A DIPEPTIDE DERIVATIVE FROM HYPERICUM JAPONICUM*

KYOKO ISHIGURO,† SATOKO NAGATA, HISAE FUKUMOTO, MASAE YAMAKI, SHUZO TAKAGI and KOICHIRO ISOI

Faculty of Pharmaceutical Sciences, Mukogawa Women's University, Koshien Kyuban-cho, Nishinomiya, Hyogo 663, Japan

(Received in revised form 2 May 1991)

Key Word Index—Hypericum japonicum; Guttiferae; dipeptide derivative; N-benzoyl-L-phenylalanyl-L-phenylalaninol acetate,

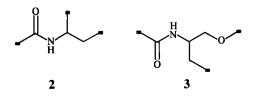
Abstract—The structure of a novel peptide analogue saropeptate, N-benzoyl-L-phenylalanyl-L-phenylalaninol acetate, isolated from the whole plant of *H. japonicum* was elucidated by spectroscopic analysis and its absolute configuration determined by comparison with four synthetic diastereoisomers.

INTRODUCTION

Hypericum japonicum (Sarothra japonica) Thunb. (Di-er Cao) has been used in Chinese herbal medicine for the treatment of some bacterial diseases, infectious hepatitis and tumours [1]. We have reported the isolation of nine antimicrobial phloroglucinol derivatives [2–5] and a lactone [6] from the ether extracts, and a flavanonol glycoside [7] from methanolic extracts of this plant. As part of a continuing study of this plant, structural elucidation and synthesis of an uncommon dipeptide derivative, saropeptate (1), is reported here.

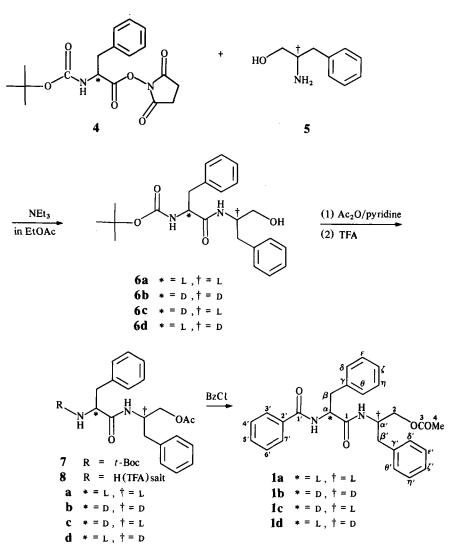
RESULT AND DISCUSSION

Dried whole plants were extracted with *n*-hexane. The *n*-hexane extract was flash chromatographed repeatedly on silica gel using a *n*-hexane—ethyl acetate system followed by recrystallization from ethyl acetate to obtain 1.


Saropeptate (1), colourless needles, showed a molecular ion peak (m/z) at 444.2052 for $C_{27}H_{28}O_4N_2$ (calcd; 444.2049) by high resolution mass spectrometry. Its IR spectrum indicated the presence of a ester carbonyl group (1735 cm^{-1}) , and amide groups (3410, 1670, 1653 and 1645 cm⁻¹) whose presence were also supported by two proton signals ($\delta 6.73$ and 5.93) in the ¹H NMR spectrum and by two amide carbon signals (δ 167.11 and 170.25) in the ¹³C NMR spectrum. The homonuclear correlation 2D COSY (1H-1H) experiments indicated the presence of the partial structures of 2 and 3 together with an acetyl group ($\delta 2.02$), an unsubstituted benzoyl group at δ 7.42–7.70 and two unsubstituted benzyl groups at δ 7.05–7.21 and δ 7.21–7.30. The presence of these unsubstituted benzoyl and benzyl groups were also confirmed by the intense fragment ions m/z 105 (100%) and m/z 91 (10%), respectively. The ¹³C NMR spectrum of 1 gave 27 signals due to two amide carbons, acetyl carbons (δ 20.77 and 170.74), 18 aromatic carbons, three methylene carbons (δ 37.49, 38.43 and 64.61), two methine carbons (δ 49.5 and 55.03). Signal assignments were confirmed by a 2D-long range CH correlation (COLOC) experiment.

The substitution pattern of each group was confirmed by the EI mass spectrum, in which the fragment peaks at m/z 224 (21%) and 252 (35%) resulting from bond cleavage at either side of the central carbonyl group was observed. The above spectral data confirmed the structure of 1 as shown.

The absolute configuration of 1 was determined by comparison with four synthetic stereoisomers, N-benzoyl-L-Phe-L-phenylalaninol acetate (1a), N-benzoyl-D-Phe-D-phenylalaninol acetate (1b), N-benzoyl-D-Phe-Lphenylalaninol acetate (1c) and N-benzoyl-L-Phe-Dphenylalaninol acetate (1d).


The four isomers **1a-d** were synthesized as follows (Scheme 1), respectively. *N*-*t*-Butyloxy carbazate(Boc)-(L or D)-Phe-*N*-hydroxy-succinimide ester (**4**) was reacted with [S-(-);L-form] or [R-(+);D-form]-2-amino-3phenyl-1-propanol (**5**) in the presence of triethylamine togive the corresponding dipeptide derivative (**6**), whichwas converted to the acetate (**7**). The treatment of**7**withtrifluoroacetic acid to remove the*t*-Boc group and benzoylation of**8**with benzoyl chloride in the presence oftriethylamine provided four stereoisomeric derivatives(**1a-d**) whose specific optical rotation values (CHCl₃;<math>c1.0) were $[\alpha]_D^{26} - 40.0^\circ$ for **1a**, $[\alpha]_D^{26} + 40.6^\circ$ for **1b**, $[\alpha]_D^{26}$ -5.0° for **1c** and $[\alpha]_D^{26} + 4.5^\circ$ for **1d**. Among those, **1a** showed good agreement with natural saropeptate ($[\alpha]_D^{26}$ -38.8° , CHCl₃; c0.041).

The structure 1a for saropeptate was further supported by HPLC analysis using a Chiralcel OG column, which separated a mixture of 1a-d as shown in the Experimental. Thus, the retention time of saropeptate was in accord with that of 1a. Consequently, the structure of saropeptate including its absolute stereochemistry was

^{*}Part 7 in the series 'A Flavanonol Rhamnoside from *Hypericum japonicum*'. For part 6 see ref. [7].

[†]Author to whom correspondence should be addressed.

Scheme 1. Synthesis of diastereoisomers of N-benzoylphenylalanylphenylalaninol acetate.

determined as N-benzoyl-L-Phe-L-phenylalaninol acetate (1a).

EXPERIMENTAL

Mps: uncorr.; FAB-MS: operating conditions were primary ion, Xe⁺; accelerating voltage, 3 kV (primary) and 3 kV (secondary) and matrix used was *m*-nitrobenzylalcohol (*m*-NBA). HR-MS: the mass range m/z 410~460 was scanned at 2.9 sec decade⁻¹ (cycle time 60 sec) with a dynamic resolution of 7000.

Plant material. Hypericum japonicum was purchased in Hong Kong, and identified by Dr K. Yoneda (Faculty of Pharmaceutical Sciences, Osaka University). A voucher specimen is kept in our laboratory.

Saropeptate (1). Mp 184° (EtOAc), needles, $[\alpha]_{B}^{26}-38.8°$ (CHCl₃; c 0.041), IR $\nu_{max}^{\text{HCl}_3}$ cm⁻¹: 3410 (NH), 1735 (CO₂), 1670, 1653 and 1645 (NHC=O), 1500, 1235. UV $\lambda_{max}^{\text{EtoH}}$ nm: 228 (4.08), EI-MS (probe) 70 eV, m/z (ret. int.): 43 [Ac]⁺ (26), 91 [benzyl]⁺ (10), 105 [benzoyl]⁺ (100), 224 [PhCONHCHCH₂Ph]⁺ (21), 252 [224+CO]⁺ (35), 444 [M]⁺ (2.5). FAB-MS, m/z 77 [C₆H₅]⁺, 105 [PhCO]⁺, 289 [M-2H₂O-PhCONH+1]⁺,

307 $[M-H_2O-PhCONH+1]^+$, 445 $[M+1]^+$. ¹H NMR (500 MHz, CDCl₃); δ 2.02 (3H, s, H-4), 2.75 (2H, ddd, $J_{\beta',\beta'}$ = 13.25, $J_{\beta',\alpha'}$ = 7.27 and 6.41, β' -H), 3.07 (1H, dd, $J_{\alpha,\beta}$ = 8.55, $J_{\beta,\beta}$ = 13.68, β -H), 3.22 (1H, dd, $J_{\alpha,\beta}$ = 5.99, $J_{\beta,\beta}$ = 13.68, β -H), 3.84 $(1H, dd, J_{2,\alpha'} = 4.27, J_{2,2} = 11.12, H-2), 3.92 (1H, dd, J_{2,\alpha'} = 5.13, J_{2,\alpha'} = 5.13)$ $J_{2.2} = 11.12$, H-2), 4.35 (1H, m, α' -H), 4.78 (1H, ddd, $J_{\alpha,\beta} = 5.99$ and 8.55, $J_{\alpha,NH} = 7.69$, α -H), 6.03 (1H, d, J = 8.55, N'H), 6.73 (1H, d, J = 7.69, NH), 7.05–7.21 (5H, m, $\delta' \sim \theta'$ -H), 7.21–7.30 (5H, m, $\delta \sim \theta$ -H), 7.42 (2H, t, J = 7.27, H-4', H-6'), 7.51 (1H, dt, J = 7.27 and 1.21, H-5'), 7.70 (2H, dd, J = 7.27 and 1.21, H-3', H-7'). ¹³C NMR (125 MHz, CDCl₃); δ20.77 (q, C-3), 37.49 (t, C-β'), 38.43 (t, C-β), 49.51 (d, C-α'), 55.03 (d, C-α), 64.61 (t, C-2), 126.77 (d, C-ζ)^a, 127.06 $(d, C-3', 7'), 127.17 (d, C-\zeta)^a, 128.61 (d, C-4', 6'), 128.65 (d, C-\varepsilon', \eta')^b,$ $128.72 (d, C-\varepsilon, \eta)^{b}, 129.15 (d, C-\delta', \theta')^{c}, 129.31 (d, C-\delta, \theta)^{c}, 131.91 (d, C-\delta, \theta)^{c}, 13$ C-5'), 133.75 (s, C-2'), 136.67 (s, C-\gamma')^d, 136.72 (s, C-\gamma)^d, 167.11 (s, C-1'), 170.25 (s, C-1), 170.74 (s, C-3).^{a-d} Interchangeable values.

Synthesis of N-t-BOC-L-Phe-phenylalaninol. (6). To S(-)-2amino-3-phenyl-1-propanol(L-form) (5) (200 mg, 1.32 mmol) and triethylamine (160 μ l) in THF (5 ml), N-t-BOC-L-Phe-N-hydroxy-succinimide ester (4) (482 mg, 1.33 mmol) in THF (5 ml) was added dropwisely under cooling in an ice bath for 1 hr and then the resultant soln was stirred overnight at room temp. EtOAc was added and the organic layer washed successively with 10% citric acid, 10% NaHCO₃ and H₂O and then dried over Na₂SO₄. The solvent was evapd and the crystalline residue recrystallized from EtOH to give crystals **6a** (510 mg, 97%), mp 142°. Calcd for C₂₃H₃₀N₂O₄: C, 69.32; H, 7.58; N, 7.03%. Found: C, 68.96; H, 7.78; N, 6.95%. $\nu_{max}^{CHCl_3}$ cm⁻¹: 3410 (NH), 1700 (Boc) and 1670 (NHC=O), 1540, 1490, 1160. FAB-MS, m/z 57 [CMe₃]⁺, 91 [C₇H₇]⁺, 299 [M-Me₃OCO]⁺ 399 [M+1]⁺. **6b**; mp 147°, 84%. **6c**; mp 150°, 96%. **6d**; mp 159°, 94%.

Acetylation of compound 6. To a soln of 6a (0.2 g) in pyridine (2 ml) was added Ac₂O (2 ml) and was allowed to stand overnight at room temp. This mixt. was poured into ice-water and the ppt. was collected by filtration to give 7a as crystals (364 mg, 90%), mp 133°. Calcd for C₂₅H₃₂N₂O₅: C, 68.16; H, 7.32; N, 6.36%. Found: C, 67.85; H, 7.45; N, 6.46%. $v_{max}^{CHCl_3}$ cm⁻¹: 3410 (NH), 1732 (OAc), 1700 (Boc) and 1670 (NHC=O), 1550, 1490, 1235, 1160. FAB-MS *m/z*, 57 [CMe₃]⁺ (71), 91 [C₇H₇]⁺, 102 [CMe₃OCO+1]⁺, 299 [M-Me₃OCO]⁺, 441 [M+1]⁺. 7b; mp 134°, 74%. 7c; mp 139°, 90%. 7d; mp 144°, 95%.

Removal of the BOC group from compound 7. To a soln of 7a (0.3 g, 0.68 mmol) in CH₂Cl₂ (2 ml) was added dropwise a soln of trifluoroacetic acid (TFA) under cooling in an ice bath during 1 hr and then stirred overnight at room temp. The solvent was evaporated and the crude residue recrystallized from Et₂O to afford crystals 8a (282 mg, 90%), mp 137°. FAB-MS (*m*-NBA) m/z, 43 [Ac]⁺, 91 [C₆H₇]⁺, 341 [M-TFA]⁺. 8b; mp 138°, 93%. 8c; oil, 90%. 8d; oil, 100%.

Benzoylation of compound 8. Compound 8a. (250 mg) was dissolved in EtOAc (3 ml), and was neutralized using NEt₃. To this soln was added NEt₃ (55 μ l) and benzoyl chloride (77 μ l), and this mixt. was stirred for 3 hr at room temp. After addition of H₂O, the organic phase was washed with 10% NaHCO₃ and H₂O and then dried over Na₂SO₄. The solvent was evapd and the crystalline residue recrystallized from EtOAc to afford needles 1a (225 mg, 92%). [α]²⁶₆-40.0° (CHCl₃; c1.0), mp 184°. HR-MS: found 444.2058, C₂, H₂₈N₂O₄ requires 444.2049. Anal. calcd for C₂₇H₂₈N₂O₄ · 1/4 H₂O: C, 72.22; H, 6.31; N, 6.23%. Found: C, 72.45; H, 6.26; N, 6.25%. FAB-MS m/z 77 [C₆H₅]⁺, 105 [PhCO]⁺, 289 [M-2H₂O-PhCONH+1]⁺, 307 [M -H₂O-PhNH+1]⁺, 445 [M+1]⁺ This compound was

identical with natural saropeptate by comparison of TLC and spectral data.

Isomers 1b-d were prepd by the same method as described for 1a. 1b: mp 185°, 83%, $[\alpha]_{D}^{26} + 40.6°$ (CHCl₃; c 1.0). IR, ¹H and ¹³C NMR spectrum were identical with 1a. 1c: mp 175°, 75%, $[\alpha]_{D}^{26} - 5.0°$ (CHCl₃; c 1.0). IR was identical with 1a and b. ¹H NMR (500 MHz, CDCl₃); δ 1.96 (3H, s, H-4), 2.61 (1H, dd, $J_{\beta',\beta'} = 13.62, J_{\beta',\alpha'} = 8.12, \beta'-H$), 2.78 (1H, dd, $J_{\beta',\beta'} = 13.62, J_{\beta',\alpha'} = 5.99, \beta'-H$), 3.07 (1H, dd, $J_{\alpha,\beta} = 8.12, J_{\beta,\beta} = 13.67, \beta-H$), 3.22 (1H, dd, $J_{\alpha,\beta} = 5.98, J_{\beta,\beta} = 13.67, \beta-H$), 3.94 (1H, dd, $J_{2,\alpha'} = 5.55, J_{2,2} = 11.54, H-2$), 3.98 (1H, dd, $J_{2,\alpha'} = 4.27, J_{2,2} = 11.54, H-2$), 4.34 (1H, m, α' -H), 4.79 (1H, ddd, $J_{\alpha,\beta} = 5.99$ and 8.12, $J_{\alpha,NH} = 7.26, \alpha-H$), 6.03 (1H, d, J = 8.12, N'H), 6.74 (1H, d, J = 7.26, NH), 7.08–7.23 (5H, m, $\delta' \sim \theta'$ -H), 7.24–7.32 (5H, m, $\delta \sim \theta-H$), 7.42 (2H, t, J = 7.69, 4', 6'-H), 7.51 (1H, dt, J = 7.69 and 1.28, 5'-H), 7.70 (2H, dd, J = 7.69 and 1.28, 3', H-7'). 1d: mp 175°, 91%, $[\alpha]_{D}^{24} + 4.8°$ (CHCl₃; c 1.0). IR and ¹H NMR spectrum were identical with 1c.

Analysis by HPLC. Chiralcel OG column (Daicel Chemical Ind.), 25×0.46 cm i.d. was employed for the separation of the four isomers **1a-d** using *n*-hexane-EtOH (19:1) at a flow rate of 1.2 ml min⁻¹ with detection at 254 nm. Compounds **1a-d** had R_rs at 13.78, 19.12, 24.50 and 29.45 min respectively. Natural saropeptate was eluted at 13.40 min.

REFERENCES

- Chang Su New Medical College (1977) Dictionary of Chinese Crude Drugs. Shanghai Scientific Technological Publishers, Shanghai.
- Ishiguro, K., Yamaki, M. and Takagi, S. (1985) J. Chem. Soc. Chem. Commun. 26.
- 3. Ishiguro, K., Yamaki, M., Kashihara, M. and Takagi, S. (1986) Planta Med. 247.
- Ishiguro, K., Yamaki, M., Kashihara, M. and Takagi, S. (1986) Planta Med. 395.
- Ishiguro, K., Yamaki, M., Kashihara, M., Takagi, S. and Koichiro Isoi (1990) *Phytochemistry* 29, 1010.
- Ishiguro, K., Yamaki, M., Kashihara, M., Takagi, S. and Koichiro Isoi (1990) Planta Med. 56, 274.
- Ishiguro, K., Nagata, S., Fukumoto, H., Yamaki, M., Takagi, S. and Koichiro Isoi (1991) *Phytochemistry* 30 (in press).