₂O₂ towards to diketone 1h, the yield of ozonides was 61% (Run 11, Table 1), with a 3fold molar excess of H₂O₂, the yield of ozonides was 79% (Run 12, Table 1). The optimal molar ratio H_2O_2 : **1h** is 1.5: 1.0. Reducing the time of peroxidation of diketone 1h to 0.5 hours led to a decrease in the yield of ozonides to 77% (Run 13, Table 1), while peroxidation of diketone 1h for 24 hours afforted ozonides 2h and 3h in 93% yield (Run 14, Table 1). Thus, the optimal time for the reaction of peroxidation of diketone 1h catalyzed by PMA/SiO₂-(E) is 1 hour and the molar ratio H_2O_2 : PMA: diketone is 1.5: 0.05: 1.0. Toluene turned out to be the best solvent (the yield of ozonides was 90%); in benzene, CCl₄, CH₂Cl₂ or Et₂O the yield of ozonides decreases and does not exceed 82% (Runs 15-18, Table 1). With an increase in the weight content of PMA on SiO₂ to 30 wt.% (in the case of a weight content of PMA on SiO₂ > 30 wt.%, PMA is washed off

from the surface of SiO₂) and at a molar ratio of PMA: diketone **1h** = 0.05: 1.0, a decrease in the yield of ozonides **2h** and **3h** is observed. In the case of PMA/SiO₂-(**F**), the yield of ozonides **2h** and **3h** was 80%, and in the case of PMA/SiO₂-(**G**) it was 85% (Runs 19, 21, Table 1). At molar ratio of PMA/SiO₂-(**G**) it was 85% (Runs 19, 21, Table 1). At molar ratio of PMA/SiO₂-(**G**) it was e of PMA/SiO₂-(**F**) and in the case of PMA/SiO₂-(**G**), the yield of ozonides was 95%. However, an increase in the yield on 5% compared with experiment 6 in table 1 requires an increase of the amount of PMA in 2 times. An increase in the amount of PMA/SiO₂-(**G**) to molar ratio of PMA : diketone **1h** = 0.15: 1.0 did not lead to an increase of the yield of ozonides. Thus, the optimal condition for the synthesis of ozonides from diketone **1h** and H₂O₂ was proposed for experiment 6 in table 1.

Under the conditions of Run 6 in Table 1, we decided to test our catalyst in the reaction of peroxidation of diketone **1h** on the gram scale. In this case, the yield of the target ozonides **2h** and **3h** was 57%. To our astonishment, it turned out that under the conditions of experiment No. 23 (Table 1), the peroxidation of 1 gram of diketone **1h** leads to the formation of ozonides with yield of 92%. Additionally, catalyst PMA/SiO₂-(G) can be recycled up to 3 times with some loss in the yield of ozonides **2h** and **3h** (92%, 84%, and 78% respectively). When using 4 times reused catalyst, the yield of ozonides decreased to 59%. This is probably due to the catalyst poisoning by initial diketone **1h**. The procedure for regeneration of PMA/SiO₂-(G) is in SI.

Under the optimal conditions (Run 6, Table 1), series of ozonides **2a-k** and **3a-k** were synthesized, containing various functional groups and fragments: alkene **2e**, **3e**, nitrile **2f**, **3f**, ester **2g**, **3g**, and aromatic core **2h-k**, **3h-k** (Table 2).

[a] A 7.4 M ethereal solution of H₂O₂ (0.186-0.300 mL, 1.38-2.23 mmol, 1.5 mole of H₂O₂ per mole of **1a-k**) and PMA/SiO₂-**(E)** (0.840 – 1.370 g; 10 wt.% of PMA; 0.046 - 0.075 mmol PMA, 0.15 mol of PMA / 1.0 mol 1,5- diketone **1a-k**) were successively added to a stirred solution of 1,5-diketone **1a-k** (0.300 g; 0.92-1.49 mmol) in toluene (10 mL) at 20-25 °C. The reaction mixture was stirred at 20-25°C for 1h. All reactions on the synthesis of ozonides were carried out in triplicate. In all replications the yields of ozonides were practically the same.

[b] The ratio of stereoisomers of ozonides **2a-k** : **3a-k** was determined by the ¹H NMR spectroscopic data.

Thus, we succeeded to develop the catalyst $H_{3+x}PMo_{12\text{-}x}{}^{+6}Mo_{x}{}^{+5}O_{40}$ supported on $SiO_2,$ which allows to synthesize ozonides with a yield up to 90% based on the isolated product under heterogeneous conditions from 1,5diketones and hydrogen peroxide. The fact of the preparation of ozonides 2e, 3e with allyl substituent was amazing because double bond in diketone 1e was not oxidized. It is well known that PMA / H_2O_2 system is able to oxidize and epoxidize unsaturated compounds.^[25a, 25e, 25i] Peroxidation of diketone 1f bearing CN group leads to the formation of ozonides with a moderate yield. All stereoisomeric ozonides 2a-k and 3a-k (Table 2) were separated and isolated in individual form by column chromatography and characterized by physicochemical methods of analysis. Synthesized novel ozonides 2h, 3h, 3j, 3k, are crystalline and melt without decomposition. Under the developed heterogeneous conditions, ozonides 3 are formed in higher yields compared to the case of homogeneous reactions.^[16a,b]. This improvement is important for the search for biologically active compounds based on cyclic peroxides and the study of relationship between peroxide stereochemistry and activity.

Inspired by the results, we decided to enter $H_{3+x}PMo_{12\cdot x}$ ⁺⁶ Mo_x ⁺⁵ O_{40} supported on SiO₂ in peroxidation of 1,3diketones **4a-k**. Taking into account that 1,3-diketones exist mainly in an enol form, the most expected result in heterogeneous conditions is the formation of hydroxy derivatives of diketones or more deep oxidation products. However, fortune turned out to be on our side, reaction of 1,3-diketones **4a-k** and hydrogen peroxide under the action of $H_{3+x}PMo_{12\cdot x}$ ⁺⁶ Mo_x ⁺⁵ O_{40} supported on SiO₂ selectively and with high yield gives bridged tetraoxanes **5a-k** (Scheme 2).

Scheme 2. Synthesis of tetraoxanes 5a-k from 1,3-diketones 4a-k.

Peroxidation of 3-butylpentane-2,4-dione **4d** permitted to disclose the effect of the amount of $H_{3+x}PMo_{12-x}^{+6}Mo_x^{+5}O_{40}$ supported on SiO₂ and the molar ratio of PMA:SiO₂ on the yield of tetraoxane **5d** (Table 3). The reaction of 3-butylpentane-2,4-

dione **4d** with H_2O_2 was carried out at 20-25°C. The source of H_2O_2 was a 7.4M solution of H_2O_2 in Et₂O. Toluene was chosen as the solvent and the reaction time was 1 hour.

Table 3. Synthesis of 7-butyl-1,4-dimethyl-2,3,5,6-tetraoxabicyclo[2.2.1]heptane 5d from 3-butylpentane-2,4-dione 4d and $H_2O_2^{[a]}$

				-
	0 0 3 ec	q. H ₂ O ₂ 7.4M e catalyst	thereal,	
		toluene 1h, r.t.		
	4d			5d
Entry	Catalyst	Weight % PMA in PMA/SiO ₂	Molar ratio PMA / 4d	Yield of 5d by NMR, % (isolated yield, %)
1	PMA/SiO ₂ -(E)	10	0.05	65
2	PMA/SiO ₂ -(F)	20	0.05	63
3	PMA/SiO ₂ -(G)	30	0.05	55
4	PMA/SiO ₂ -(E)	10	0.10	67
5	PMA/SiO ₂ -(E)	10	0.15	71
6	PMA/SiO ₂ -(G)	30	0.10	75 (64%)

[a] A 7.4 M ethereal solution of H₂O₂ (0.864 mL, 3.0 mol. of H₂O₂ / 1.0 mol. of 1,3-diketone **4d**) and PMA/SiO₂-(**E-G**) (0.05-0.15 mol. PMA / 1.0 mol. 1,3-diketone **4d**) were successively added to a stirred solution of 1,3-diketone **4d** (0.300 g; 1.92 mmol) in toluene (10 mL) at 20-25 °C. The reaction mixture was stirred at 20-25°C for 1h.

According to the optimization results, the best yield was achieved in Run 6. The isolated yield of tetraoxane **5d** was 64%. Taking into account the results of optimization and reaction conditions developed for tetraoxane **5d**, peroxides **5a-k** were synthesized from diketones **4a-k**, which contain alkyl substituents of various hydrocarbon chain lengths in the α -position, double bond and ester group (Table 4). In the case of the synthesis of tetraoxanes **5a-c**, safety precautions should be observed due to their explosive nature.

Table 4. Structures and isolated yields of tetraoxanes ${\bf 5a\text{-}k}$ synthesized from the 1,3-diketones ${\bf 4a\text{-}k}^{[a]}$

WILEY-VCH

[a] A 7.4 M ethereal solution of H₂O₂ (0.454 – 1.066 mL, 3.36 – 7.89 mmol.; 3 mol. of H₂O₂ per 1 mol. of **4a-k**) and PMA/SiO₂-**(G)** (0.682 – 1.600 g; 30 wt.% H₃PMo₁₂O₄₀; 0.112 - 0.263 mmol. H₃PMo₁₂O₄₀; 0.10 mol. H₃PMo₁₂O₄₀/ 1 mol. **4a-k**) were successively added to a stirred solution of 1,3-diketone **4a-k** (0.300 g; 1.12 – 2.63 mmol) in toluene (10 mL) at 20-25 °C. The reaction mixture was stirred at 20-25°C for 1h. All reactions on the synthesis of tetraoxanes were carried out in triplicate. In all replications the yields of tetraoxanes were practically the same.

[b] Reaction scale: 1.0 gram of 1,3-diketone 4f.

Surprisingly, under heterogeneous conditions, tetraoxanes were formed in high yield. Expected hydro-, hydroxyperoxides or diketone oxidation products were not registered. Tetraoxanes 5j and 5k were obtained with yield above 80% based on the isolated product. From diketone 4c, tetraoxane 5c was formed with a good yield, despite the presence of alkenyl substituent. Tetraoxanes 5e, 5f, 5h, and 5k were previously unknown. Under the conditions of Run 6 (Table 3), tetraoxane 5f was synthesized on a scale of 1.0 gram per starting diketone 4f. The target tetraoxane 5f was obtained in 60% yield based on the isolated product.

The developed catalyst $H_{3+x}PMo_{12-x}^{+6}Mo_x^{+5}O_{40}$ supported on SiO₂ allows to synthesize bridged 1,2,4,5-tetraoxanes and bridged ozonides from 1,3- and 1,5-diketones with a high yield based on isolated product. It was surprising that the system $H_2O_2/H_{3+x}PMo_{12-x}^{+6}Mo_x^{+5}O_{40}/SiO_2$ facilitates the assembly of cyclic peroxides, but not the formation of diketone oxidation products.

In vitro fungicidal activity of the synthesized ozonides and tetraoxanes.

In the next part of our study, it was discovered that the synthesized cyclic peroxides are a new class of fungicides. Prediction of the presence of fungicidal activity of tetraoxanes and ozonides was not possible because there are no fungicides containing peroxide fragment among existing commercial fungicides. Despite the fact that more than 200 fungicides with

various (about 10) mechanisms of action are known,^[42] there is an urgent need to create new classes of fungicides with a new mechanism of action. This is primarily due to the emergence of fungi resistance to fungicides and over time the fungicides used in agriculture become less effective.^[43] Carbamates, azoles, amides, strobilurins, and anilines are the main classes of fungicides. According to our information, prior to this work, there were no data about the testing of peroxides against plant pathogen fungi.

The peroxides were tested against plant pathogenic fungi of various taxonomic classes, which cause great damage to agriculture and crop production: - Venturia inaequalis (V.i.) (causes the Apple scab disease); Rhizoctonia solani (R.s.) (causes black scurf of potatoes), Fusarium oxysporum (F.o.) (causes rotting of the roots and wilting of lucerne, pea, soybean, wheat, cucumber, affects the vascular system of tomatoes), Fusarium moniliforme (F.m.) (causes fusarium of corn cob), Bipolaris sorokiniana (B.s.) (root rot of wheat, barley, rve, oats). Sclerotinia sclerotiorum (S.s.) (the causal agent of white rot of sunflower), Fusarium graminearum (F.g.) (the causal agent of fusarium rice, wheat and barley ears), Fusarium heterosporum (F.h.) (causes root rot and tracheomycosis of soybean), Fusarium culmorum (F.c.) (the causal agent of fusarium ear of wheat)), Fusarium gibbosum (F.gb.) (causes root rot and tracheomycosis of pea), Fusarium nivale (Microdochium nivale) (F.m.n.) (causes fusarium snow mold of cereals, affects winter wheat, rye), Fusarium sporotrichiella (F.s.) (causes fusarium of wheat, rye, barley), Alternaria alternata (A.) (causes black ear of wheat), Pythium graminicola (P.sp.) (affect cotton, wheat, turmeric, barley, rice, beans, peas, and sugarcane), Phoma eupyrena (P.e.) (causal agent of dark brown spot wheat, barley).

The effect of the tested peroxides on the mycelium radial growth in the potato-saccharose agar was measured in concentration 30 mg/L. Triadimefon and Kresoxim-methyl were used as reference compounds (Table 5).

Table 5. Growth inhibition of the mycelium of the pathogenic fungi by ozonides 2a-f, 3a, 3c-e, and tetraoxanes 5a-j

No	No Crand Mycelium growth inhibition (1) +(SD) % (C = 30 mg/l)															
IN≌	Cmpa	- V :			5	IVIYO	cellum gro			(SD), % (c = 30 m	g /L)				
		V. I.	R. S.	F. O.	F. M.	B. S.	S. S.	<i>г.</i> g.	F. N.	F. C.	F.	<i>F.</i>	F. S.	А.	Ρ.	Р. е.
											gp.	m.n.			sp.	
1	2a	31±3	26±2	2±2	25±3	17±2	18±2	27±3	33±2	21±2	13±2	11±3	26±3	13±3	9±2	63±4
2	3a	10±2	38±3	2±2	10±2	25±3	14±1	19±2	29±2	26±3	5±2	18±4	-11	8±2	21±3	57±4
3	2b	33±3	18±1	18±3	14±2	20±2	11±1	46±4	59±3	54±5	23±2	19±3	57±5	8±2	30±3	57±5
4	2c	50±2	14±2	20±2	31±3	17±2	16±2	33±3	48±4	57±4	30±3	21±3	60±3	16±3	43±4	59±4
5	3c	38±2	46±2	13±1	22±2	25±3	17±2	32±2	26±2	31±3	17±2	21±2	40±2	31±4	36±3	40±3
6	2d	3±2	49±3	19±4	45±5	31±5	8±4	17±2	30±4	14±6	19±3	2±1	40±4	20±2	5±4	24±2
7	3d	42±8	53±5	30±4	46±3	21±4	10±3	32±2	12±3	23±3	24±2	23±5	49±4	28±2	15±5	28±2
8	2e	31±3	85±3	53±4	24±3	31±2	31±2	64±1	61±2	19±4	37±2	39±4	47±4	21±2	44±3	28±2
9	3e	45±4	91±2	76±5	50±4	47±3	42±3	94±1	75±6	40±4	67±3	40±4	58±3	32±2	37±5	40±3
10	2f	31±2	12±2	26±4	7±2	18±2	17±3	34±1	49±3	8±3	24±2	18±3	31±4	12±1	47±3	40±1
11	5a	88±5	100	99±1	100	66±3	96±1	90±1	100	100	88±2	84±2	97±2	56±3	98±1	86±5
12	5b	88±4	100	97±1	100	68±3	69±3	88±1	100	99±1	95±2	82±2	100	58±3	94	78±6
13	5c	37±7	100	100	100	100	52±3	97±1	100	99±1	100	100	100	47±7	100	90±4
14	5d	88±8	100	95±1	100	71±3	71±2	90±1	97±2	99±1	90±1	83±3	95±2	58±6	99±1	76±5
15	5e	100	100	100	100	68±2	48±3	100	100	100	100	100	100	49±3	98±1	71±1

WILEY-VCH

16	5f	100	100	97±1	97±1	68±3	31±1	97±2	96±1	100	100	96±1	99±1	32±2	97±1	77±4
17	5g	90±1	100	100	100	52±2	38±4	97±1	100	100	97±1	97±1	100	52±2	100	70±3
18	5h	74±6	98±2	71±6	96±2	71±3	42±1	91±6	100	85±5	100	89±5	94±5	56±4	93±1	100
19	5i	15±5	67±3	39±3	50±3	9±4	25±2	19±1	8±3	-2±1	12±3	10±2	22±5	9±2	52±3	5±2
20	5j	54±5	98±1	53±4	80±2	81±2	42±3	99±1	93±2	100	97±1	71±2	77±2	53±2	75±4	73±2
21	5k	26±6	100	30±2	98±2	64±2	20±1	100	98±2	68±3	99±2	59±4	74±3	29±2	59±4	37±2
22	Triadimefon	78±1	62±2	83±2	89±1	68±2	55±2	49±7	79±5	77±2	34±3	54±2	80±3	39±1	36±1	26±4
23	Krezoxim-	89±1	100	69±1	60±2	54±2	47±1	59±6	76±6	43±6	66±6	68±2	56±6	65±2	100	100
	methyl															

SD : standard deviation

Among the investigated ozonides 2a-f, 3a, 3c-e, the best fungicidal activity was shown by ozonide 3e, which contains an allylic substituent. It was the most active against 11 of 15 fungi, except V.i., F.c., F.s., and P.e. When using ozonide 3e at a concentration of 30 mg / L, an inhibition of mycelium growth of more than 50% was observed in 7 of 15 fungi, namely against R.s., F.o., F.m., F.g., F.h., F.g., and F.s. Ozonide 3e is superior to the commercially used fungicide Triadimefon against such fungi as R.s., F.g., F.gb., P.sp, and P.e, and against F.o, F.g., F.gb., and F.s. - is superior to Kresoxim-methyl. Against F.h. ozonide 3e is comparable in activity to Kresoxim-methyl. Ozonide 2c was the most effective among ozonides against V.i., F.c. and F.s; against F.c., F.s. it was more active than Kresoximmethyl. All tested ozonides, with the exception of ozonide 2d versus P.e. turned out to be more active than Triadimefon, the most active among them was ozonide 2a, mycelium growth inhibition of P.e. up to 63%. Against P.sp. the most active ozonide was ozonide 2f, which turned out to be more active than Triadimeton, mycelium growth inhibition of P.sp. was 47% vs. 36% respectively. Ozonide 2e was more active than Triadimefon against R.s., F.gb., P.sp., and P.e. Towards to F.g. ozonide 2e is more active than Triadimeton and Kresoxim-methyl.

Very interesting and unprecedented results were obtained in the study of tetraoxanes 5a-k. All tested tetraoxanes containing alkyl substituents showed a very high fungicidal activity at concentration of 30 mg / L. All tetraoxanes, with the exception of 5i, exhibit 100% inhibition of the growth of the mycelium (I = 100 %) in a wide range of phytopathogenic fungi and are superior in activity to the commercial fungicides Triadimefon and Kresoxim-methyl. However, only in the case of Alternaria alternata (A.), the inhibition of mycelium growth did not exceed 58%. The most active among tetraoxanes 5a-k was tetraoxane 5e, which contains amyl substituent. Tetraoxane 5e completely suppresses the growth of mycelium in 10 out of 15 fungi with the exception of B.s., S.s., A., P.sp., P.e. and is superior in activity to both Triadimefon and Kresoxim-methyl. Against S.s. tetraoxane **5a** is the most active (I = 96%); vs. A., tetraoxanes 5b and 5d (I = 58%); vs. P.sp. - tetraoxanes 5c and 5g (I = 100%); vs. P.e. - tetraoxane 5h (I = 100%). It is worth noting that the presence of a substituent with ester functional group or bulky benzyl substituent in the tetraoxane molecule leads to a sharp decrease in the fungicidal activity, the length of alkyl substituent from C1 to C8 has little effect on the fungicidal activity.

Further, for the most active tetraoxanes **5a**, **5c**, **5e-g**, we determined EC_{50} against key phytopathogens, such as *Venturia inaequalis* (*V.i.*), *Rhizoctonia solani* (*R.s.*), *Fusarium oxysporum*

(F.o.), Fusarium moniliforme (F.m.), Bipolaris sorokiniana	(B.s.)
Sclerotinia sclerotiorum (S.s.) (Table 6).	

Table	6.	Fungicidal	activity	(EC ₅₀)	of	tetraoxanes	5a,	5c,	5e-g
-------	----	------------	----------	---------------------	----	-------------	-----	-----	------

Nº	Cmpd			EC ₅₀ (m	ng /L)±SD		
		V. i.	R. s.	F. o.	F. m.	B. s.	S. s.
1	5a	14.2±1.6	5.5±1.2	12.8±2.1	12.3±2.1	5.0±1.0	13.6±0.8
2	5c	>30.0	6.5±0.8	12.4±2.5	12.1±2.2	12.7±3.1	28.2±1.4
3	5e	8.9±1.4	3.4±0.9	10.2±1.7	10.5±1.6	2.8±0.4	>30
4	5f	12.5±1.2	4.8±0.5	12.8±1.1	13.4±0.9	15.0±3.5	>30
5	5g	15.6±0.9	4.4±0.5	12.3±2.6	7.8±0.6	27.8±2.5	>30
6	Triadime- fon	7.6±0.4	23.2±3.2	2.6±0.2	2.1±0.2	8.7±0.7	18.3±2.2
7	Krezoxim methyl	2.2±0.1	<0.3	<0.3	7.6±1.3	18.2±1.6	>30.0

SD : standard deviation

The results in Table 6 show that tetraoxanes **5a**, **5c**, **5e-g** are more potent fungicides than Triadimefon against *R.s.*, but inferior to Kresoxim-methyl. Tetraoxanes **5a**, **5c**, and **5f** are more effective than Kresoxim-methyl vs. *B.s*, and tetraoxane **5e** is more effective than Triadimefon, and Kresoxim-methyl vs. *B.s.* Tetraoxane 5a shows higher fungicidal properties than Triadimefon and Kresoxim-methyl vs. *S.s.*

The results obtained in this work demonstrate that cyclic peroxides can be considered as a new class of fungicides and they are of great interest for further research in order to develop the next generation of plant protection agents.

Conclusions

The catalyst H_{3+x}PMo_{12-x}+6Mo_x+5O₄₀ supported on SiO₂ was discovered, which under heterogeneous conditions allows to carry out peroxidation of 1,3- and 1,5-diketones. Non-polar solvents such as toluene. benzene. diethvl ether. dichloromethane or carbon tetrachloride were proposed as the solvents, since the catalyst does not dissolve in them. The development of methods for the synthesis of peroxides under heterogeneous conditions is an important and at the same time complex methodological task for industry and valuable contribution to the chemistry of peroxides. When using H3+xPMo12-x+6Mox+5O40/SiO2, only target cyclic peroxides are formed. A new class of fungicides for plant protection has been discovered - cyclic peroxides. None of the agrochemical fungicides contains a peroxide moiety. The bridged ozonides

and bridged tetraoxanes possess fungicidal activity that exceeds the activity of such widely used fungicides as Triadimefon and Kresoxim-methyl.

Experimental Section

Caution: Although we have encountered no difficulties in working with the peroxides described below, the proper precautions, such as the use of shields, fume hoods and the avoidance of transition metal salts, heating and shaking, should be taken. In the case of the synthesis of tetraoxanes 5a-c, safety precautions should be observed due to their explosive nature. When working with a 7.4 M solution of H_2O_2 in diethyl ether, use gloves and work in a fume hood. 7.4 M ethereal solution of H_2O_2 should be stored below 5°C.

NMR spectra were recorded on a commercial instrument (300.13 MHz for ¹H, 75.48 MHz for ¹³C) in CDCl₃. High resolution mass spectra (HRMS) were measured using electrospray ionization (ESI).¹⁰⁸ The measurements were done in a positive ion mode (interface capillary voltage 4500 V); the mass ratio was from m/z 50 to 3000 Da; external/internal calibration was done with Electrospray Calibrant Solution. A syringe injection was used for solutions in MeCN (flow rate 3 □L/min). Nitrogen was applied as a dry gas; interface temperature was set at 180 DC. IR spectra were recorded on FT-IR spectrometer. All the Raman spectra were measured using InVia Reflex Raman microscope (Renishaw, UK) in confocal mode with 633 nm HeNe laser (17 mW). A neutral density filter with an optical throughput of 100% was used. Instrument adjustment was made applying silicon monocrystalline wafer. The focus length was 250 mm, size of the laser spot was 5 um with diffraction monochromator 1200 groves/mm. All spectra were recorded applying 50x objective and 3s acquisition time (except for MoO₃ it was 1 s) with 3 accumulations. The Raman spectra in each figure corresponds to different points on a surface of the described sample. TGA was performed on the "Derivatograth-C" (MOM, Hungary) in air at a heating rate of 10 °C/min on a sample of about 25 mg by weight. Target-oriented approach was utilized for the optimization of the analvtic measurements.^[44] Before measurements the samples were mounted on a 3 mm copper grid with lacey carbon film and fixed in a grid holder. Samples morphology was studied using Hitachi transmission electron microscope (TEM). Images were acquired in bright-field TEM mode at 100 kV accelerating voltage. The TLC analysis was carried out on silica gel chromatography plates Macherey-Nagel Alugram UV254; Sorbent: Silica 60, specific surface (BET) ~ 500 m²/g, mean pore size 60 Å, specific pore volume 0.75 mL/g, particle size 5-17 µm; Binder: highly polymeric product, which is stable in almost all organic solvents and resistant towards aggressive visualization reagents. The melting points were determined on a Kofler hot-stage apparatus. Chromatography of 1,5-diketones was performed on silica gel (0.060-0.200 mm, 60 A, CAS 7631-86-9). Chromatography of ozonides was performed on silica gel (0.040-0.060 mm, 60 A, CAS 7631-86-9). Dichloromethane, toluene, petroleum ether (PE) (40/70), ethyl acetate (EA), ethyl acetoacetate, methyl vinyl ketone, benzyl and alkyl halides, H2O2 (35% aqueous solution), MgSO₄, NaHCO₃, Nal, CeCl₃•7H₂O, Na₂S₂O₃ were purchased from Acros. A solution of H2O2 in Et2O (7.4 M) was prepared by the extraction with Et₂O (5×100 mL) from a 35% aqueous solution (100 mL) followed by drying over MgSO4 and removal of part of Et2O under a water jet vacuum at 20-25 °C. Toluene was distilled over Na.

Procedures for preparation of promoters for peroxidation of 1,5diketone 1h

a) Procedure for preparation PMA-(A)

 $H_3PMo_{12}O_{40}\times H_2O$ (0.625 g of 80% phosphomolybdic acid; 0.500 g, 0.27 mmol of $H_3PMo_{12}O_{40})$ was placed in open Petri dish (diameter 9.5 cm; PMA was distributed evenly over the surface) and heated in an oven at 150 °C for 2 hours.

b) Procedure for preparation PMA-(B)

 $H_3PMo_{12}O_{40}\times H_2O$ (0.625 g of 80% phosphomolybdic acid; 0.500 g, 0.27 mmol of $H_3PMo_{12}O_{40})$ was stepwise heated on a heating table of the magnetic stirrer in open Petri dish (diameter 9.5 cm, PMA was distributed evenly over the surface) with an increase of temperature from r.t. to 150 $^\circ$ C : at 40 $^\circ$ C for 30 min., then at 60 $^\circ$ C - 30 min.; at 80 $^\circ$ C - 30 min.; at 100 $^\circ$ C - 30 min.; and then at 150 $^\circ$ C for one hour.

c) Procedure for preparation PMA-(C)

 $H_3PMo_{12}O_{40}\times H_2O$ (0.625 g of 80% phosphomolybdic acid; 0.500 g, 0.27 mmol of $H_3PMo_{12}O_{40}$) was placed in a beaker and dissolved in ethanol (15 mL). The solvent was evaporated at 150 °C and 1 atm. in air atmosphere on a heating table of the magnetic stirrer, and the resulting residue was heated at 150 °C for 1 hour. The resulting residue was ground by grinding in a mortar.

d) Procedure for preparation PMA/SiO₂-(D)

A silica gel SiO₂ (4.5 g, 60 Å, 0.060-0.200 mm, S=470-530 m²/g) was added to intensively stirred solution of $H_3PMo_{12}O_{40}\times H_2O$ (0.625 g of 80% phosphomolybdic acid; 0.500 g, 0.27 mmol of $H_3PMo_{12}O_{40}$) in ethanol (50 mL) at 20-25 °C. The suspension was stirred at 20-25 °C for 10 min. Then the solvent was evaporated under a water jet vacuum at 30 °C. After that, the resulting PMA/SiO₂ (10 wt.% $H_3PMo_{12}O_{40}$) was stepwise heated on a heating table of the magnetic stirrer in open Petri dish (diameter 9.5 cm, PMA/SiO₂ was distributed evenly over the surface, the height of the layer was not more than 3 mm) with an increase of temperature from r.t. to 150 °C c at 40 °C for 30 min.; then at 60 °C - 30 min.; at 80 °C - 30 min.; at 100 °C - 30 min.; and then at 150 °C for one hour.

e) Procedure for preparation PMA/SiO₂-(E)

Silica gel SiO₂ (4.5 g, 60 Å, 0.060-0.200 mm, S=470-530 m²/g) was added to intensively stirred solution of H₃PMo₁₂O₄₀×H₂O (0.625 g of 80% phosphomolybdic acid; 0.500 g, 0.27 mmol of H₃PMo₁₂O₄₀) in ethanol (50 mL) at 20-25 °C. The suspension was stirred at 20-25 °C for 10 min. Then the solvent was evaporated under a water jet vacuum at 30 °C. After that, the resulting PMA/SiO₂ (10 wt.% H₃PMo₁₂O₄₀) was stepwise heated on a heating table of the magnetic stirrer in open Petri dish (diameter 9.5 cm, PMA/SiO₂ was distributed evenly over the surface, the height of the layer was not more than 3 mm) with an increase of temperature from r.t. to 150 °C c at 40 °C for 30 min.; then at 60 °C - 30 min.; at 80 °C - 30 min.; at 100 °C - 30 min.; and then at 150 °C for one hour (upon reaching 150 °C the Petri dish was immediately covered with Petri dish lid).

f) Procedure for preparation PMA/SiO₂-(F)

Silica gel SiO₂ (4.0 g, 60 Å, 0.060-0.200 mm, S=470-530 m²/g) was added to intensively stirred solution of $H_3PMo_{12}O_{40}\times H_2O$ (1.250 g of 80% phosphomolybdic acid; 1.00 g, 0.54 mmol of $H_3PMo_{12}O_{40}$) in ethanol (50 mL) at 20-25 °C. The suspension was stirred at 20-25 °C for 10 min. Then the solvent was evaporated under a water jet vacuum at 30 °C. After that, the resulting PMA/SiO₂ (20 wt.% $H_3PMo_{12}O_{40}$) was stepwise heated on a heating table of the magnetic stirrer in open Petri dish

(diameter 9.5 cm, PMA/SiO₂ was distributed evenly over the surface, the height of the layer was not more than 3 mm) with an increase of temperature from r.t. to 150 °C c: at 40 °C for 30 min., then at 60 °C - 30 min.; at 80 °C - 30 min.; at 100 °C - 30 min.; and then at 150 °C for one hour (upon reaching 150 °C the Petri dish was immediately covered with Petri dish lid).

g) Procedure for preparation PMA/SiO₂-(G)

Silica gel SiO₂ (3.5 g, 60 Å, 0.060-0.200 mm, S=470-530 m²/g) was added to intensively stirred solution of H₃PMo₁₂O₄₀×H₂O (1.875 g of 80% phosphomolybdic acid; 1.500 g, 0.81 mmol of H₃PMo₁₂O₄₀) in ethanol (50 mL) at 20-25 °C. The suspension was stirred at 20-25 °C for 10 min. Then the solvent was evaporated under a water jet vacuum at 30 °C. After that, the resulting PMA/SiO₂ (30 wt.% H₃PMo₁₂O₄₀) was stepwise heated on a heating table of the magnetic stirrer in open Petri dish (diameter 9.5 cm, PMA/SiO₂ was distributed evenly over the surface, the height of the layer was not more than 3 mm) with an increase of temperature from r.t. to 150 °C c at 40 °C for 30 min., then at 60 °C - 30 min.; at 80 °C - 30 min.; at 100 °C - 30 min.; and then at 150 °C for one hour (upon reaching 150 °C the Petri dish was immediately covered with Petri dish lid).

h) Regeneration procedure of PMA/SiO₂-(G)

After reaction the filtered and washed with CH₂Cl₂ (3 × 10 ml) catalyst PMA/SiO₂^G was stepwise heated on a heating table of the magnetic stirrer in Petri Dish (diameter 9.5 cm) with an increase of temperature from r.t. to 150 ° C: at 40 °C for 30 min., then at 60 °C - 30 min.; at 80 °C - 30 min.; at 100 °C - 30 min.; and then at 150 °C for one hour (upon reaching 150 °C the Petri Dish was immediately covered with Petri Dish lid).

Synthesis of 1,5-diketones 1a-k and 1,3-diketones 4a-k.

1,5–Diketones **1a–k** were synthesized according to a known procedures.^[16, 28d] 1,5–Diketones **1h-k** are previously undescribed compounds. Other 1,5-diketones are known compounds. 1,3-Diketones **4a-h,k**,^[45] **4i**,^[46] **4j**,^[47] were synthesized according to the known procedures.

Typical procedure for preparation of 1,5-diketones 1h-k: Methyl vinyl ketone (1.2 mol / 1.0 mol of β -keto ester), cerium (III) chloride (0.2 mol / 1.0 mol of β -keto ester), and sodium iodide (0.1 mol / 1.0 mol of β -keto ester) were successively added with stirring to the corresponding β-keto ester (1.5 g. 5.89-6.29 mmol) at 20-25 °C. Solid β-keto esters were dissolved in 5 mL CH₃CN prior to the reaction whereas liquid β -keto esters can be used neat. The reaction mixture was stirred at room temperature for 24 h. Then EtOAc (30 mL) was added, and the reaction mixture was stirred another 30 min. After that the mixture was transferred into a separating funnel, and H₂O (10 mL) and two drops of 36% aq. HCl were added. The aqueous phase was separated; the organic phase was washed by saturated aq. sol. of Na₂S₂O₃ and then with water (2×10 mL). The organic phase was dried over MgSO4 and filtered. The solvent was removed in the vacuum of a water jet pump. 1,5-Diketones were isolated by chromatography on SiO2 using PE : EA mixture as the eluent with a gradient of EA from 10 to 90 vol. % Compounds: 1h: 1.41 g, 4.35 mmol, yield 74%; 1i: 1.66 g, 3.59 mmol, yield 61%; 1j: 1.18 g, 3.84 mmol, yield 61%; 1k 1.59 g, 4.97 mmol, yield 83%.

Ethyl 2-acetyl-2-(4-chlorobenzyl)-5-oxohexanoate, 1h

White crystals. Mp = 63-65 °C. Yield 74%, 1.58 g, 5.27 mmol. R_f = 0.57 (TLC, PE : EA, 2 : 1). ¹H NMR (300.13 MHz, CDCl₃), & 1.25 (t, *J* = 7.3 Hz, 3H), 2.06-2.14 (m, 8H), 2.33-2.39 (m, 2H), 3.05 (d, *J* = 14.2 Hz, 1H), 3.18 (d, *J* = 14.2 Hz, 1H), 4.14-4.17 (m, 2H), 6.99 (d, *J* = 8.2 Hz, 2H), 7.21 (d, *J* = 8.2 Hz, 2H); ¹³C NMR (75.48 MHz, CDCl₃), & 14.1, 25.6, 27.7, 30.1, 37.7, 38.3, 61.7, 63.9, 128.6, 131.3, 133.1, 134.5, 171.6, 205.1, 206.9; Anal. Calcd for C₁₇H₂₁ClO₄: C, 62.87; H, 6.52; Cl, 10.91. Found: C, 62.89; H, 6.53; Cl, 10.93. HRMS (ESI-TOF): m/z [M+Na]⁺: calculated for [C₁₇H₂₁ClNaO₄]⁺: 347.1021; found: 347.1013

Ethyl 2-acetyl-2-(3-chlorobenzyl)-5-oxohexanoate, 1i

 $\begin{array}{l} \label{eq:hybrid} White crystals. Mp = 56-58 \ ^{\circ}C. Yield 61\%, 1.66 g, 3.59 mmol. R_f = 0.52 \\ (TLC, PE : EA, 2 : 1). \ ^{1}H \ \text{NMR} \ (300.13 \ \text{MHz}, \ \text{CDCl}_3), \ \& \ 1.23 \ (t, \ \textit{J} = 7.3 \ \text{Hz}, 3H), 2.04-2.12 \ (m, \ 8H), 2.32-2.42 \ (m, \ 2H), 3.04 \ (d, \ \textit{J} = 14.2 \ \text{Hz}, 1H), 3.18 \\ (d, \ \textit{J} = 14.2 \ \text{Hz}, 1H), \ 4.12-4.20 \ (m, \ 2H), \ 6.92-7.18 \ (m, \ 4H). \ ^{13}C \ \text{NMR} \\ (75.48 \ \text{MHz}, \ \text{CDCl}_3), \ \& \ 14.0, \ 25.6, \ 27.6, \ 30.1, \ 37.9, \ 38.2, \ 61.7, \ 63.8, \\ 127.3, \ 128.1, \ 129.7, \ 130.0, \ 134.2, \ 138.1, \ 171.5, \ 204.9, \ 206.8; \ \ \text{Anal.} \\ \text{Calcd for } C_{17}H_{21}\text{ClO}_4: \ C, \ 62.87; \ H, \ 6.52; \ Cl, \ 10.91. \ \text{Found: } C, \ 62.86; \ H, \\ 6.51; \ Cl, \ \ 10.92. \ \text{HRMS} \ \ (\text{ESI-TOF}): \ \text{m/z} \ \ [\text{M+Na}]^+: \ \text{calculated for} \\ \ [\text{C}_{17}H_{21}\text{ClNaO}_4]^*: \ 347.1021; \ \text{found: } 347.1018 \\ \end{array}$

Ethyl 2-acetyl-2-(4-fluorobenzyl)-5-oxohexanoate, 1j

White crystals. Mp = 56-58 °C. Yield 61%, 1.18 g, 3.84 mmol. R_f = 0.52 (TLC, PE : EA, 2 : 1). ¹H NMR (300.13 MHz, CDCl₃), & 1.23 (t, *J* = 7.3 Hz, 3H), 2.07-2.11 (m, 8H), 2.33-2.42 (m, 2H), 3.04 (d, *J* = 14.2 Hz, 1H), 3.18 (d, *J* = 14.2 Hz, 1H), 4.12-4.20 (m, 2H), 6.90-7.04 (m, 4H). ¹³C NMR (75.48 MHz, CDCl₃), & 14.0, 25.6, 27.7, 30.1, 37.6, 38.3, 61.6, 63.9, 115.4 (d, ²_{JCF} = 21.3 Hz), 131.5 (d, ³_{JCF} = 7.9 Hz), 131.7 (d, ⁴_{JCH} = 3.4 Hz), 162.1 (d, ¹_{JCF} = 245.8 Hz), 171.2, 205.1, 206.9; Anal. Calcd for C_{17H21}FO₄: C, 66.22; H, 6.86; F, 6.16. Found: C, 66.24; H, 6.87; F, 6.17. HRMS (ESI-TOF): m/z [M+Na]*: calculated for [C_{17H21}FNaO₄]*: 331.1316; found: 331.1314.

Ethyl 2-acetyl-2-(3-methoxybenzyl)-5-oxohexanoate, 1k

Procedure for peroxidation of 1h with use of 7.4 M ethereal solution of H_2O_2 and PMA or PMA-(A-C) (Table 1, Runs 1-4)

A 7.4 M ethereal solution of H_2O_2 (0.186 mL, 1.38 mmol, 1.5 mol H_2O_2 / 1.0 mol of 1,5-diketone **1h**) and PMA (0.105g, 0.046 mmol of $H_3PMo_{12}O_{40}$) or PMA-(A-C) (0.084 g, 0.046 mmol of $H_3PMo_{12}O_{40}$) were successively added to a stirred solution of 1,5-diketone **1h** (0.300 g; 0.92 mmol) in toluene (10 mL) at 20-25 °C. The reaction mixture was stirred at 20-25°C for 1h. After that time the catalyst was filtered off and washed with CH_2Cl_2 (3 × 10 ml). The solvent was removed in vacuum of a water jet pump. Mixture of ozonides **2h** + **3h** was isolated by chromatography on SiO₂ using PE : EA mixture as the eluent with a gradient of EA from 5 to 20 vol. % The ratio of ozonides **2h**:**3h** was determined by the ¹H NMR spectroscopic data.

WILEY-VCH

Procedure for peroxidation of 1h with use of 7.4 M ethereal solution of H_2O_2 and PMA/SiO₂-(D) or PMA/SiO₂-(E) (Table 1, Runs 5-18)

A 7.4 M ethereal solution of H_2O_2 (0.121 – 0.363 mL, 0.92 – 2.76 mmol, 1.0 – 3.0 mol H_2O_2 / 1.0 mol of 1,5-diketone **1h**) and PMA/SiO₂-(**D**) or PMA/SiO₂-(**E**) (0.165 – 2.518 g, 10 wt.% $H_3PMo_{12}O_{40}$, 0.009 – 0.138 mmol of $H_3PMo_{12}O_{40}$, 0.01-0.15 mol $H_3PMo_{12}O_{40}$ / 1.0 mol 1,5- diketone **1h**) were successively added to a stirred solution of 1,5-diketone **1h** (0.300 g; 0.92 mmol) in toluene, CCl₄, CH₂Cl₂ or Et₂O (10 mL) at 20-25 °C. The reaction mixture was stirred at 20-25°C for 0.5-24 h. After that time the catalyst was filtered off and washed with CH₂Cl₂ (3 × 10 ml). The solvent was removed in vacuum of a water jet pump. Mixture of ozonides **2h** + **3h** was isolated by chromatography on SiO₂ using PE : EA mixture as the eluent with a gradient of EA from 5 to 20 vol. % The ratio of ozonides **2h:3h** was determined by the ¹H NMR spectroscopic data.

Procedure for peroxidation of 1h with use of 7.4 M ethereal solution of H_2O_2 and PMA/SiO₂-(F) (Table 1, Runs 19-20)

A 7.4 M ethereal solution of H_2O_2 (0.186 mL, 1.38 mmol, 1.5 mol H_2O_2 / 1.0 mol of 1,5-diketone **1h**) and PMA/SiO₂-(**F**) (0.420 – 0.840 g, 20 wt.% $H_3PM_{012}O_{40}$, 0.046 – 0.092 mmol of $H_3PM_{012}O_{40}$, 0.05-0.10 mol $H_3PM_{012}O_{40}$ / 1.0 mol 1,5- diketone **1h**) were successively added to a stirred solution of 1,5-diketone **1h** (0.300 g; 0.92 mmol) in toluene (10 mL) at 20-25 °C. The reaction mixture was stirred at 20-25°C for 1 h. After that time the catalyst was filtered off and washed with CH₂Cl₂ (3 × 10 ml). The solvent was removed in vacuum of a water jet pump. Mixture of ozonides **2h** + **3h** was isolated by chromatography on SiO₂ using PE : EA mixture as the eluent with a gradient of EA from 5 to 20 vol. % The ratio of ozonides **2h:3h** was determined by the ¹H NMR spectroscopic data.

Procedure for peroxidation of 1h with use of 7.4 M ethereal solution of H_2O_2 and PMA/SiO₂-(G) (Table 1, Runs 21-23)

A 7.4 M ethereal solution of H_2O_2 (0.186 mL, 1.38 mmol, 1.5 mol H_2O_2 / 1.0 mol of 1,5-diketone **1h**) and PMA/SiO₂-(**G**) (0.420 – 1.260 g, 30 wt.% $H_3PM_{012}O_{40}$, 0.046 – 0.138 mmol of $H_3PM_{012}O_{40}$, 0.05-0.15 mol $H_3PM_{012}O_{40}$ / 1.0 mol 1,5- diketone **1h**) were successively added to a stirred solution of 1,5-diketone **1h** (0.300 g; 0.92 mmol) in toluene (10 mL) at 20-25 °C. The reaction mixture was stirred at 20-25°C for 1 h. After that time the catalyst was filtered off and washed with CH_2CI_2 (3 × 10 ml). The solvent was removed in vacuum of a water jet pump. Mixture of ozonides **2h** + **3h** was isolated by chromatography on SiO₂ using PE : EA mixture as the eluent with a gradient of EA from 5 to 20 vol. % The ratio of ozonides **2h:3h** was determined by the ¹H NMR spectroscopic data.

General procedure for the synthesis of ozonides from diketones 1a-k

A 7.4 M ethereal solution of H₂O₂ (0.186-0.301 mL, 1.38-2.23 mmol, 1.5 mol H₂O₂ / 1.0 mol of 1,5-diketone **1a-k**) and PMA/SiO₂-**(E)** (0.840 – 1.370 g, 10 wt.% H₃PMo₁₂O₄₀, 0.046 - 0.075 mmol of H₃PMo₁₂O₄₀, 0.05 mol H₃PMo₁₂O₄₀ / 1.0 mol 1,5- diketone **1a-k**) were successively added to a stirred solution of 1,5-diketone **1a-k** (0.300 g; 0.92-1.49 mmol) in toluene (10 mL) at 20-25 °C. The reaction mixture was stirred at 20-25°C for 0.5-24 h. After that time the catalyst was filtered off and washed with CH₂Cl₂ (3 × 10 ml). The solvent was removed in vacuum of a water jet pump.

Ozonides **2a-k**, and **3a-k** in individual form were isolated by chromatography on SiO₂ using PE : EA mixture as the eluent with a

gradient of EA from 1 to 5 vol. % Compounds: **2a**: 74.5 mg, 0.34 mmol, yield 23%; **3a**: 58.3 mg, 0.27 mmol, yield 18%; **2b**: 112.4 mg, 0.46 mmol, yield 35%; **3b**: 67.4 mg, 0.27 mmol, yield 21%; **2c**: 121.1 mg, 0.44 mmol, yield 38%; **3c**: 76.5 mg, 0.28 mmol, yield 24%; **2d**: 152.1 mg, 0.5 mmol, yield 48%; **3d**: 69.7 mg, 0.23 mmol, yield 24%; **2e**: 128 mg, 0.5 mmol, yield 40%; **3e**: 73.6 mg, 0.28 mmol, yield 23%; **2f**: 47.8 mg, 0.17 mmol, yield 15%; **3f**: 41.4 mg, 0.15 mmol, yield 23%; **2f**: 47.8 mg, 0.17 mmol, yield 36%; **3g**: 72.6 mg, 0.23 mmol, yield 23%; **2h**: 66.0 mg, 0.19 mmol, yield 21%; **3h**: 75.5 mg, 0.22 mmol, yield 24%; **2i**: 88.0 mg, 0.26 mmol, yield 28%; **3i**: 94.3 mg, 0.27 mmol, yield 30%; **2j**: 75.7 mg, 0.23 mmol, yield 24%; **3j**: 104.1 mg, 0.32 mmol, yield 33%; **2k**: 75.5 mg, 0.22 mmol, yield 24%; **3k**: 97.6 mg, 0.29 mmol, yield 31%.

Mixtures of ozonides **2a-k** + **3a-k** were isolated by chromatography on SiO_2 using PE : EA mixture as the eluent with a gradient of EA from 5 to 20 vol. %

Mixtures 2a + 3a: 0.171 g, 0.79 mmol, yield 53%; 2b + 3b: 0.231 g, 0.94 mmol, yield 72%; 2c + 3c: 0.236 mg, 0.86 mmol, yield 74%; 2d + 3d: 0.269 mg, 0.90 mmol, yield 85%; 2e+ 3e: 0.243 mg, 0.95 mmol, yield 76%; 2f + 3f: 0.114 g, 0.42 mmol, yield 36%; 2g + 3g: 0.221 g, 0.69 mmol, yield 70%; 2h + 3h: 0.285 mg, 0.84 mmol, yield 90%; 2i + 3i: 0.275 g, 0.81 mmol, yield 87%; 2j + 3j: 0.277 g, 0.85 mmol, yield 88%; 2k + 3k: 0.240 g, 0.71 mmol, yield 76%;

Compounds **2a-g** and **3a-g** were previously described in detail in our previous papers.^[16] Compounds **2h-k**, **3h-k** are new compounds.

Synthesis of ozonides from 1,5-diketone 1h in gram scale of 1h with use of PMA/SiO₂-(E).

A 7.4 M ethereal solution of H_2O_2 (0.624 mL, 4.61 mmol, 1.5 mol H_2O_2 / 1.0 mol of 1,5-diketone **1h**) and PMA/SiO₂-(**E**) (2.80 g, 10 wt.% H₃PMo₁₂O₄₀, 0.154 mmol of H₃PMo₁₂O₄₀, 0.05 mol H₃PMo₁₂O₄₀ / 1.0 mol 1,5- diketone **1h**) were successively added to a stirred solution of 1,5-diketone **1h** (1.00 g; 3.07 mmol) in toluene (30 mL) at 20-25 °C. The reaction mixture was stirred at 20-25°C for 1 h. After that time the catalyst was filtered off and washed with CH₂Cl₂ (3 × 10 ml). The solvent was removed in vacuum of a water jet pump. Mixture of ozonides **2h** + **3h** was isolated by chromatography on SiO₂ using PE : EA mixture as the eluent with a gradient of EA from 5 to 20 vol. % Mixture of ozonides **2h** + **3h**: 0.596g, 1.75 mmol, yield 57%.

Synthesis of ozonides from 1,5-diketone 1h in gram scale of 1h with use of PMA/SiO_2 -(G).

A 7.4 M ethereal solution of H_2O_2 (0.624 mL, 4.61 mmol, 1.5 mol H_2O_2 / 1.0 mol of 1,5-diketone **1h**) and PMA/SiO₂-(**G**) (2.80 g, 30 wt.% H₃PMo₁₂O₄₀, 0.460 mmol of H₃PMo₁₂O₄₀, 0.15 mol H₃PMo₁₂O₄₀ / 1.0 mol 1,5- diketone **1h**) were successively added to a stirred solution of 1,5-diketone **1h** (1.00 g; 3.07 mmol) in toluene (30 mL) at 20-25 °C. The reaction mixture was stirred at 20-25°C for 1 h. After that time the catalyst was filtered off and washed with CH₂Cl₂ (3 × 10 ml). The solvent was removed in vacuum of a water jet pump. Mixture of ozonides **2h** + **3h** was isolated by chromatography on SiO₂ using PE : EA mixture as the eluent with a gradient of EA from 5 to 20 vol. % Mixture of ozonides **2h** + **3h**: 0.962g, 2.82 mmol, yield 92%.

Ethyl (1 R^* ,2 S^* ,5 S^*)-1,5-dimethyl-6,7,8-trioxabicyclo[3.2.1]octane-2-carboxylate, 2a^[16a]

Colorless oil. Yield 23%, 74.5 mg, 0.34 mmol. R_f = 0.38 (TLC, PE : EA, 20 : 1). ¹H NMR (300.13 MHz, CDCl₃), δ: 1.27 (t, *J* = 7.1 Hz, 3H), 1.50 (s,

3H), 1.61 (s, 3H), 1.66-1.81 (m, 1H), 1.80-2.01 (m, 1H), 2.01-2.27 (m, 1H), 2.26-2.50 (m, 1H), 2.73 (d, J = 6.2 Hz, 1H), 4.03-4.29 (m, 2H); ^{13}C NMR (75.48 MHz, CDCl₃), δ : 14.3, 20.5, 21.0, 21.1, 31.1, 46.8, 60.9, 108.1, 110.0, 171.3. The physical and spectral data were consistent with those previously reported.^[16a]

White crystals. Mp = 50-51 °C (Lit.^[16a] Mp = 49-50 °C). Yield 18%, 58.3 mg, 0.27 mmol. R_f = 0.34 (TLC, PE : EA, 20 : 1). ¹H NMR (300.13 MHz, CDCl₃), δ : 1.26 (t, *J* = 7.1 Hz, 3H), 1.51 (s, 3H), 1.57 (s, 3H), 1.71-1.98 (m, 3H), 2.38-2.57 (m, 1H), 2.77 (dd, J = 12.3, 4.9 Hz, 1H), 4.17 (q, *J* = 7.1 Hz, 2H): ¹³C NMR (75.48 MHz, CDCl₃), δ : 14.3, 20.4, 21.0, 21.3, 33.4, 49.4, 60.9, 107.7, 108.7, 171.6. The physical and spectral data were consistent with those previously reported.^[16a]

Ethyl (1*R**,2*S**,5*S**)-2-etyl-1,5-dimethyl-6,7,8trioxabicyclo[3.2.1]octane-2-carboxylate, 2b^[16b]

Colorless oil. Yield 35%, 112.4 mg, 0.46 mmol. R_f = 0.41 (TLC, PE : EA, 20 : 1). ¹H NMR (300.13 MHz, CDCl₃), & 0.79 (t, *J* = 7.2 Hz, 3H), 1.28 (t, *J* = 7.2 Hz, 3H), 1.36-1.54 (m, 1H), 1.47 (s, 3H), 1.67 (s, 3H), 1.74-2.00 (m, 3H), 2.03-2.32 (m, 2H), 4.19 (q, *J* = 7.2 Hz, 2H); ¹³C NMR (75.48 MHz, CDCl₃), & 8.2, 14.3, 18.7, 20.6, 25.2, 28.1, 33.0, 53.7, 60.9, 109.6, 111.3, 172.9. The physical and spectral data were consistent with those previously reported.^[16b]

Ethyl(1*S**,2*S**,5*R**)-2-ethyl-1,5-dimethyl-6,7,8trioxabicyclo[3.2.1]octane-2-carboxylate, 3b^[16b]

Colorless oil. Yield 21%, 67.4 mg, 0.27 mmol. $R_f = 0.35$ (TLC, PE : EA, 20 : 1). ¹H NMR (300.13 MHz, CDCl₃), & 0.84 (t, J = 7.4 Hz, 3H), 1.26 (t, J = 7.1 Hz, 3H), 1.48 (s, 3H), 1.58 (s, 3H), 1.62-2.01 (m, 5H), 2.59-2.73 (m, 1H), 4.16 (q, J = 7.4 Hz, 2H); ¹³C NMR (75.48 MHz, CDCl₃), & 9.3, 14.3, 18.9, 20.7, 21.7, 24.5, 31.1, 53.8, 61.0, 108.9, 111.4, 172.9. The physical and spectral data were consistent with those previously reported.^[16b]

Ethyl($1R^*$, $2S^*$, $5S^*$)-2-butyl-1, 5-dimethyl-6, 7, 8-trioxabicyclo[3.2.1]octane-2-carboxylate, $2c^{[16b]}$

Slightly yellow oil. Yield 38%, 121.1 mg, 0.44 mmol. R_f = 0.40 (TLC, PE : EA, 20 : 1). ¹H NMR (300.13 MHz, CDCl₃), & 0.86 (t, *J* = 7.0 Hz, 3H), 0.80-1.06 (m, 1H), 1.18-1.34 (m, 3H), 1.27 (t, *J* = 7.0 Hz, 3H), 1.35-1.53 (m, 1H), 1.46 (s, 3H), 1.67 (s, 3H), 1.72-1.97 (m, 3H), 2.05-2.19 (m, 2H), 4.11-4.25 (m, 2H); ¹³C NMR (75.48 MHz, CDCl₃), & 14.0, 14.3, 18.7, 20.6, 23.1, 25.7, 26.0, 33.0, 34.9, 53.3, 60.9, 109.6, 111.3, 173.0. The physical and spectral data were consistent with those previously reported.^[16b]

Ethyl (1*S**,2*S**,5*R**)-2-butyl-1,5-dimethyl-6,7,8trioxabicyclo[3.2.1]octane-2-carboxylate, 3c^[16b]

Colorless oil. Yield 24%, 76.5 mg, 0.28 mmol. R_f = 0.32 (TLC, PE : EA, 20 : 1); ¹H NMR (300.13 MHz, CDCl₃), & 0.89 (t, *J* = 7.1 Hz, 3H), 1.01-1.14 (m, 1H), 1.19-1.37 (m, 3H), 1.26 (t, *J* = 7.1 Hz, 3H), 1.48 (s, 3H), 1.57 (s, 3H), 1.61-1.91 (m, 5H), 2.59-2.73 (m, 1H), 4.14 (q, *J* = 7.1 Hz, 2H); ¹³C NMR (75.48 MHz, CDCl₃), & 14.0, 14.2, 18.9, 20.7, 22.4, 23.3, 27.2, 31.2, 31.4, 53.4, 61.0, 108.9, 111.4, 173.0. The physical and spectral data were consistent with those previously reported.^[16b]

Ethyl (1*R**,2*S**,5*S**)-2-hexyl-1,5-dimethyl-6,7,8trioxabicyclo[3.2.1]octane-2-carboxylate, 2d^[16a]

Slightly yellow oil. Yield 48%, 152.1 mg, 0.5 mmol. $R_{\rm f}$ = 0.43 (TLC, PE : EA, 5 : 1). ¹H NMR (300.13 MHz, CDCl₃), & 0.86 (t, J = 6.7 Hz, 3H), 0.90-1.08 (m, 1H), 1.17-1.34 (m, 10H), 1.37-1.50 (m, 1H), 1.47 (s, 3H), 1.68 (s, 3H), 1.72-1.97 (m, 3H), 2.07-2.19 (m, 2H), 4.13-4.23 (m, 2H); 13 C NMR (75.48 MHz, CDCl₃), & 14.1, 14.3, 18.8, 20.7, 22.7, 23.8, 25.7, 29.7, 31.7, 33.0, 35.2, 53.4, 60.9, 109.6, 111.3, 173.0. The physical and spectral data were consistent with those previously reported.^[16a]

Ethyl (1*S**,2*S**,5*R**)-2-hexyl-1,5-dimethyl-6,7,8trioxabicyclo[3.2.1]octane-2-carboxylate, 3d^[16a]

Colorless oil. Yield 22%, 69.7 mg, 0.23 mmol. R_f = 0.43 (TLC, PE : EA, 20 : 1); ¹H NMR (300.13 MHz, CDCI₃), & 0.78-0.94 (m, 3H), 0.96-1.36 (m, 11H), 1.49 (s, 3H), 1.58 (s, 3H), 1.61-1.90 (m, 5H), 2.58-2.77 (m, 1H), 4.15 (q, *J* = 7.1 Hz, 2H); ¹³C NMR (75.48 MHz, CDCI₃), & 14.2, 14.3, 18.9, 20.7, 22.4, 22.7, 25.0, 29.9, 31.2, 31.7, 31.8, 53.4, 61.0, 108.9, 111.4, 173.0. The physical and spectral data were consistent with those previously reported.^[16a]

Ethyl (1*R**,2*R**,5*S**)-2-allyl-1,5-dimethyl-6,7,8-trioxabicyclo[3.2.1]octane-2-carboxylate, 2e^[16a]

Slightly yellow oil. Yield 40%, 128 mg, 0.5 mmol. R_f = 0.28 (TLC, PE : EA, 60 : 1). ¹H NMR (300.13 MHz, CDCl₃), & 1.27 (t, *J* = 7.1 Hz, 3H), 1.47 (s, 3H), 1.68 (s, 3H), 1.72-2.23 (m, 5H), 2.62 (dd, *J* = 13.2, 6.8 Hz, 1H), 4.19 (q, *J* = 7.1 Hz, 2H), 4.99-5.14 (m, 2H), 5.50-5.70 (m, 1H); ¹³C NMR (75.48 MHz, CDCl₃), & 14.3, 18.7, 20.7 26.0, 32.9, 39.8, 53.0, 61.1, 109.8, 110.9, 118.9, 132.4, 172.4. The physical and spectral data were consistent with those previously reported.^[16a]

Ethyl (1*S**,2*S**,5*R**)-2-allyl-1,5-dimethyl-6,7,8trioxabicyclo[3.2.1]octane-2-carboxylate, 3e^[16a]

Slightly yellow oil. Yield 23%, 73.6 mg, 0.28 mmol. R_f = 0.24 (TLC, PE : EA, 60 : 1). ¹H NMR (300.13 MHz, CDCl₃), & 1.22 (t, *J* = 7.1 Hz, 3H), 1.50 (s, 3H), 1.57 (s, 3H), 1.61-1.83 (m, 3H), 2.48 (dd, *J* = 13.9, 8.7 Hz, 1H), 2.57-2.77 (m, 2H), 4.16 (q, *J* = 7.1 Hz, 2H), 5.03-5.14 (m, 2H), 5.54-5.72 (m, 1H); ¹³C NMR (75.48 MHz, CDCl₃), & 14.3, 18.8, 20.8, 22.7, 30.8, 36.4, 52.8, 61.2, 109.0, 110.9, 118.7, 133.7, 172.6. The physical and spectral data were consistent with those previously reported.^[16a]

Ethyl (1*R**,2*S**,5*S**)-2-(2-cyanoethyl)-1,5-dimethyl-6,7,8-trioxabicyclo[3.2.1]octane-2-carboxylate, 2f^[16a]

White crystals. Mp = 83-84 °C (Lit.^[16a] Mp = 83-84 °C). Yield 15%, 47.8 mg, 0.17 mmol. R_f = 0.61 (TLC, PE : EA, 5 : 1). ¹H NMR (300.13 MHz, CDCl₃), & 1.31 (t, *J* = 7.1 Hz, 3H), 1.49 (s, 3H), 1.65 (s, 3H), 1.82-1.89 (m, 2H), 1.91-2.12 (m, 2H), 2.12-2.41 (m, 4H), 4.24 (q, *J* = 7.1 Hz, 2H); ¹³C NMR (75.48 MHz, CDCl₃), & 12.4, 14.2, 18.5, 20.5, 25.1, 30.8, 32.6, 52.2, 61.8, 109.7, 110.4, 118.9, 171.5. The physical and spectral data were consistent with those previously reported.^[16a]

Ethyl (1*S**,2*S**,5*R**)-2-(2-cyanoethyl)-1,5-dimethyl-6,7,8trioxabicyclo[3.2.1]octane-2-carboxylate, 3f^[16a]

Colorless oil; Yield 13%, 41.4 mg, 0.15 mmol. R_f = 0.53 (TLC, PE : EA, 5 : 1). ¹H NMR (300.13 MHz, CDCl₃), & 1.29 (t, *J* = 7.1 Hz, 3H), 1.52 (s, 3H), 1.53 (s, 3H), 1.61-1.72 (m, 1H), 1.78-1.93 (m, 2H), 2.14-2.45 (m, 4H), 2.75-2.89 (m, 1H), 4.20 (q, *J* = 7.1 Hz, 2H); ¹³C NMR (75.48 MHz, 2H); ¹³C NMR (75.48 MLz, 2H); ¹⁴C NMR (75.48 MLz, 2H); ¹⁴C NMR (75.4

CDCl₃), & 13.4, 14.2, 18.5, 20.6, 22.1, 27.1, 30.9, 52.7, 61.8, 109.0, 110.3, 119.4, 171.8. The physical and spectral data were consistent with those previously reported.^[16a]

Ethyl $(1R^*, 2R^*, 5S^*)$ -2-(3-ethoxy-3-oxopropyl)-1,5-dimethyl-6,7,8-trioxabicyclo[3.2.1]octane-2-carboxylate, $2g^{[16b]}$

Colorless oil. Yield 36%, 113.7 mg, 0.36 mmol. R_f = 0.43 (TLC, PE : EA, 5 : 1). ¹H NMR (300.13 MHz, CDCl₃), & 1.23 (t, *J* = 7.1 Hz, 3H), 1.27 (t, *J* = 7.1 Hz, 3H), 1.46 (s, 3H), 1.68 (s, 3H), 1.71-2.36 (m, 8H), 4.10 (q, *J* = 7.1 Hz, 2H), 4.18 (q, *J* = 7.1 Hz, 2H); ¹³C NMR (75.48 MHz, CDCl₃), & 14.2, 14.3, 18.7, 20.6, 25.4, 29.1, 30.1, 32.8, 52.5, 60.7, 61.3, 109.6, 110.0, 172.3, 172.9. The physical and spectral data were consistent with those previously reported.^[16b]

Colorless oil. Yield 23%, 72.6 mg, 0.23 mmol. $R_{\rm f}$ = 0.31 (TLC, PE : EA, 5 : 1). ¹H NMR (300.13 MHz, CDCI₃), δ 1.18-1.32 (m, 6H), 1.48 (s, 3H), 1.56 (s, 3H), 1.53-1.63 (m, 1H), 1.72-1.87 (m, 2H), 2.05-2.29 (m, 4H), 2.63-2.77 (m, 1H), 4.04-4.22 (m, 4H); 13 C NMR (75.48 MHz, CDCI₃), δ 14.2, 14.3, 18.8, 20.6, 22.4, 26.4, 30.2, 30.9, 52.7, 60.7, 61.3, 108.9, 110.9, 172.4, 173.1. The physical and spectral data were consistent with those previously reported. $^{[16b]}$

Ethyl (1*R**,2*R**,5*S**)-2-(4-chlorobenzyl)-1,5-dimethyl-6,7,8trioxabicyclo[3.2.1]octane-2-carboxylate, 2h

White crystals. Mp = 99-100 °C. Yield 21%, 66.0 mg, 0.19 mmol. R_f = 0.46 (TLC, PE : EA, 10 : 1). ¹H NMR (300.13 MHz, CDCl₃), & 1.26 (t, *J* = 7.1 Hz, 3H), 1.48 (s, 3H), 1.56-1.82 (m, 2H), 1.79 (s, 3H), 1.90-2.12 (m, 2H), 2.60 (d, *J* = 12.9 Hz, 1H), 3.31 (d, *J* = 12.9 Hz, 1H), 4.19 (q, *J* = 7.1 Hz, 2H), 7.0 (d, *J* = 8.2 Hz, 2H), 7.21 (d, *J* = 8.2 Hz, 2H); ¹³C NMR (75.48 MHz, CDCl₃), & 14.2, 18.7, 20.6, 25.7, 32.9, 40.3, 54.2, 61.3, 109.9, 111.1, 128.5, 131.3, 132.9, 134.6, 172.3. Anal. Calcd for C₁₇H₂₁ClO₅: C, 59.91; H, 6.21; Cl, 10.40. Found: C, 59.94; H, 6.22; Cl, 10.38; HRMS (ESI-TOF): m/z [M+Na]*: calculated for [C₁₇H₂₁ClNaO₅]*: 363.0970; found: 363.0981.

Ethyl $(1S^*, 2R^*, 5R^*)$ -2-(4-bromobenzyl)-1,5-dimethyl-6,7,8-trioxabicyclo[3.2.1]octane-2-carboxylate, 3h

White crystals. Mp = 89-90 °C. Yield 24%, 75.5 mg, 0.22 mmol. R_f = 0.40 (TLC, PE : EA, 10 : 1). ¹H NMR (300.13 MHz, CDCl₃), & 1.23 (t, *J* = 7.1 Hz, 3H), 1.47 (ddd, *J* = 14.4, 5.3, 2.3 Hz, 1H), 1.56 (s, 3H), 1.66 (s, 3H), 1.76-1.97 (m, 2H), 2.61 (td, *J* = 13.2, 6.5 Hz, 1H), 3.01 (d, *J* = 13.7 Hz, 1H), 3.33 (d, *J* = 13.7 Hz, 1H), 4.14 (q, *J* = 7.1 Hz, 2H), 7.04 (d, *J* = 8.3 Hz, 2H), 7.23 (d, *J* = 8.3 Hz, 2H); ¹³C NMR (75.48 MHz, CDCl₃), & 14.2, 19.1, 20.8, 21.8, 31.2, 37.0, 54.4, 61.4, 109.2, 111.3, 128.6, 131.4, 132.9, 135.8, 172.4. Anal. Calcd for C₁₇H₂₁ClO₅: C, 59.91; H, 6.21; Cl, 10.40. Found: C, 59.93; H, 6.21; Cl, 10.39; HRMS (ESI-TOF): m/z [M+Na]*: calculated for [C₁₇H₂₁ClNaO₅]*: 363.0970; found: 363.0973.

Ethyl (1*R**,2*R**,5*S**)-2-(3-chlorobenzyl)-1,5-dimethyl-6,7,8trioxabicyclo[3.2.1]octane-2-carboxylate, 2i

Slightly yellow oil. Yield 28%, 88.0 mg, 0.26 mmol. $R_f = 0.53$ (TLC, PE : EA, 10 : 1). ¹H NMR (300.13 MHz, CDCl₃), & 1.27 (t, J = 7.0 Hz, 3H), 1.49 (s, 3H), 1.55-1.87 (m, 2H), 1.80 (s, 3H), 1.90-2.16 (m, 2H), 2.60 (d, J = 12.8 Hz, 1H), 3.31 (d, J = 12.8 Hz, 1H), 4.21 (q, J = 7.0 Hz, 2H), 6.87-7.23 (m, 4H); ¹³C NMR (75.48 MHz, CDCl₃), & 14.2, 18.7, 20.6, 25.7, 32.9, 40.7, 54.1, 61.3, 109.9, 111.0, 127.1, 128.2, 129.6, 130.0, 134.2,

138.2, 172.3. Anal. Calcd for $C_{17}H_{21}CIO_5$: C, 59.91; H, 6.21; Cl, 10.40. Found: C, 59.92; H, 6.20; Cl, 10.38; HRMS (ESI-TOF): m/z [M+Na]*: calculated for $[C_{17}H_{21}CINaO_5]^+$: 363.0970; found: 363.0973.

Ethyl (1 S^* ,2 R^* ,5 R^*)-2-(3-chlorobenzyl)-1,5-dimethyl-6,7,8-trioxabicyclo[3.2.1]octane-2 carboxylate, 3i

Slightly yellow oil; Yield 30%, 94.3 mg, 0.27 mmol.; R_f = 0.49 (TLC, PE : EA, 10 : 1). ¹H NMR (300.13 MHz, CDCl₃), & 1.24 (t, *J* = 7.0 Hz, 3H), 1.56 (s, 3H), 1.67 (s, 3H), 1.40-1.72 (m, 1H), 1.74-1.99 (m, 2H), 2.52-2.72 (m, 1H), 3.01 (d, *J* = 13.6 Hz, 1H), 3.33 (d, *J* = 13.6 Hz, 1H), 4.16 (q, *J* = 7.0 Hz, 2H), 6.90-7.24 (m, 4H); ¹³C NMR (75.48 MHz, CDCl₃), & 14.2, 19.1, 20.8, 21.8, 31.2, 37.3, 54.3, 61.5, 109.3, 111.3, 127.2, 128.3, 129.7, 130.2, 134.3, 139.3, 172.4. Anal. Calcd for C1₇H₂₁ClO₅: C, 59.91; H, 6.21; Cl, 10.40. Found: C, 59.93; H, 6.23; Cl, 10.39; HRMS (ESI-TOF): m/z [M+Na]⁺: calculated for [C1₇H₂₁ClNaO₅]⁺: 363.0970; found: 363.0974.

Ethyl $(1R^*, 2R^*, 5S^*)$ -2-(4-fluorobenzyl)-1,5-dimethyl-6,7,8-trioxabicyclo[3.2.1]octane-2-carboxylate, 2j

Slightly yellow oil; Yield 24%, 75.7 mg, 0.23 mmol. R_f = 0.61 (TLC, PE : EA, 10 : 1). ¹H NMR (300.13 MHz, CDCl₃), & 1.26 (t, J = 7.1 Hz, 3H), 1.48 (s, 3H), 1.56-1.84 (m, 2H), 1.80 (s, 3H), 1.90-2.12 (m, 2H), 2.60 (d, J = 13.0 Hz, 1H), 3.30 (d, J = 13.0 Hz, 1H), 4.18 (q, J = 7.1 Hz, 2H), 6.88-7.07 (m, 4H); ¹³C NMR (75.48 MHz, CDCl₃), & 14.2, 18.7, 20.6, 25.7, 32.9, 40.2, 54.2, 61.2, 109.8, 111.1, 115.2 (d, ² J_{CF} = 21.1 Hz), 131.4 (d, ³ J_{CF} = 7.8 Hz), 131.8 (d, ⁴ J_{CH} = 3.3 Hz), 162.0 (d, ¹ J_{CF} = 244.9 Hz), 172.4. Anal. Calcd for C₁₇H₂₁FO₅: C, 62.95; H, 6.53; F, 5.86. Found: C, 62.97; H, 6.55; F, 5.84; HRMS (ESI-TOF): m/z [M+Na]⁺: calculated for [C₁₇H₂₁FNaO₅]^{*}: 347.1265; found: 347.1250.

Ethyl (1*S**,2*R**,5*R**)-2-(4-fluorobenzyl)-1,5-dimethyl-6,7,8trioxabicyclo[3.2.1]octane-2-carboxylate, 3j

White crystals. Mp = 57-58 °C. Yield 33%, 104.1 mg, 0.32 mmol. R_f = 0.54 (TLC, PE : EA, 10 : 1). ¹H NMR (300.13 MHz, CDCl₃), & 1.22 (t, *J* = 7.1 Hz, 3H), 1.56 (s, 3H), 1.43-1.59 (m, 1H), 1.67 (s, 3H), 1.74-2.05 (m, 2H), 2.52-2.67 (m, 1H), 3.01 (d, *J* = 13.7 Hz, 1H), 3.32 (d, *J* = 13.7 Hz, 1H), 4.14 (q, *J* = 7.1 Hz, 2H), 6.88-7.11 (m, 4H); ¹³C NMR (75.48 MHz, CDCl₃), & 14.2, 19.1, 20.8, 21.7, 31.1, 36.8, 54.5, 61.4, 109.2, 111.3, 115.3 (d, ²*J*_{CF} = 21.2 Hz), 131.5 (d, ³*J*_{CF} = 7.9 Hz), 131.9 (d, ⁴*J*_{CH} = 3.4 Hz), 162.0 (d, ¹*J*_{CF} = 245.4 Hz) 172.5. Anal. Calcd for C₁₇H₂₁FO₅: C, 62.95; H, 6.53; F, 5.86. Found: C, 62.96; H, 6.53; F, 5.84; HRMS (ESI-TOF): m/z [M+Na]⁺: calculated for [C₁₇H₂₁FNaO₅]⁺: 347.1265; found: 347.1262.

Ethyl $(1R^{*},2R^{*},5S^{*})$ -2-(3-methoxybenzyl)-1,5-dimethyl-6,7,8-trioxabicyclo[3.2.1]octane-2-carboxylate, 2k

Slightly yellow oil. Yield 24%, 75.5 mg, 0.22 mmol. R_f = 0.58 (TLC, PE : EA, 10 : 1). ¹H NMR (300.13 MHz, CDCl₃), & 1.27 (t, *J* = 7.1 Hz, 3H), 1.48 (s, 3H), 1.62-1.84 (m, 2H), 1.81 (s, 3H), 1.93-2.13 (m, 2H), 2.59 (d, *J* = 12.8 Hz, 1H), 3.33 (d, *J* = 12.8 Hz, 1H), 3.76 (s, 3H), 4.20 (q, *J* = 7.1 Hz, 2H), 6.60-6.69 (m, 2H), 6.72-6.79 (m, 1H), 7.15 (t, *J* = 7.9 Hz, 1H); ¹³C NMR (75.48 MHz, CDCl₃), & 14.2, 18.7, 20.6, 25.7, 32.9, 41.0, 54.2, 55.2, 61.1, 109.9, 111.2, 112.3, 115.7, 122.3, 129.2, 137.6, 159.5, 172.5. Anal. Calcd for C₁₈H₂₄O₆: C, 64.27; H, 7.19. Found: C, 64.26; H, 7.21. HRMS (ESI-TOF): m/z [M+Na]⁺: calculated for [C₁₈H₂₄NaO₆]⁺: 359.1465; found: 359.1455.

Ethyl (1*S**,2*R**,5*R**)-2-(3-methoxybenzyl)-1,5-dimethyl-6,7,8trioxabicyclo[3.2.1]octane-2-carboxylate, 3k

Procedure for peroxidation of 4d with use of 7.4 M ethereal solution of H_2O_2 and PMA/SiO₂-(E) (Table 3, Runs 1, 4, and 5)

A 7.4 M ethereal solution of H₂O₂ (0.864 mL, 1.38 mmol, 3.0 mol H₂O₂ / 1.0 mol of **4d**) and PMA/SiO₂-(**E**) (1.750 – 5.255 g, 10 wt.% H₃PMo₁₂O₄₀, 0.096 – 0.288 mmol of H₃PMo₁₂O₄₀, 0.05-0.15 mol H₃PMo₁₂O₄₀ / 1.0 mol 1,3- diketone **4d**) were successively added to a stirred solution of 1,3- diketone **4d** (0.300 g; 1.92 mmol) in toluene (10 mL) at 20-25 °C. The reaction mixture was stirred at 20-25°C for 1 h. After that time the catalyst was filtered off and washed with CH₂Cl₂ (3 × 10 ml). The solvent was removed in vacuum of a water jet pump. Tetraoxane **5d** was isolated by chromatography on SiO₂ using PE : EA (10 : 1).

Procedure for peroxidation of 4d with use of 7.4 M ethereal solution of H_2O_2 and PMA/SiO₂-(F) (Table 3, Run 2)

A 7.4 M ethereal solution of H_2O_2 (0.864 mL, 1.38 mmol, 3.0 mol H_2O_2 / 1.0 mol of 4d) and PMA/SiO₂-(**F**) (0.875 g, 20 wt.% $H_3PMo_{12}O_{40}$, 0.096 mmol of $H_3PMo_{12}O_{40}$, 0.05 mol $H_3PMo_{12}O_{40}$ / 1.0 mol 1,3- diketone 4d) were successively added to a stirred solution of 1,3-diketone 4d (0.300 g; 1.92 mmol) in toluene (10 mL) at 20-25 °C. The reaction mixture was stirred at 20-25°C for 1 h. After that time the catalyst was filtered off and washed with CH₂Cl₂ (3 × 10 ml). The solvent was removed in vacuum of a water jet pump. Tetraoxane 5d was isolated by chromatography on SiO₂ using PE : EA (10 : 1).

Procedure for peroxidation of 4d with use of 7.4 M ethereal solution of H_2O_2 and PMA/SiO₂-(G) (Table 3, Runs 3, 6)

A 7.4 M ethereal solution of H₂O₂ (0.864 mL, 1.38 mmol, 3.0 mol H₂O₂ / 1.0 mol of **4d**) and PMA/SiO₂-(**G**) (0.584 – 1.168 g, 30 wt.% H₃PMo₁₂O₄₀, 0.096 – 0.192 mmol of H₃PMo₁₂O₄₀, 0.05 – 0.10 mol H₃PMo₁₂O₄₀ / 1.0 mol 1,3- diketone **4d**) were successively added to a stirred solution of 1,3-diketone **4d** (0.300 g; 1.92 mmol) in toluene (10 mL) at 20-25 °C. The reaction mixture was stirred at 20-25°C for 1 h. After that time the catalyst was filtered off and washed with CH₂Cl₂ (3 × 10 ml). The solvent was removed in vacuum of a water jet pump. Tetraoxane **5d** was isolated by chromatography on SiO₂ using PE : EA (10 : 1).

Synthesis of tetraoxane 5f from 1,3-diketone 4f in gram scale of 4f with the use of PMA/SiO₂-(G)

A 7.4 M ethereal solution of H₂O₂ (2.38 mL, 17.62 mmol, 3.0 mol H₂O₂ / 1.0 mol of **4f**) and PMA/SiO₂-**(G)** (3.57 g, 30 wt.% H₃PMo₁₂O₄₀, 0.59 mmol of H₃PMo₁₂O₄₀, 0.10 mol H₃PMo₁₂O₄₀ / 1.0 mol 1,3- diketone **4f**) were successively added to a stirred solution of 1,3-diketone **4f** (1.000 g; 5.87 mmol) in toluene (30 mL) at 20-25 °C. The reaction mixture was stirred at 20-25°C for 1 h. After that time the catalyst was filtered off and washed with CH₂Cl₂ (3 × 10 ml). The solvent was removed in vacuum of a water jet pump. Tetraoxane **5f** was isolated by chromatography on SiO₂ using PE : EA (10 : 1). Tetraoxane **5f**: 0.712g, 3.52 mmol, yield 60%.

General procedure for the synthesis of tetraoxanes from diketones 5a-k

A 7.4 M ethereal solution of H_2O_2 (0.454 – 1.066 mL, 3.36 – 7.89 mmol, 3.0 mol H_2O_2 / 1.0 mol of **4a-k**) and PMA/SiO₂-**(G)** (0.682 – 1.600 g, 30 wt.% $H_3PMo_{12}O_{40}$, 0.112 - 0.263 mmol of $H_3PMo_{12}O_{40}$, 0.10 mol $H_3PMo_{12}O_{40}$ / 1.0 mol 1,3- diketone **4f**) were successively added to a stirred solution of 1,3-diketone **4a-k** (0.300 g; 1.12 - 2.63 mmol) in toluene (10 mL) at 20-25 °C. The reaction mixture was stirred at 20-25°C for 1 h. After that time the catalyst was filtered off and washed with CH₂Cl₂ (3 × 10 ml). The solvent was removed in vacuum of a water jet pump. Tetraoxanes **5a-k** were isolated by chromatography on SiO₂ using PE : EA (10 : 1). Tetraoxane **5f**: 0.712g, 3.52 mmol, yield 60%.

Compounds: **5a**: 222.7 mg, 1.52 mmol, yield 58%; **5b**: 224.9 mg, 1.40 mmol, yield 60%; **5c**: 206.3 mg, 1.19 mmol, yield 56%; **5d**: 231.3 mg, 1.23 mmol, yield 64%; **5e**: 245.9 mg, 1.21 mmol, yield 69%; **5f**: 224.5 mg, 1.11 mmol, yield 63%; **5g**: 207.7 mg, 0.96 mmol, yield 59%; **5h**: 252.0 mg, 1.03 mmol, yield 73%; **5i**: 226.0 mg, 0.97 mmol, yield 65%; **5j**: 293.2 mg, 1.1 mmol, yield 86%; **5k**: 273.0 mg, 0.90 mmol, yield 81%;

1,4,7-Trimethyl-2,3,5,6-tetraoxabicyclo[2.2.1]heptane, 5a^[11g]

Slightly yellow crystals. Mp = 55-56 °C (Lit.^[11g] Mp = 56 °C). Yield 58%, 222.7 mg, 1.52 mmol. R_f = 0.31 (TLC, PE : EA, 10:1). ¹H NMR (300.13 MHz, CDCl₃) δ : 1.18 (d, *J* = 6.7 Hz, 3H), 1.52 (s, 6H), 2.77 (q, *J* = 6.7 Hz, 1H). ¹³C NMR (75.48 MHz, CDCl₃) δ : 8.3, 9.4, 54.4, 110.8. The physical and spectral data were consistent with those previously reported.^[11g]

7-Ethyl-1,4-dimethyl-2,3,5,6-tetraoxabicyclo[2.2.1]heptane, 5b^[11g]

Slightly yellow oil. Yield 60%, 224.9 mg, 1.40 mmol. R_f = 0.53 (TLC, PE : EA, 5:1). ¹H NMR (300.13 MHz, CDCl₃) δ : 1.11 (t, *J* = 6.3 Hz, 3H,), 1.55 (s, 6H), 1.61-1.68 (m, 2H), 2.56 (t, *J* = 6.3 Hz, 1H). ¹³C NMR (75.48 MHz, CDCl₃) δ : 10.0, 12.3, 17.2, 60.9, 110.9. The physical and spectral data were consistent with those previously reported.^[11g]

7-Allyl-1,4-dimethyl-2,3,5,6-tetraoxabicyclo[2.2.1]heptane, 5c^[11a]

Slightly yellow oil. Yield 56%, 206.3 mg, 1.19 mmol. R_f = 0.56 (TLC, PE : EA, 10:1).¹H NMR (300.13 MHz, CDCl₃) δ : 1.53 (s, 6H), 2.38 (t, *J* = 6.7 Hz, 2H), 2.78 (t, *J* = 6.7 Hz, 1H), 5.15-5.20 (m, 2H), 5.80-5.93 (m, 1H). ¹³C NMR (75.48 MHz, CDCl₃) δ : 10.0, 28.6, 57.9, 110.7, 118.0, 134.1. The physical and spectral data were consistent with those previously reported.^[11a]

7-Butyl-1,4-dimethyl-2,3,5,6-tetraoxabicyclo[2.2.1]heptane, 5d^[11a]

Slightly yellow oil. Yield 64%, 231.3 mg, 1.23 mmol. R_f = 0.68 (TLC, PE : EA, 5:1). ¹H NMR (300.13 MHz, CDCl₃) δ : 0.93 (t, *J* = 7.0 Hz, 3H), 1.30 – 1.53 (m, 4H), 1.55 (s, 6H), 1.57 – 1.61 (m, 2H), 2.60 (t, *J* = 5.9 Hz, 1H). ¹³C NMR (75.48 MHz, CDCl₃) δ : 9.9, 13.9, 22.9, 23.7, 29.9, 59.2, 110.9. The physical and spectral data were consistent with those previously reported.^[11a]

1,4-Dimethyl-7-pentyl-2,3,5,6-tetraoxabicyclo[2.2.1]heptane, 5e

 $\begin{array}{l} \label{eq:starsess} Slightly yellow oil. Yield 69\%, 245.9 mg, 1.21 mmol. R_{f} = 0.64 (TLC, PE : EA, 10:1). \ ^{1}H \ NMR \ (300.13 \ MHz, \ CDCl_{3}) \ \overline{\delta}: \ 0.91 \ (t, \ \textit{J} = 7.0 \ Hz, \ 3H), \ 1.34 \\ - \ 1.37 \ (m, \ 4H), \ 1.46 \ - \ 1.48 \ (m, \ 2H), \ 1.54 \ (s, \ 6H), \ 1.55 \ - \ 1.62 \ (m, \ 2H), \\ 2.62 \ (t, \ \textit{J} = 5.8 \ Hz, \ 1H). \ ^{13}C \ NMR \ (75.48 \ MHz, \ CDCl_{3}) \ \overline{\delta}: \ 10.0, \ 14.1, \ 22.5, \\ 24.0, \ 27.5, \ 32.1, \ 59.3, \ 111.0. \ Anal. \ Calcd \ for \ C_{10}H_{18}O_4: \ C, \ 59.39; \ H, \ 8.97. \end{array}$

Found: C, 59.40; H, 8.98. HRMS (ESI-TOF): m/z $[M+H]^{\star}$: calculated for $[C_{10}H_{18}O_4]^{\star}$: 203.1278; found: 203.1287.

7-Isopentyl-1,4-dimethyl-2,3,5,6-tetraoxabicyclo[2.2.1]heptane, 5f

Slightly yellow oil. Yield 63%, 224.5 mg, 1.11 mmol. R_f = 0.60 (TLC, PE : EA, 5:1). ¹H NMR (300.13 MHz, CDCl₃) δ : 0.93 (d, *J* = 6.6 Hz, 6H), 1.30 – 1.40 (m, 2H), 1.54 (s, 6H), 1.50-1.64 (m, 3H) 2.59 (t, *J* = 6.6 Hz, 1H). ¹³C NMR (75.48 MHz, CDCl₃) δ : 10.0, 21.9, 22.5, 28.4, 36.9, 59.5, 110.9 Anal. Calcd for C₁₀H₁₈O₄: C, 59.39; H, 8.97. Found: C, 59.41; H, 8.97. HRMS (ESI-TOF): m/z [M+H]⁺: calculated for [C₁₀H₁₉O₄]⁺: 203.1278; found: 203.1270.

7-Hexyl-1,4-dimethyl-2,3,5,6-tetraoxabicyclo[2.2.1]heptane, 5g^[11c]

Slightly yellow oil. Yield 59%, 207.7 mg, 0.96 mmol. $R_f = 0.67$ (TLC, PE : EA, 10:1). ¹H NMR (300.13 MHz, CDCl₃) δ : 0.92 (t, J = 7.0 Hz, 3H), 1.27 – 1.41 (m, 6H), 1.43 – 1.54 (m, 2H), 1.56 (s, 6H), 1.58 – 1.54 (m, 2H), 2.64 (t, J = 5.9 Hz, 1H). ¹³C NMR (75.48 MHz, CDCl₃) δ : 10.0, 14.2, 22.7, 24.0, 27.8, 29.6, 31.7, 59.3, 111.0.The physical and spectral data were consistent with those previously reported.^[11c]

1,4-Dimethyl-7-octyl-2,3,5,6-tetraoxabicyclo[2.2.1]heptane, 5h

Slightly yellow oil. Yield 73%, 252.0 mg, 1.03 mmol. $R_f = 0.5$ (TLC, PE : EA, 20:1). ¹H NMR (300.13 MHz, CDCl₃) δ : 0.88 (t, J = 7.0 Hz, 3H), 1.20 – 1.35 (m, 10H), 1.54 (s, 6H), 1.46 – 1.58 (m, 4H), 2.61 (t, J = 5.8 Hz, 1H). ¹³C NMR (75.48 MHz, CDCl₃) δ : 10.0, 14.2, 22.8, 24.0, 27.8, 29.3, 29.4, 29.9, 31.9, 59.3, 111.0. Anal. Calcd for C₁₃H₂₄O₄: C, 63.91; H, 9.90. Found: C, 63.92; H, 9.91. HRMS (ESI-TOF): m/z [M+K]*: calculated for [C₁₃H₂₄KO₄]*: 283.1306; found: 283.1307.

Ethyl 3-(1,4-dimethyl-2,3,5,6-tetraoxabicyclo[2.2.1]heptan-7yl)propanoate, 5i^[11a]

Slightly yellow oil. Yield 65%, 226.0 mg, 0.97 mmol. R_f = 0.50 (TLC, PE : EA, 5:1). ¹H NMR (300.13 MHz, CDCl₃) δ : 1.21 (t, *J* = 7.1 Hz, 3H), 1.50 (s, 6H), 1.84 (q, *J* = 7.3 Hz, 2H), 2.44 (t, *J* = 7.3 Hz, 2H), 2.63 (t, *J* = 5.9 Hz, 1H), 4.10 (q, *J* = 7.1 Hz, 2H). ¹³C NMR (75.48 MHz, CDCl₃) δ : 9.7, 14.2, 19.0, 31.7, 58.1, 60.7, 110.7, 172.3. The physical and spectral data were consistent with those previously reported.^[11a]

7-(Adamantan-1-yl)-1,4-dimethyl-2,3,5,6tetraoxabicyclo[2.2.1]heptane, 5j^[11a]

White crystals. Mp = 131-132 °C (Lit.^[3c] Mp = 130 – 131 °C). Yield 86%, 293.2 mg, 1.52 mmol. R_f = 0.67 (TLC, PE : EA, 5:1). ¹H NMR (300.13 MHz, CDCl₃) δ : 1.68-2.04 (m, 21H), 2.40 (s, 1H). ¹³C NMR (75.48 MHz, CDCl₃) δ : 12.8, 28.5, 33.1, 36.9, 40.8, 67.0, 110.7. The physical and spectral data were consistent with those previously reported.^[11a]

7-(4-Bromophenyl)-1,4-dimethyl-2,3,5,6tetraoxabicyclo[2.2.1]heptane, 5k

White crystals. Mp = 121-123 °C. Yield 81%, 273.0 mg, 0.90 mmol. R_f =0.5 (TLC, PE : EA, 5:1). ¹H NMR (300.13 MHz, CDCl₃) δ : 1.39 (s, 6H), 2.90 (d, *J* = 7.2 Hz, 2H), 3.06 (t, *J* = 7.2 Hz, 1H), 7.16 (d, *J* = 8.2 Hz, 2H), 7.48 (d, *J* = 8.2 Hz, 2H). ¹³C NMR (75.48 MHz, CDCl₃) δ : 10.0, 29.9, 59.14, 110.7, 121.0, 130.6, 132.1, 136.4. Anal. Calcd for C₁₂H₁₃BrO₄: C, 47.86; H, 4.35; Br, 26.53 Found: C, 47.63; H, 4.41; Br, 26.74. HRMS (ESI-TOF): m/z [M+K]⁺: calculated for [C₁₂H₁₃BrKO₄]⁺: 338.9629; found: 338.9635.

Bioassay of fungicidal activity

The antifungal activities were tested according to the conventional procedure^[48] with 15 phytopathogenic fungi from different taxonomic classes: Venturia inaequalis (V.i.), Rhizoctonia solani (R.s.), Fusarium oxysporum (F.o.), Fusarium moniliforme (F.m.), Bipolaris sorokiniana (B.s.), Sclerotinia sclerotiorum (S.s.), Fusarium graminearum (F.g.), Fusarium heterosporum (F.h.), Fusarium culmorum (F.c.), Fusarium gibbosum (F.gb.), Fusarium nivale (Microdochium nivale) (F.m.n.), Fusarium sporotrichiella (F.s.), Alternaria alternata (A.), Pythium graminicola (P. sp.), Phoma eupyrena (P.e.). The effect of the chemicals on mycelial radial growth was determined by dissolving concentration 3 mg×mL⁻¹ in acetone and suspending aliquots in potato-saccharose agar at 50 °C to give the concentration (0.3-30 μ g×mL⁻¹. The final acetone concentration of both fungicide-containing and control samples was 10 mL×L-1. Petri dishes containing 15 mL of the agar medium were inoculated by placing 2-mm micelial agar discs on the agar surface. Plates were incubated at 25 °C and radial growth was measured after 72 h. The mixed medium without sample was used as the blank control. Three replicates of each test were carried out. The mycelium elongation diameter (mm) of fungi settlements was measured after 72 h of culture. The growth inhibition rates were calculated with the following equation: I = $[(D_C - D_T)/D_C] \times 100\%$. Here / is the growth inhibition rates (%), D_C is the control settlement diameter (mm), and D_T is the treatment group fungi settlement diameter (mm). Commercially available agricultural fungicide Triadimefon and Kresoxim-methyl were used as positive controls. EC50 values were calculated by non-linear regression using an equation for a sigmoidal dose-response curve with variable slope (Prism 7.0, GraphPad Software, San Diego).

Acknowledgements

This work was supported by the Russian Foundation for Basic Research (Grant 19-33-70067). Electron microscopy characterization was performed in the Department of Structural Studies of Zelinsky Institute of Organic Chemistry, Moscow.

Keywords: Ozonides; tetraoxanes; peroxidation; heteropolyacids; fungicides

- a) P. Ghorai, P. H. Dussault, C. Hu, Org. Lett. 2008, 10, 2401-2404; b)
 D. M. Opsenica, B. A. Šolaja, J. Serb. Chem. Soc. 2009, 74, 1155-1193; c) C. W. Jefford, Curr. Top. Med. Chem. 2012, 12, 373-399; d) H.
 D. Hao, S. Wittlin, Y. Wu, Chem. - Eur. J. 2013, 19, 7605-7619; e) X.
 Wang, Y. Dong, S. Wittlin, S. A. Charman, F. C. K. Chiu, J. Chollet, K.
 Katneni, J. Mannila, J. Morizzi, E. Ryan, C. Scheurer, J. Steuten, J.
 Santo Tomas, C. Snyder, J. L. Vennerstrom, J. Med. Chem. 2013, 56, 2547-2555; f) L. C. Fisher, M. A. Blackie, Mini-Rev. Med. Chem. 2014, 14, 123-135; g) B. A. Solaja, N. Terzic, G. Pocsfalvi, L. Gerena, B.
 Tinant, D. Opsenica, W. K. Milhous, J. Med. Chem. 2002, 45, 3331-3336.
- 2] Nobelprize.org, Nobel Media AB 2014 2014.
- a) J. Keiser, V. Veneziano, L. Rinaldi, L. Mezzino, U. Duthaler, G. Cringoli, Res. Vet. Sci. 2010, 88, 107-110; b) J. Boissier, J. Portela, V. Pradines, F. Coslédan, A. Robert, B. Meunier, C. R. Chimie 2012, 15, 75-78; c) K. Ingram, I. A. Yaremenko, I. B. Krylov, L. Hofer, A. O. Terentev, J. Keiser, J. Med. Chem. 2012, 55, 8700-8711; d) J. Keiser, K. Ingram, M. Vargas, J. Chollet, X. Wang, Y. Dong, J. L. Vennerstrom, Antimicrob. Agents Chemother. 2012, 56, 1090-1092; e) N. Cowan, I. A. Yaremenko, I. B. Krylov, A. O. Terent'ev, J. Keiser, Bioorg. Med. Chem 2015, 23, 5175-5181; f) T. Küster, N. Kriegel, B. Stadelmann, X. Wang, Y. Dong, J. L. Vennerstrom, J. Keiser, A. Hemphill, Int. J. Antimicrob. Agents 2014, 43, 40-46; g) V. A. Vil', I. A. Yaremenko, A. I. Ilovaisky, A. O. Terent'ev, Molecules 2017, 22, 1881.

 [4] a) H. H. Chen, H. J. Zhou, W. Q. Wang, G. D. Wu, *Cancer Chemother. Pharmacol.* 2004, 53, 423-432; b) A. A. Alagbala, A. J. McRiner, K.

Borstnik, T. Labonte, W. Chang, J. G. D'Angelo, G. H. Posner, B. A. Foster, *J. Med. Chem.* **2006**, *49*, 7836-7842; c) D. Chaturvedi, A. Goswami, P. Pratim Saikia, N. C. Barua, P. G. Rao, Y. Yuthavong, T. A. Shapiro, B. A. Foster, B. Foster, J. Davis, A. P. Higson, E. Irving, G. H. Posner, P. M. O'Neill, R. Daughenbaugh, Chem. Soc. Rev. 2010, 39, 435-454; d) D. M. Rubush, M. A. Morges, B. J. Rose, D. H. Thamm, T. Rovis, *J. Am. Chem. Soc.* **2012**, *134*, 13554-13557; e) A. Dwivedi, A. Mazumder, L. du Plessis, J. L. du Preez, R. K. Haynes, J. du Plessis, Nanomed-Nanotechnol. 2015, 11, 2041-2050; f) R. P. Abrams, W. L. Carroll, K. A. Woerpel, ACS Chem. Biol. 2016, 11, 1305-1312; g) I. A. Yaremenko, M. A. Syroeshkin, D. O. Levitsky, F. Fleury, A. O. Terent'ev, Med. Chem. Res. 2017, 26, 170-179; h) M. B. Chaudhari, S. Moorthy, S. Patil, G. S. Bisht, H. Mohamed, S. Basu, B. Gnanaprakasam, J. Org. Chem. 2018, 83, 1358-1368; i) P. Coghi, I. A. Yaremenko, P. Prommana, P. S. Radulov, M. A. Syroeshkin, Y. J. Wu, J. Y. Gao, F. M. Gordillo, S. Mok, V. K. W. Wong, C. Uthaipibull, A. O. Terent'ev, Chemmedchem 2018, 13, 902-908; j) T. Frohlich, B. Ndreshkjana, J. K. Muenzner, C. Reiter, E. Hofmeister, S. Mederer, M. Fatfat, C. El-Baba, H. Gali-Muhtasib, R. Schneider-Stock, S. B. Tsogoeva, Chemmedchem 2017, 12, 226-234; k) T. Frohlich, A. Kiss, J. Wolfling, E. Mernyak, A. E. Kulmany, R. Minorics, I. Zupko, M. Leidenberger, O. Friedrich, B. Kappes, F. Hahn, M. Marschall, G. Schneider, S. B. Tsogoeva, ACS

- Med. Chem. Lett. 2018, 9, 1128-1133.
 a) M. J. Miller, A. J. Walz, H. Zhu, C. Wu, G. Moraski, U. Möllmann, E. M. Tristani, A. L. Crumbliss, M. T. Ferdig, L. Checkley, R. L. Edwards, H. Walz, H. Start, S. M. T. Ferdig, L. Checkley, R. L. Edwards, H. Walz, H. Start, S. M. T. Ferdig, L. Checkley, R. L. Edwards, H. Start, S. M. T. Ferdig, L. Checkley, R. L. Edwards, H. Start, S. M. Start, S. [5] H. I. Boshoff, J. Am. Chem. Soc. 2011, 133, 2076-2079; b) F. W. Zhou, H. I. Boshoff, J. Am. Chem. Soc. 2011, 133, 2076-2079; b) F. W. 2hou,
 H. S. Lei, L. Fan, L. Jiang, J. Liu, X. M. Peng, X. R. Xu, L. Chen, C. H. Zhou, Y. Y. Zou, C. P. Liu, Z. Q. He, D. C. Yang, Bioorg. Med. Chem. Lett. 2014, 24, 1912-1917; c) S. Chaudhary, V. Sharma, P. K. Jaiswal,
 A. N. Gaikwad, S. K. Sinha, S. K. Puri, A. Sharon, P. R. Maulik, V. Chaturvedi, Org. Lett. 2015, 17, 4948-4951.
 a) C. Reiter, T. Frohlich, L. Gruber, C. Hutterer, M. Marschall, C. Voigtlander, O. Friedrich, B. Kappes, T. Efferth, S. B. Tsogoeva, Bioorg. Med. Chem. 2015, 120, 2015, 120, 2016, 2017,
- [6] Med. Chem. 2015, 23, 5452-5458; b) S. W. Chou, G. Marousek, S. Auerochs, T. Stamminger, J. Milbradt, M. Marschall, Antivir. Res. 2011, 92, 364-368; c) T. Efferth, M. R. Romero, D. G. Wolf, T. Stamminger, J. J. G. Marin, M. Marschall, *Clin. Infect. Dis.* 2008, *47*, 804-811.
 a) L. C. A. Barbosa, C. R. A. Maltha, R. C. Cusati, R. R. Teixeira, F. F.
- [7] Rodrigues, A. A. Silva, M. G. B. Drew, F. M. D. Ismail, J. Agric. Food Chem. 2009, 57, 10107-10115; b) L. C. A. Barbosa, U. A. Pereira, R. R. Teixeira, C. R. A. Maltha, S. A. Fernandes, G. Forlani, J. Agric. Food Chem. 2008, 56, 9434-9440.
- a) K. Žmitek, M. Zupan, S. Stavber, J. Iskra, J. Org. Chem. 2007, 72, [8] Chernyshev, G. I. Nikishin, Org. Biomol. Chem. 2008, 6, 4435-4441; c)
 S. Kyasa, B. W. Puffer, P. H. Dussault, J. Org. Chem. 2013, 78, 3452-3456; d) W. V. Kandur, K. J. Richert, C. J. Rieder, A. M. Thomas, C. Hu, J. W. Ziller, K. A. Woerpel, Org. Lett. 2014, 16, 2650-2653; e) M. Klussmann, Chem. Eur. J. 2018, 24, 4480-4496.
- Klussmann, Chem. Eur. J. 2016, 24, 4480-4496.
 a) K. Žmitek, M. Zupan, S. Stavber, J. Iskra, Org. Lett. 2006, 8, 2491-2494; b) A. O. Terent'ev, M. M. Platonov, Y. N. Ogibin, G. I. Nikishin, Synth. Commun. 2007, 37, 1281-1287; c) B. Das, M. Krishnaiah, B. Veeranjaneyulu, B. Ravikanth, Tetrahedron Lett. 2007, 48, 6286-6289; d) P. Ghorai, P. H. Dussault, Org. Lett. 2008, 10, 4577-4579; e) A. Bunge, H. J. Hamann, J. Liebscher, Tetrahedron Lett. 2009, 50, 524-526; f) Y. Li, H.-D. Hao, Q. Zhang, Y. Wu, Org. Lett. 2009, 11, 1615-2016. [9] 1618; g) D. Azarifar, K. Khosravi, F. Soleimanei, Synthesis-Stuttgart 2009, 2553-2556; h) J. H. van Tonder, Synlett 2014, 25, 1629-1630; i) 2009, 2553-2556; n) J. H. van Tonder, Symetr 2014, 25, 1629-1630; i)
 G. K. Surya Prakash, A. Shakhmin, K. E. Glinton, S. Rao, T. Mathew, G. A. Olah, Green Chem. 2014, 16, 3616-3622.
 a) H. D. Hao, Y. Li, W. B. Han, Y. K. Wu, Org. Lett. 2011, 13, 4212-4215; b) Y. Li, H. D. Hao, Y. K. Wu, Org. Lett. 2009, 11, 2691-2694.
 a) A. O. Terent'ev, D. A. Borisov, V. V. Chernyshev, G. I. Nikishin, J. Org. Chem. 2009, 74, 3335-3340; b) P. Ghorai, P. H. Dussault, Org. Lett. Org. 14, 212 - 216; o)
- [10]
- [11] Lett. 2009, 11, 213-216; c) A. O. Terent'ev, I. A. Yaremenko, V. A. Vil, I. K. Moiseev, S. A. Konkov, V. M. Dembitsky, D. O. Levitsky, G. I.
 Nikishin, Org. Biomol. Chem. 2013, 11, 2613-2623; d) V. L. Novikov, O.
 P. Shestak, Russ. Chem. Bull. Int. Ed. 2013, 62, 2171-2190; e) N.
 Yadav, C. Sharma, S. K. Awasthi, RSC Adv. 2014, 4, 5469-5498; f) A. O. Terent'ev, D. A. Borisov, V. A. Vil', V. M. Dembitsky, Beilstein J. Org. Chem. 2014, 10, 34-114; g) T. M. Klapötke, B. Stiasny, J. Stierstorfer, C. H. Winter, *Eur. J. Org. Chem.* 2015, 2015, 6237-6242. a) A. Rieche, C. Bischoff, D. Prescher, *Chem. Ber.* 1964, 97, 3071-
- [12] a) A. Rieche, C. Bischon, D. Piescher, *Chem. Bet.* **1964**, *97*, 307-3075; b) K. Zmitek, S. Stavber, M. Zupan, D. Bonnet-Delpon, J. Iskra, *Tetrahedron* **2006**, *62*, 1479-1484; c) A. O. Terent'ev, M. M. Platonov, E. J. Sonneveld, R. Peschar, V. V. Chernyshev, Z. A. Starikova, G. I. Nikishin, *J. Org. Chem.* **2007**, *72*, 7237-7243; d) A. O. Terent'ev, M. M. Platonov, A. I. Tursina, V. V. Chernyshev, G. I. Nikishin, J. Org. Chem. 2008, 73, 3169-3174; e) P. S. Radulov, Y. Y. Belyakova, A. A. Demina, G. I. Nikishin, I. A. Yaremenko, A. O. Terent'ev, Russ. Chem. Bull. 2019,

68, 1289-1292; f) K. V. Deriabin, I. A. Yaremenko, M. V. Chislov, F. Fleury, A. O. Terent'ev, R. M. Islamova, New J. Chem. 2018, 42, 15006-15013.

- [13]
- 15006-15013.
 a) A. O. Terent'ev, I. A. Yaremenko, V. V. Chernyshev, V. M. Dembitsky, G. I. Nikishin, J. Org. Chem. 2012, 77, 1833-1842; b) A. O. Terent'ev, I. A. Yaremenko, A. P. Glinushkin, G. I. Nikishin, Russ. J. Org. Chem. 2015, 51, 1681-1687; c) V. A. Vil', I. A. Yaremenko, A. I. Ilovaisky, A. O. Terent'ev, Molecules 2017, 22.
 a) A. O. Terent'ev, A. V. Kutkin, M. M. Platonov, Y. N. Ogibin, G. I. Nikishin, *Tetrahedron Lett.* 2003, 44, 7359-7363; b) A. O. Terent'ev, A. V. Kutkin, T. A. Starikova, M. Y. Antipin, Y. N. Ogibin, G. I. Nikishin, *Synthesis* 2004, 2356-2366; c) A. Bartoschek, T. El-Idreesy, A. G. Griesbeck, L. O. Hoinck, J. Lex, C. Miara, J. M. Neudorfl, *Synthesis* 2005, 2433-2444; d) A. G. Griesbeck, T. T. El-Idreesy, L. O. Hoinck, J. Lex, R. Brun, Bioorg. Med. Chem. Lett. 2005, 15, 595-597; e) A. O. Terent'ev, A. V. Kutkin, N. A. Troizky, Y. N. Ogibin, G. I. Nikishin, Synthesis 2005, 2215-2219; f) C. Singh, S. Pandey, G. Saxena, N. Srivastava, M. Sharma, J. Org. Chem. 2006, 71, 9057-9061; g) R. Armewu, A. V. Stachulski, S. A. Ward, N. G. Berry, P. G. Bray, J. Davies, G. Labat, L. Vivas, P. M. O'Neill, Org. Biomol. Chem. 2006, 4, 4431-[14] Amewu, A. V. Stachulski, S. A. Ward, N. G. Berry, P. G. Bray, J. Davles,
 G. Labat, L. Vivas, P. M. O'Neill, Org. Biomol. Chem. 2006, 4, 4431
 4436; h) A. O. Terent'ev, M. M. Platonov, A. V. Kutkin, Cent. Eur. J.
 Chem. 2006, 4, 207-215; i) B. Das, M. Krishnaiah, B. Veeranjaneyulu,
 B. Ravikanth, Tetrahedron Lett. 2007, 48, 6286-6289; j) A. O. Terent'ev,
 M. M. Platonov, E. J. Sonneveld, R. Peschar, V. V. Chernyshev, Z. A.
 Starikova, G. I. Nikishin, J. Org. Chem. 2007, 72, 7237-7243; k) A. O. Starkova, G. I. Nikishin, J. Org. Chem. 2007, 72, 7237-7243; K A.O.
 Terent'ev, M. M. Platonov, Y. N. Ogibin, G. I. Nikishin, Synth. Commun.
 2007, 37, 1281-1287; I) P. Ghorai, P. H. Dussault, Org. Lett. 2008, 104, 4577-4579; m) A. O.
 Terent'ev, M. M. Platonov, A. S. Kashin, G. I.
 Nikishin, Tetrahedron 2008, 64, 7944-7948; n) B. Das, B.
 Veeranjaneyulu, M. Krishnaiah, P. Balasubramanyam, J Mol Catal a-Chem 2008, 284, 116-119; o) D. Azarifar, K. Khosravi, F. Soleimanei, Cartheol 2009, 2520 2550-2550, 2550-2550, 200 Synthesis-Stuttgart 2009, 2553-2556; p) X. Yan, J. L. Chen, Y. T. Zhu, C. H. Qiao, Synlett 2011, 2827-2830; g) Y. Hui, U. J. Deng, J. W. Gao,
 Z. H. Zhang, Adv. Synth. Catal. 2012, 354, 441-447; r) K. V. Sashidhara, S. R. Avula, L. R. Singh, G. R. Palnati, *Tetrahedron Lett.* 2012, 53, 4880-4884; s) J. F. B. Hall, R. A. Bourne, X. Han, J. H. Earley, M. Poliakoff, M. W. George, *Green Chem.* **2013**, *15*, 177-180; t) S. Pramanik, P. Ghorai, *Org. Lett.* **2013**, *15*, 3832-3835; u) A. G. Griesbeck, V. Schlundt, J. M. Neudorfl, *RSC Adv.* **2013**, *3*, 7265-7270; v) M. Ravi, D. Anand, R. Maurya, P. Chauhan, N. K. Naikade, S. K. Shukla, P. P. Yadav, Synlett 2013, 24, 173-176.
- a) L. P. Vinogradova, S. I. Zav'yalov, *Izvest. Akad. Nauk. S.S.S.R. Otdel. Khim. Nauk* **1961**, 1482-1486 (Chem. Abs. 1456 (1962) 1338b); [15] b) A. Rieche, C. Bischoff, *Chem. Ber.* **1962**, *95*, 77-82; c) N. A. Milas, O. L. Mageli, A. Golubovic, R. W. Arndt, J. C. J. Ho, *J. Am. Chem. Soc.* 1963, 85, 222-226; d) A. Rieche, C. Bischoff, D. Prescher, Chem. Ber. **1964**, *97*, 3071-3075; e) A. Rieche, H. E. Seyfarth, F. Brand, *Liebigs* Ann. Chem. 1969, 725, 93-98; f) A. O. Terent'ev, D. A. Borisov, I. A. Yaremenko, V. V. Chernyshev, G. I. Nikishin, J. Org. Chem. 2010, 75, 5065-5071; g) A. O. Terent'ev, D. A. Borisov, V. V. Semenov, V. V. Chernyshev, V. M. Dembitsky, G. I. Nikishin, *Synthesis* **2011**, 2091-2100; h) A. O. Terent'ev, I. A. Yaremenko, V. A. Vil', V. M. Dembitsky, G. I. Nikishin, *Synthesis* **2013**, *45*, 246-250; i) I. A. Yaremenko, A. O. Terent'ev, V. A. Vil', R. A. Novikov, V. V. Chernyshev, V. A. Tafeenko, D. O. Levitsky, F. Fleury, G. I. Nikishin, Chem. Eur. J. 2014, 20, 10160-10169.
- [16] a) G. d. P. Gomes, I. A. Yaremenko, P. S. Radulov, R. A. Novikov, V. V. Chernyshev, A. A. Korlyukov, G. I. Nikishin, I. V. Alabugin, A. O. Terent'ev, *Angew. Chem. Int. Ed.* **2017**, *56*, 4955-4959; b) I. A. Yaremenko, G. d. P. Gomes, P. S. Radulov, Y. Y. Belyakova, A. E. Vilikotskiy, V. A. Vil', A. A. Korlyukov, G. I. Nikishin, I. V. Alabugin, A. O. Terent'ev, *L. Org. Chem.* **2018**, *82*, 4022, 4026 Terent'ev, J. Org. Chem. 2018, 83, 4402-4426.
- G. Zvilichovsky, B. Zvilichovsky, in Hydroxyl, Ether and Peroxide [17] Groups (1993), John Wiley & Sons, Inc., 2010, pp. 687-784.
- K. Griesbaum, X. Liu, A. Kassiaris, M. Scherer, Liebigs Ann. 1997, [18] 1997. 1381-1390.
- A. Criegee, G. Lohaus, Chem. Ber. 1953, 86, 1-4; b) J. Kondelíková,
 J. Králíček, V. Kubánek, Collect. Czech. Chem. Commun. 1972, 37,
 263-269; c) K. Griesbaum, V. Miclaus, I. C. Jung, R.-O. Quinkert, Eur. J. Org. Chem. 1998, 1998, 627-629; d) M. Kvasnica, I. Tišlerová, J. Šarek, [19] J. Sejbal, I. Císařová, Collect. Czech. Chem. Commun. 2005, 70, 1447-1464.
- a) J. Weiss, *Trans. Faraday Soc.* **1935**, *31*, 1547-1557; b) D. B. Broughton, R. L. Wentworth, J. Am. Chem. Soc. **1947**, *69*, 741-744; c) [20] D. B. Broughton, R. L. Wentworth, M. E. Laing, *J. Am. Chem. Soc.* **1947**, 69, 744-747; d) G. Bianchi, F. Mazza, T. Mussini, *Electrochimica Acta* **1962**, 7, 457-473; e) K. Goszner, H. Bischof, *J. Catal.* **1974**, *32*, 175-182; f) Y. Yang, A. C. C. Tseung, Z. G. Lin, J. Electroanal. Chem. 1994, 370, 159-164; g) M. A. Hasan, M. I. Zaki, L. Pasupulety, K.

Kumari, Appl. Catal., A 1999, 181, 171-179; h) S.-H. Do, B. Batchelor, H.-K. Lee, S.-H. Kong, Chemosphere 2009, 75, 8-12.

- a) B. Das, B. Veeranjaneyulu, M. Krishnaiah, P. Balasubramanyam, J. [21] Mol. Catal. a-Chem. 2008, 284, 116-119; b) D. Azarifar, Z. Najminejad, K. Khosravi, Synth. Commun. 2013, 43, 826-836.
- a) Y. H. Liu, Z. H. Zhang, T. S. Li, Synthesis-Stuttgart 2008, 20, 3314-[22] 3318; b) P. H. Li, B. L. Li, Z. M. An, L. P. Mo, Z. S. Cui, Z. H. Zhang, Adv. Synth. Catal. **2013**, 355, 2952-2959; c) Y. H. Liu, H. C. Hu, Z. C. Ma, Y. F. Dong, C. Wang, Y. M. Pang, *Monatsh. Chem.* **2018**, *149*, 551-556.
- [23] M. Zhang, Y. Han, J. L. Niu, Z. H. Zhang, Adv. Synth. Catal. 2017, 359, 3618-3625.
- [24] A. O. Terent'ev, V. A. Vil, O. V. Bityukov, G. I. Nikishin, Russ. Chem. Bull. Int. Ed. 2014, 63, 2461-2466.
- a) Y. Ishii, K. Yamawaki, T. Ura, H. Yamada, T. Yoshida, M. Ogawa, J. [25] *Org. Chem.* **1988**, 53, 3587-3593; b) A. C. Dengel, W. P. Griffith, B. C. Parkin, J. Chem. Soc. Dalton Trans. 1993, 2683-2688; c) N. M. Gresley, W. P. Griffith, A. C. Laemmel, H. I. S. Nogueira, B. C. Parkin, J. Mol. Catal. a-Chem. 1997, 117, 185-198; d) M. N. Timofeeva, Z. P. Pai, A. G. Tolstikov, G. N. Kustova, N. V. Selivanova, P. V. Berdnikova, K. P. Brylyakov, A. B. Shangina, V. A. Utkin, *Russ. Chem. Bull., Int. Ed.* **2003**, 52, 480-486; e) J. M. Bregeault, Dalton Trans. 2003, 3289-3302; f) M. L. Ramos, L. L. G. Justino, H. D. Burrows, *Dalton Trans.* 2011, *40*, 4374-4383; g) V. Conte, B. Floris, *Dalton Trans.* 2011, *40*, 1419-1436; h) O. V. Larionov, D. Stephens, A. M. Mfuh, H. D. Arman, A. S. Naumova, G. Chavez, B. Skenderi, *Org. Biomol. Chem.* **2014**, *12*, 3026-3036; i) X. J. Song, W. C. Zhu, Y. Yan, H. C. Gao, W. X. Gao, W. X. Zhang, M. J. Jia, J. Mol. Catal. a-Chem. 2016, 413, 32-39.
 a) Z. Karimi, A. R. Mahjoub, F. D. Aghdam, Inorg Chim Acta 2009, 362,
- [26] 3725-3730; b) F. Adam, A. Iqbal, *Micropor. Mesopor. Mat.* 2011, 141, 119-127; c) B. Wang, J. Zhang, X. Zou, H. G. Dong, P. J. Yao, *Chem. Eng. J.* 2015, 260, 172-177.
- a) C. Rocchiccioli-Deltcheff, A. Aouissi, S. Launay, M. Fournier, J. Mol. [27] Catal. a-Chem. **1996**, *114*, 331-342; b) L. M. G. Sainero, S. Damyanova, J. L. G. Fierro, *Appl. Catal. A-Gen.* **2001**, *208*, 63-75.
- a) B. C. Ranu, A. Sarkar, A. Majee, J. Org. Chem. 1997, 62, 1841 1842; b) S. Shikata, S.-i. Nakata, T. Okuhara, M. Misono, J. Catal. 1997, 166, 263-271; c) W.-H. Cheung, W.-Y. Yu, W.-P. Yip, N.-Y. Zhu, C.-M. Che, J. Org. Chem. 2002, 67, 7716-7723; d) G. Bartoli, M. Bartolacci, M. [28] Bosco, G. Foglia, A. Giuliani, E. Marcantoni, L. Sambri, E. Torregiani, J. Org. Chem. 2003, 68, 4594-4597; e) A. K. Chakraborti, R. Gulhane, Chem. Commun. 2003, 1896-1897; f) A. Agarwal, S. Rani, Y. D. Vankar, J. Org. Chem. 2004, 69, 6137-6140; g) M. E. González-Núñez, R. Mello, G. Sig, Chem. 2007, 05, 0147 -0169, 97 M. E. Schlzare-Plutiez, N. Mello,
 A. Olmos, G. Asensio, J. Org. Chem. 2006, 71, 6432-6436; h) U. D.
 Neue, in *Encyclopedia of Analytical Chemistry*, John Wiley & Sons, Ltd,
 2009; i) H. R. Shaterian, A. Hosseinian, M. Ghashang, *Phosphorus Sulfur* 2008, 183, 3136-3144; j) E. L. Margelefsky, R. K. Zeidan, M. E. Davis, Chem. Soc. Rev. 2008, 37, 1118-1126; k) J.-G. Li, Y.-Q. Peng, J. Chin. Chem. Soc.-Taip. 2010, 57, 305-308; I) P. N. Liu, F. Xia, Q. W. Wang, Y. J. Ren, J. Q. Chen, Green Chem. 2010, 12, 1049-1055; m) V. Pandarus, G. Gingras, F. Beland, R. Ciriminna, M. Pagliaro, Catal. Sci. Technol., 2011, 1, 1600-1604; n) L. Wang, L. Green, Z. Li, J. McCabe Dunn, X. Bu, C. J. Welch, C. Li, T. Wang, Q. Tu, E. Bekos, D. Richardson, J. Eckert, J. Cui, Org. Process Res. Dev. 2011, 15, 1371-1376; o) X. Cui, F. Shi, Y. Deng, Chem. Commun. 2012, 48, 7586-7588; p) Y. Shimoda, H. Yamamoto, Tetrahedron Lett. 2015, 56, 3090-3092; q) K. E. Aldrich, A. L. Odom, Organometallics 2018, 37, 4341-4349; r) K. Gayapan, S. Sripinun, J. Panpranot, P. Praserthdam, S. Assabumrungrat, RSC Adv. 2018, 8, 28555-28568; s) M. Markiton, A. Ciemięga, K. Maresz, A. Szelwicka, J. Mrowiec-Białoń, A. Chrobok, New J. Chem. 2018, 42, 13602-13611.
- G. A. Tsigdinos, G. H. Moh, in *Topics in Current Chemistry*, Springer-[29] Verlag Berlin Heidelberg, **1978**, p. 162.
- a) M. M. M. Abd El-Wahab, A. A. Said, J. Mol. Catal. a-Chem. 2005, [30] 240, 109-118; b) H. Kim, J. C. Jung, P. Kim, S. H. Yeom, K. Y. Lee, I. K. Song, *J. Mol. Catal. a-Chem.* **2006**, *259*, 150-155; c) S. Damyanova, J.
- Schig, J. Mol. Catal. a Gran. **200**, 203, 105-103, 013, 2018, 2019
 L. G. Fierro, *Chem. Mater.* **1998**, *10*, 871-879.
 S. S. Kale, U. Armbruster, R. Eckelt, U. Bentrup, S. B. Umbarkar, M. K. Dongare, A. Martin, *Appl. Catal. A-Gen.* **2016**, *527*, 9-18; b) J. Adamiak, M. Chmielarek, *J. Ind. Eng. Chem.* **2015**, *27*, 175-181. [31]
- [32]
- T. M. McEvoy, K. J. Stevenson, *Langmuir* **2005**, *21*, 3521-3528. a) J. Chen, S. Liu, W. Feng, G. Zhang, F. Yang, *PhysChemChemPhys* [33]
- [34]
- a) J. Chen, S. Liu, W. Feng, G. Zhang, F. Yang, *Physchemichemphys* 2013, *15*, 5664-5669; b) M. Misono, *Catal. Rev.* 1987, *29*, 269-321.
 W. Sun, Y. Si, H. Jing, Z. Dong, C. Wang, Y. Zhang, L. Zhao, W. Feng, Y. Yan, *Chem. Res. Chinese U.* 2018, *34*, 464-469.
 a) L. G. Bloor, R. Solarska, K. Bienkowski, P. J. Kulesza, J. Augustynski, M. D. Symes, L. Cronin, *J. Am. Chem. Soc.* 2016, *138*, 6707-6710; b) K.-H. Hyung, D.-Y. Kim, S.-H. Han, *New J. Chem.* 2005, *29*, 1022; c) Y. Kim, S. Shanmugam, *ACS Appl. Mater. Interfaces* 2013, 512107-12204; *d)* Z.-Li, W.-J. Zhao, Y. Shi, *T. P. Ying, W. Feng, W. Feng, Y. Chem.* 2015, *14*, 167-167. [35] 5, 12197-12204; d) Z.-J. Li, W.-J. Zhao, Y. Shi, Z.-P. Ying, W. Feng, L.

Bai, Compos. Interfaces 2018, 25, 809-821; e) L. Lu, Y. Xie, J. Mater. Sci. 2018, 54, 4842-4858.

- S. Kasztelan, E. Payen, J. B. Moffat, J. Catal. 1990, 125, 45-53. [36] C. Rocchiccioli-Deltcheff, A. Aouissi, M. Bettahar, S. [37] Launay, M.
- Fournier, J. Catal. 1996, 164, 16-27. [38]
- a) V. Balaga, J. Pedada, H. B. Friedrich, S. Singh, J. Mol. Catal. a-Chem. 2016, 425, 116-123; b) Y. S. Tian, G. H. Wang, J. Long, J. W. Cui, W. Jin, D. L. Zeng, Chinese J. Catal. 2016, 37, 2098-2105.
 I. V. Kozhevnikov, K. R. Kloetstra, A. Sinnema, H. W. Zandbergen, H. [39]
- vanBekkum, J. Mol. Catal. A Chem. 1996, 114, 287-298. [40]
- J. H. Qiu, G. H. Wang, Y. Q. Zhang, D. L. Zeng, Y. Chen, Fuel 2015, 147, 195-202. A. E. A. Said, M. M. M. Abd El-Wahab, J. Chem. Technol. Biotechnol.
- [41] 2006, 81, 329-335
- P. Jeschke, *Pest Manag. Sci.* **2016**, *7*2, 433-455. a) A. Leadbeater, *Plant. Protect. Sci.* **2015**, *51*, 163-169; b) R. P. Oliver, [43] H. G. Hewitt, Fungicides in Crop Protection, 2nd edition ed., CABI, 2014.
- V. V. Kachala, L. L. Khemchyan, A. S. Kashin, N. V. Orlov, A. A. [44] Grachev, S. S. Zalesskiy, V. P. Ananikov, Russ. Chem. Rev. 2013, 82, 648-685.
- [45] D. Kalaitzakis, J. D. Rozzell, I. Smonou, S. Kambourakis, Adv. Synth. Catal. 2006, 348, 1958-1969.
- W. P. Unsworth, G. Coulthard, C. Kitsiou, R. J. K. Taylor, J. Org. Chem. [46] 2014, 79, 1368-1376.
- A. A. Turmasova, E. S. Spesivaya, D. N. Konshina, V. V. Konshin, [47] Russ. Chem. Bull. 2012, 61, 1733-1735.
- [48] Metodicheskie rekomendatsii po opredeleniyu fungitsidnoi aktivnosti novykh soedinenii [Guidelines for Determination of Fungicidal Activity of New Compounds], in Russian ed., NIITEKhIM, Cherkassy, 1984.

WILEY-VCH

Entry for the Table of Contents (Please choose one layout)

Layout 1:

FULL PAPER

The catalyst was developed for peroxidation of 1,3- and 1,5-diketones with hydrogen peroxide with the formation of bridged 1,2,4,5-tetraoxanes and bridged 1,2,4-trioxolanes with yield up to 86 and 90% respectively based on isolated product under heterogeneous conditions. A new class of antifungal agents for crop protection, cyclic peroxides, was discovered. Some ozonides and tetraoxanes exhibit a very high antifungal activity and are superior to commercial agro fungicides.

Ivan A. Yaremenko,^[a,b,c] Peter S. Radulov,^[a,c] Yulia Yu. Belyakova,^[a] Arina A. Demina,^[a,d] Dmitriy I. Fomenkov,^[a,b] Denis V. Barsukov,^[a] Irina R. Subotina,^[a] Fabrice Fleury,^[e] and Alexander O. Terent'ev*^[a,b,c]

Page No. – Page No.

Catalyst development for the synthesis of ozonides and tetraoxanes under heterogeneous conditions. Disclosure of an unprecedented class of fungicides for agricultural application