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Radical hydrofunctionalization occurs with ease using metal-
hydride atom transfer (MHAT) catalysis to couple alkenes and 
competent radicalophilic electrophiles. Traditional two-elec-
tron electrophiles have remained unreactive. Herein we report 
the reductive coupling of electronically-unbiased olefins with 
imines and aldehydes. Iron-catalysis allows addition of alkyl-
substituted olefins into imines through the intermediacy of free-
radicals, whereas a combination of catalytic Co(Salt-Bu,t-Bu) and 
chromium salts enable a branch-selective coupling of olefins 
and aldehydes through the formation of a putative alkyl chro-
mium intermediate. 

  Branch-selective reactions of alkyl-substituted ole-
fins via carbocationic1 or radical intermediates2 benefits 
from an abundance of methods, but the analogous transfor-
mation into branched-carbanion equivalents remains under-
developed (Figure 1). A common way to transform an olefin 
into a carbanion equivalent is via hydrometallation of a dou-
ble bond. However, such branch-selective hydrometallation 
of alkenes is generally limited to styrenes, allenes, and 
dienes—all electronically biased systems that stabilize a de-
veloping carbon-metal bond.3 In the absence of electronic 
bias, steric constraints dominate: canonical metal hydrides 
favor linear selectivity and linear hydrometallation is pre-
dominately observed.4 To obtain branch-selectivity with 
electronically-unbiased alkenes, we have investigated M-H 
hydrogen atom transfer (MHAT) catalysis and subsequent 
capture of the nascent intermediates by a second metal com-
plex.5,6,7 For example, we recently established that nickel 
complexes intercept Co(Salt-Bu,t-Bu)-catalyzed MHAT cycles 
in a direct organocobalt to organonickel transmetallation.6 

Similar alkyl transmetallations have been reported in non-
catalytic systems between alkyl-Co(dmgBF2)2Py and inor-
ganic nickel,8 and proposed for bioorganometallic9 and cat-
alytic processes.10 This alkyl transfer does not appear limited 
to nickel: vitamin B12-mimetics (such as Co(salen) deriva-
tives) can undergo alkyl transfer to palladium,11 rhodium,12 
other cobalt,13 platinum,14 gold,15 chromium,16 and zinc17 
salts and organometallics species. Yet despite the apparent 
generality of this transformation, there is a paucity of pre-
parative cross-coupling methods which leverage this reactiv-
ity. 

 
Figure 1: Transformation of olefins into carbanion equivalents by 
a radical/ polar crossover.  

The capacity to form cobalt organometallics via MHAT fol-
lowed by cage-collapse6,18,19,20 prompted us to explore 
transmetallation partners that might lead to otherwise inac-
cessible branched products. Here we show that olefins can 
be added to imines and aldehydes to form sp3-sp3 bonds. 
The former reaction with an activated electrophile occurs 
under standard MHAT catalysis, whereas the latter reaction 
requires interception of MHAT intermediates with chro-
mium salts (Figure 1e). This transformation expands the cur-
rent scope of olefins as carbanion surrogates21 which has 
heretofore required the use of electronically-activated ole-
fins, such as styrene, allenyl, or dienes. Alkyl-substituted 
olefins, in contrast, react with carbonyls at the least-substi-
tuted position through a Prins mechanism,22 or undergo iron-
catalyzed hydromagnesiation reactions to form linear nucle-
ophiles.23,24,25 

 We initially investigated the Markovnikov addition of 
alkenes into carbonyl derivatives by utilizing the intermedi-
acy of the free radicals and noticed that productive reactions
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Figure 2. Alkyl radicals generated by MHAT add to chiral sulfinimines. d.r. of two major diastereomers reported. astereochemistry at the a-carbon 
is (S). bstereochemistry in the a-carbon is (R). cMn(dpm)3 instead of Fe(acac)3 was used. dcontains 15% unrearranged pinene product and its diastereomer. e3 
equiv. of olefin used. 
 
were only obtained with standard radicalophiles, such as rad-
ical-stabilizing imines. Glyoxylimines are precedented as 
radical acceptors,26,27 and chiral sulfinyl auxiliaries can be 
used to impart stereocontrol. Although the competitive re-
duction of these electrophiles by the metal hydrides or the 
stoichiometric silane was observed, this could be minimized 
by using a slight excess of the olefin and Fe+3 salts as the 
catalyst.28 Several feedstock alkenes served as competent 
nucleophilic components and delivered unnatural amino ac-
ids derivatives with good to excellent diastereoselectivities. 
(Figure 2). The early transition state of radical reactions al-
lows facile formation of sterically hindered unnatural α-
amino acids bearing β-quaternary carbons, and reactive 
groups like free-hydroxyls (13) or two-electron electrophiles 
such as esters, epoxides, or aldehydes (8, 15, and 17) are tol-
erated. Complex feedstock terpenes can engage the sulfi-
nylimines to deliver adducts 12, 14, and 15, and even gly-
cans deliver amino esters with good diastereocontrol (16). 
Comparison of the optical rotation obtained from our reac-
tion to that of t-butyl glycine derivatives shows that sulfin-
imes with the (S)-configuration affords the (S)-amine 
whereas the (R)-sulfinime affords the (R)- amine.28 Better 
diastereoselectivity is obtained with the more hindered me-
sitylene or tri-isopropyl arene-derived sulfinamide, whereas 
the use of Ellman’s tert-butyl sulfinamide was not compati-
ble with these radical conditions.28 Given the ease with 
which these compounds are made, requiring no prefunction-
alization prior radical formation, we anticipate that this 
method will find application in the synthesis of unnatural 
amino acids.29   

Addition of the free radical to aldehydes, however,  
proved challenging (see Table 1), as may be expected due to 

the higher instability of an O-centered radical relative to a 
C-centered radical, which is reflected by the more facile C–
C bond scission than C–C bond formation.30 Strategies to 
drive this energetically disfavorable addition include seques-
tering the unstable O-centered radical as an alkoxide (which  

Table 1. Conversion of C-centered radicals to 2-electron nu-
cleophiles. 

 

Entry Deviations from above Yield 
(%)a 

1 Fe(dpm)3, Fe(acac)3, Co(acac)2 or Mn(dpm)3 
instead of Co(Salt-Bu,t-Bu) < 10% 

2 CrCl2 instead of CrCl3 trace 
3 with Zno or Mno 11% 
4 Co(salen)Cl and no [O] 45%c 
5 no [O] − 
6 0.2 equiv. of CrCl3 instead of 1 equiv. 22% 
7 0.2 equiv. of CrCl3 and TMSCl (1 equiv.) − 
8 in DMF instead of THF/CH3CN − 
9 without CH3CN 35% 

10 under air 46% 
11 with 1 equiv. of H2O − 
12 No Co(Salt-Bu,t-Bu) − 
13 No CrCl3 −d 

ayield determined by GC/FID using a calibrated internal standard; b isolated 
yield with 20 mol % of Co(salen)Cl and CrCl3(THF)3; c1 equiv. of NaBF4 
added; disomerization and hydrogenation was observed; d.r. 1:1 in all cases.  
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Figure 3. Conversion of alkenes into carbanion surrogates with branched-selectivity. d.r. at the formed bond is close to 1:1 unless otherwise 
noted. See Supporting Information for the d.r. of the isolated compounds. a20 mol% of [Co] and 20 mol% of [F+] were used.  

cannot undergo homolytic β-scission) in an intramolecular 
setting31 or accessing excited-states via photochemistry.32 
However, neither strategy may be used for intermolecular 
addition with alkyl-substituted olefins.33 In light of the prec-
edence for alkyl-cobalt complexes to transmetallate other 
metal species and the apparent facility with which organo-
cobalt species can form from olefins,6,20  we wondered if a 
two-electron nucleophile equivalent could arise from unac-
tivated olefins via sequential one-electron reductions via in-
terception of organocobalt with chromium species.  

 We were drawn to chromium chemistry for several rea-
sons: 1) organochromium reagents are known to add into 
carbonyls in a 1,2-fashion 2) Cr+2 salts are proposed to inter-
cept alkyl-radicals to form organochromium species with bi-
molecular rate constants on the order of 107 M-1s-1,34 3) al-
kyl-cobalamines and -cobaloximes can also be intercepted 

by Cr+2,16,35,36 and 4) chromium salts are inexpensive and of 
low toxicity in the +2 and +3 oxidation states.37 Furthermore, 
the weak Brønsted acidity of organochromium complexes 
allows for a high functional group tolerance and for their use 
in late-stage functionalization for complex molecule synthe-
sis.38 

 Initially, attempts to merge MHAT catalysis and chro-
mium chemistry met with poor results. β-diketonate com-
plexes of Co and Mn were not productive, although iron salts 
afforded the product in low yield (Table 1, Entry 1).39 We 
discovered, however, that use of Co(Salt-Bu,t-Bu) and equimo-
lar amounts of 1-fluoro-2,4,6-trimethylpyridinium tetra-
fluoroborate in the presence of phenylsilane and CrCl3 could 
couple the terminal olefin in 19 to 3-trifluoromethyl benzal-
dehyde in good yields. Given that Cr+2 is typically the active 
species in the addition of alkyl halides into carbonyls, we 
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initially explored the reaction using CrCl2 or CrCl3 alongside 
an external metal reductant only to discover that these con-
ditions lead to less product formed than the amount of [Co] 
pre-catalyst added (Entries 2 and 3). One explanation is that 
the external reductants impede the Co-cycle by unproductive 
reduction of Co+3 intermediates.40 Our optimized conditions 
appear to circumvent this problem by reductive formation of 
Cr+2 in situ (see below). Although it is possible to perform 
this reaction with the pre-oxidized Co(Salt-Bu,t-Bu)Cl, use of 
Co+2 and an external oxidant generally afforded higher 
yields (Entry 4), thereby allowing use of the more conven-
ient +3 and +2 oxidation states of Cr and Co, respectively. 
Control experiments indicate that both metals are necessary 
for product formation (Entries 12-13).41 

 Evaluation of the scope (Figure 3) revealed that both ar-
omatic and alkyl aldehydes are competent electrophiles, and 
a wide range of electronic variation is tolerated. In general, 
electron withdrawn substrates afford higher yields than elec-
tron-rich electrophiles, yet even vanillin-derived aldehydes 
such as 33 and 34 react in high yield. Various heteroaromatic 
aldehydes may be employed (37 - 39), as well as terpene-
derived substrates (41). Esters (45), tosylates (44), and chlo-
rides (46) are orthogonal electrophiles, but competitive re-
duction of bromides, and iodides was observed. A switch in 
solvent from THF to DME allows 1,2-disubstituted olefins 
to be engaged (54 - 57), although trisubstituted olefins are  

Figure 4. Delayed addition and stoichiometric reactions 
suggest transmetallation of alkyl-Co+3 to alkyl-Cr+3. 

 
areactions ran with 20 mol% of [Co] and 20 mol% of [O].  

not yet competent. Modest diastereocontrol is imparted by a 
chiral directing group (49), and sterically bulky substrates 
(35, 43, 50 and 52).42  

 Although we currently do not have a complete mecha-
nistic model, several observations are worth noting. First, the 
yield of the product formed does not vary as a function of 
delayed Cr+3 addition, which is consistent with intermediate 
formation of a stable organocobalt species that is engaged by 
the Cr, and inconsistent with an alternative hypothesis that 
the cobalt cycle continuously generates a C-centered radical 
whose reactivity would favor formation of side products 
prior to addition of the CrCl3.43 These observations draw 
analogy to our previously reported Ni/Co hydroarylation6 

and the mechanistic studies of Espenson and coworkers.35 

Stoichiometric experiments support a transmetallation and 
suggest reaction with Cr+2 rather than the Cr+3 species. In 
these experiments, a sec-alkyl cobalt was formed in situ by 
displacement of 2-bromopropane by CoI(Salt-Bu, t-Bu)(py)2; 
addition of CrCl3 and aldehyde 20 yields no product, 
whereas CrCl2 produces around 50% of adduct 58 based on 
the yield of the alkyl-cobalt.28 Control experiments with the 
alkyl-halide during the same period of time yields no product 
under these conditions. We suspect reduction of Cr+3 to Cr+2 
occurs via the stoichiometric silane reductant necessary for 
the MHAT catalytic cycle.44 By analogy to the proposal of 
Espenson and coworkers in similar systems,35 a possible 
mechanism for the alkyl transfer could involve electron 
transfer from a Cr+2 to an alkyl–Co+3 intermediate to form an 
unstable alkyl–Co+2 species which is known to homolyze to 
afford an alkyl radical that could escape the solvent cage and 
capture a second Cr+2 species, a kinetically facile process (k 
= 107 M-1s-1).34,45,46 

 In summary, we have discovered divergent reactivity 
available to alkenes that enables branch-selective (Markov-
nikov) addition to radicalophilic and non-radicalophilic 
electrophiles. First, carbon-centered radicals generated by 
MHAT are competent to add to chiral sulfinimines, which 
stabilize the incipient N-centered radical and impart stere-
ocontrol. The products of these reactions are valuable, un-
natural amino acid derivatives. Second and complemen-
tarily, although these same radicals do not productively add 
into aldehydes, the addition of Cr+3 salts allows coupling to 
occur. This latter method circumvents the poor reactivity of 
free radicals towards carbonyl intermediates while maintain-
ing the Markovnikov reactivity and chemoselectivity of 
MHAT. Overall, this work enables cross-coupling of abun-
dant chemical feedstocks (aldehydes and olefins) without the 
need for pre-functionalization. Mechanistic experiments and 
analogy to the literature is consistent with alkyl–Co+3 
transmetallation to alkyl–Cr+3, mediated by Cr+2. This sec-
ond example5,6 of catalytic MHAT organocobalt transmetal-
lation calls attention to the potentially general use of these 
alkyl-cobalt complexes as catalytically-generated organo-
metallic species capable of transferring their alkyl ligands to 
various other transition metals (including Ni and Cr) for pre-
viously inaccessible branch-selective bond-forming pro-
cesses from olefins. This reactivity complements catalyti-
cally-generated organocuprate species which can also 
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engage in hydrometallation/ transmetallation, but do so with 
linear selectivity.47 
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