Accepted Manuscript

Xylapyrrosides A and B, Two Rare Sugar-Morpholine Spiroketal Pyrrole-Derived Alkaloids from Xylaria nigripes: Isolation, Complete Structure Elucidation, and Total Syntheses

Ming Li, Juan Xiong, Ya Huang, Li-Jun Wang, Yu Tang, Guo-Xun Yang, Xin-Hua Liu, Bang-Guo Wei, Hui Fan, Yun Zhao, Wen-Zhu Zhai, Jin-Feng Hu

PII: S0040-4020(15)00875-3

DOI: 10.1016/j.tet.2015.06.020

Reference: TET 26855

To appear in: Tetrahedron

Received Date: 5 May 2015

Revised Date: 1 June 2015

Accepted Date: 3 June 2015

Please cite this article as: Li M, Xiong J, Huang Y, Wang L-J, Tang Y, Yang G-X, Liu X-H, Wei B-G, Fan H, Zhao Y, Zhai W-Z, Hu J-F, Xylapyrrosides A and B, Two Rare Sugar-Morpholine Spiroketal Pyrrole-Derived Alkaloids from Xylaria nigripes: Isolation, Complete Structure Elucidation, and Total Syntheses, Tetrahedron (2015), doi: 10.1016/j.tet.2015.06.020.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Graphical Abstract

To create your abstract, type over the instructions in the template box below. Fonts or abstract dimensions should not be changed or altered.

Xylapyrrosides A and B, Two Rare Sugar-Morpholine Spiroketal Pyrrole-Derived Alkaloids from *Xylaria nigripes*: Isolation, Complete Structure Elucidation, and Total Syntheses

Leave this area blank for abstract info.

Ming Li,^a Juan Xiong,^{a,*} Ya Huang,^a Li-Jun Wang,^a Yu Tang,^a Guo-Xun Yang,^a Xin-Hua Liu,^b Bang-Guo Wei,^{c,*} Hui Fan,^d Yun Zhao,^d Wen-Zhu Zhai,^d and Jin-Feng Hu^{a,*}

^aDepartments of Natural Products Chemistry and ^bPharmacology, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, China

^cDepartment of Chemistry, Fudan University, No. 220 Handan Road, Shanghai 200032, China ^dDepartment of Natural Products for Chemical Genetic Research, Key Laboratory of Brain Functional Genomics (Ministry of Education), East China Normal University, No. 3663 Zhongshan Road, Shanghai 200062, China

Tetrahedron journal homepage: www.elsevier.com

Xylapyrrosides A and B, Two Rare Sugar-Morpholine Spiroketal Pyrrole-Derived Alkaloids from *Xylaria nigripes*: Isolation, Complete Structure Elucidation, and Total Syntheses

Ming Li,^a Juan Xiong,^{a,*} Ya Huang,^a Li-Jun Wang,^a Yu Tang,^a Guo-Xun Yang,^a Xin-Hua Liu,^b Bang-Guo Wei,^{c,*} Hui Fan,^d Yun Zhao,^d Wen-Zhu Zhai,^d and Jin-Feng Hu^{a,*}

^aDepartments of Natural Products Chemistry and ^bPharmacology, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, China ^cDepartment of Chemistry, Fudan University, No. 220 Handan Road, Shanghai 200032, China

^dDepartment of Natural Products for Chemical Genetic Research, Key Laboratory of Brain Functional Genomics (Ministry of Education), East China Normal University, No. 3663 Zhongshan Road, Shanghai 200062, China

ARTICLE INFO

Article history: Received Received in revised form Accepted Available online

Keywords: Xylaria nigripes Xylapyrrosides A and B Spiro-alkaloids Asymmetric synthesis Antioxidant

ABSTRACT

Two new [named xylapyrrosides A (1) and B (2)] along with two known [pollenopyrrosides A (3) and B (= acortatarin A, 4)] naturally occurring spirocyclic pyrrole alkaloids were isolated and identified as minor components from the EtOH extract of the dried mycelia of the edible medicinal fungus *Xylaria nigripes*. Their structures were established by a combination of interpretation of spectroscopic data and single-crystal X-ray diffraction analyses. The isolates possess a unique tricyclic skeleton comprising a common bicyclic 2-formyl-pyrrole-fused morpholine, with a variable ketohexoside ring. This class of alkaloids is quite rare from natural sources. In this study, the total syntheses of compounds 1, 2 and 4 were successfully achieved by two alternative strategies, and three new analogues [named xylapyrrosides A1 (1a), A2 (1b) and B1 (2a)] were also produced. Notably, the total synthesis of such spiroketal alkaloids with a pyranose ring (e.g.,1) was accomplished for the first time. The absolute configurations of the new isolates can be thereafter unequivocally secured by the total syntheses. The above isolated and synthesized spiro-alkaloids were found to show moderate antioxidant effects by preventing the oxidative stress-induced cytotoxicity of A7r5 rat vascular smooth muscle cells (VSMCs).

2015 Elsevier Ltd. All rights reserved.

1. Introduction¹

As described previously, pyrrole-containing alkaloids, such as discorhabdins¹ and lamellarins² with complex structures and interesting biological activities, have greatly stimulated interdisciplinary studies by chemists and biologists worldwide. During the past decade, the number of new pyrrole-related alkaloids isolated, identified, and synthesized for their medicinal potential has increased. This includes a very small class of sugarmorpholine spiroketal pyrrole-derived alkaloids that emerged only in recent years. Capparisines A and B from the fruits of *Capparis spinosa*,³ pollenopyrrosides A and B from the bee-collected *Brassica campestris* pollen,⁴ and acortatarins A and B from the rhizomes of *Acorus tatarinowii*,⁵ were independently reported by three Chinese research groups in 2010. About two years later, acortatarins A and C were isolated from the crust of whole wheat bread by Peterson, et al.⁶ In general, this group of

alkaloids (Figures 1 and 2) contains an unprecedented tricyclic pyrrole–morpholine–ketohexoside fused framework. Among the above spiro-alkaloids, capparisines A and B were previously reported to have no inhibitory effect on human hepatocyte cell HL-7702 apoptosis.³ But acortatarin A was found to have antioxidant activity by inhibiting reactive oxygen species (ROS) production in high glucose-induced mesangial cells.^{5,7}

Figure 1. Structures of naturally-occurring (1–4) spiroketal pyrrole-derived alkaloids from *Xylaria nigripes* and their synthesized analogues (1a, 1b, 2a).

Tetrahedron

^{*} Corresponding authors. (+86)-21-5198-0172; e-mail: jfhu@fudan.edu.cn

Figure 2. Other previously reported naturally-occurring spiroketal pyrrolederived alkaloids. ^{*a*}The stereochemistries of capparisines A and B reported by Wang et al. were determined by MoK α (not CuK α) X-ray crystallographic analysis.³ ^{*b*}The relative and absolute configuration of acortatarin C remains undetermined,⁶ and the configurations at C-11 and C-12 were most likely to be S* and R*, respectively, based on related biogenetic considerations.⁶

Due to the intriguing structures, this class of alkaloids attracted considerable interest for organic synthesis soon after their isolation. So far, several groups have accomplished the total syntheses of acortatarins A^{8-12} and $B^{.8.9}$ Inexplicably, the absolute configurations of the naturally occurring acortatarins were initially assigned by both single-crystal X-ray (MoK α) diffraction analysis and the modified Mosher's method,⁵ but they were eventually revised after stereoselective total syntheses.⁸ Meanwhile, acortatarin A was found to be identical with pollenopyrroside B.^{9,10}

As a part of our continuing interest in novel bioactive alkaloids from nature,^{1,2,13} four sugar-morpholine spiroketal pyrrole-derived alkaloids (1-4, Figure 1) were isolated from the EtOH extract of the dried mycelia of Xylaria nigripes (Koltz.) Sacc. (family Xylariaceae), also known by the folklore name of Wuling Shen in Chinese. X. nigripes is considered to be a precious medicinal fungus, which is edible and delicious when it is young. Differing from our previously studied wood-rotting fungus Fomes fomentarius,¹⁴ the wild X. nigripes has a very special ecological niche in that it usually grows in the abandoned nests of the subterranean (ca - 2 m) termite *Odontotermes* formosanus.^{15,16} Although the wild fungus is quite rare in nature, the mycelia of X. nigripes nowadays can be largely manufactured through fermentation, and the dried culture filtrate is usually called Wuling Powder in China. As a popular traditional Chinese medicine (TCM) used as a nerve tonic, the commercially available Wuling Capsule (a single herbal formula made from Wuling Powder) has been used clinically for the treatment of insomnia, anxiety disorders and depression in China since 1999.^{15,16a,17} Nevertheless, studies on the secondary metabolites and their biological properties of this fungus remain limited.^{16b,17f,18} In the present investigation, the pyrrole-fused spiroketal architectures are reported from X. nigripes for the first time. We herein describe their isolation, structural elucidation, total syntheses, and their anti-oxidant effects. Regarding to the total syntheses, the reactions proceeded with considerable diastereoselectivity to give the target compounds in good yields.

2. Results and discussion

2.1 Isolation and structural elucidation

The commercially fermented mycelium (20 kg) of *X. nigripes* was extracted with 75% EtOH (20 L) at room temperature three times to afford a brown residue (1.3 kg, semi-dry), which was suspended in H₂O (2.0 L) and then successfully extracted with petroleum ether (3×1.5 L), EtOAc (3×1.5 L), and *n*-BuOH (3×1.5 L). The EtOAc extract (281.6 g) was separated by repeated column chromatography (CC) over silica gel, Sephadex LH-20,

and semi-preparative HPLC to furnish compounds **1** (4.0 mg), **2** (21.3 mg), **3** (1.2 mg), and **4** (20.1 mg). By comparing their spectroscopic data and physicochemical properties with those reported in the literature, the structures with absolute configurations of **3** (= pollenopyrroside A^4), and **4** (= pollenopyrroside B^4 or acortatarin $A^{5,8-12}$) were undoubtedly established as shown in Figure 1. Compound **2** is reported herein as a natural product for the first time, which is identical in all respects with the synthesized 9-*epi*-acortatarin $A^{.9-13}$

Xylapyrroside A (1) was obtained as a colorless crystal from acetone. Its molecular formula was determined to be $C_{12}H_{15}NO_5$ based on a molecular ion peak at m/z 253.0952 [M]⁺ in its HR-EIMS, implying six degrees of unsaturation. The UV absorption at 296 nm of 1 indicated the presence of a pyrrole-2-aldehyde moiety.⁵ In accordance with the above observation, a typical proton signal at δ 9.39 (1H, s, H-7) for an aldehyde group and two mutually-coupling olefinic protons at δ 7.04 (1H, d, J = 4.0, H-3) and 6.09 (1H, d, J = 4.0 Hz, H-4) were present in the ¹H NMR spectrum (Table 1) of 1.

Table 1.¹H (400 MHz) and ¹³C (100 MHz) NMR data of compound 1.^a

No		$\delta_{ m C}$			
	1 ^b	1°	1^{d}	Capparisine B ^{4,d}	1^{b}
2					132.4
3	7.04 (d, 4.0)	6.97 (d, 4.0)	6.90 (d, 4.0)	6.92 (d, 3.8)	125.8
4	6.09 (d, 4.0)	6.05(d, 4.0)	5.99 (d, 4.0)	6.01 (d, 3.5)	106.1
5					137.1
6	4.86 (d, 16.0)	4.86 (d, 15.6)	4.80 (d, 15.6)	4.82 (d, 15.2)	58.6
	4.77 (d, 16.0)	4.74 (d, 15.6)	4.71 (d, 15.6)	4.74 (d, 15.7)	
7	9.39 (s)	9.46 (s)	9.42 (s)	9.45 (s)	180.2
8	4.62 (d, 14.0),	4.55 (d, 14.0)	4.68 (d, 13.9)	4.70 (d, 14.4)	53.5
	4.00 (d, 14.0)	3.95 (d, 14.0)	3.99 (d, 13.9)	4.02 (d, 13.8)	
9					96.9
10	2.02 (dd,	1.98 (dd, 12.8,	1.90 (dd, 12.8,	1.91 (dd,	36.1
	12.8, 11.6)	11.6)	11.6)	12.6, 11.8)	
	1.92 (dd,	1.90 (dd, 12.8,	2.02 (dd, 12.8,	2.04 (dd,	
	12.8, 5.2)	5.6)	5.6)	12.8, 5.3)	CO 7
11	4.10 (ddd, 11.6.5.2.2.8)	4.06 (m)	4.14 (ddd, 11.6.5.6.2.8)	4.14 m	68.7
12	3.81 (m)	3.85 (m)	3.87 (m, overlapped)	3.88 m	66.0
13	3.83 (br d, 12.0)	3.77 (dd, overlapped)	3.87 (dd, overlapped)	3.89 (d, 12.1)	66.3
	3.78 (br d, 12.0)	3.75 (dd, overlapped)	3.78 (dd, 12.8, 1.2)	3.81 (d, 12.1)	

^{*a*} Assignments were made by a combination of 1D and 2D NMR experiments; ^{*b*} in methanol- d_4 ; ^{*c*} in acetone- d_6 ; ^{*d*} in CDCl₃

Additionally, two unequivalent aliphatic methylene protons [δ 2.02 (1H, dd, J = 12.8, 11.6 Hz) and 1.92 (1H, dd, J = 12.8, 5.2 Hz), H₂-10], three heteroatom-bearing methylenes [δ 4.86 and 4.77 (each 1H, d, J = 16.0 Hz, H₂-6); 4.62 and 4.00 (each 1H, d, J = 14.0 Hz, H₂-8); 3.83 and 3.78 (each 1H, br d, J = 12.0 Hz, H₂-13)], and two oxymethines [δ 4.10 (1H, ddd, J = 11.6, 5.2, 2.8 Hz, H-11); 3.81 (1H, m, H-12)] also appeared in the ¹H NMR spectrum (Table 1). The ¹³C NMR spectrum of **1** exhibited twelve well-resolved signals (Table 1) classified by DEPT and HSQC NMR experiments: four methylenes [δ 36.1 (C-10), 53.5 (C-8), 58.6 (C-6) and 66.0 (C-13)], five methines [two oxygenated at δ 66.3 (C-12), 68.7 (C-11), two olefinic at δ 106.1 (C-4) and 125.8 (C-3), and one formyl carbon at δ 180.2 (C-7)], and three quaternary carbons [one ketal at δ 96.9 (C-9), and two olefinic at δ 132.4 (C-2) and 137.1 (C-5)].

The above spectroscopic data (in CD_3OD) closely resembled those of capparisine B (Figure 2), a sugar-morpholine spiroketal pyrrole-derived alkaloid previously isolated from the mature fruits of *Capparis spinosa*.³ The ¹H NMR data of compound **1** and capparisine B³ are found to be identical when using the same NMR solvent (CDCl₃) (Table 1), indicating both should have the same planar structure with the same relative configuration. The framework of **1** was further confirmed by detailed analyses of 2D NMR spectra (COSY, HSQC, HMBC and NOESY) (Figure 3). However, the optical rotation value ($[\alpha]_D^{25}$ –189 (MeOH)) of compound **1** was found to be quite different from that of capparisine B ($[\alpha]_D^{25}$ +38 (MeOH)) with a ($9R^*$,11 R^* ,12 S^*) configuration³(Figure 2), suggesting that the two compounds are enantiomers of each other. The absolute configuration (9S,11S,12R) of **1** was finally confirmed by single-crystal X-ray (Cu $K\alpha$) diffraction analysis (Figure 4 and Supplementary data).

Figure 3. Key COSY, HMBC and NOE correlations of 1.

Figure 4. X-ray crystal structure of 1.

2.2 Total synthesis

Since 2011, total syntheses of such sugar-morpholine[6,5]spiroketal pyrrole-derived alkaloids with a furanose ring, e.g., acortatarin B, pollenopyrroside B/ acortatarin A and its 9-epimer (**2**, 9-epi-acortatarin A), have been carried out by several research groups.⁹⁻¹³ However, the total synthesis of such structures with a pyranose ring (e.g., **1**) has so far not been achieved. Only in a total synthetic work towards the synthesis of acortatarin A, a presumed [6,6]-spiro compound was mentioned as a minor impure byproduct.¹³ Therefore, we sought a process to synthesize such spiro-alkaloids with a pyranose ring to provide enough material for further *in vivo* bioactivity assays such as antidepression evaluation.

From a retrosynthetic perspective, the [6,6]- (e.g., 1) and [6,5]- (e.g., 2) spiroketals could be anticipated and synthesized using the same strategy (Scheme 1), because they would all rely on the spiroketalization of the intermediate 5. This precursor was envisioned to be available from a protected 2-formyl-5-hydroxymethyl-pyrrole (7) by *N*-alkylation with the epoxide $6^{,8,19}$, which in turn could be generated from the commercially available aldehyde 8.

Scheme 1. Retrosynthetic analysis for the spiro-alkaloids.

In our first synthetic route, the synthesis of 10 commenced with the commercially available (R)-2,2-dimethyl-1,3-dioxolane-4-carbaldehyde (9) which was converted to allylic alcohol 10 as an inseparable diastereometric mixture (dr = 5:3, 86% yield) by reaction with allylmagnesium chloride (a Grignard reagent). After the alcohol 10 was protected as its tert-butyldimethylsilyl (TBS) ether (11) in 88% yield, epoxidation of 11 with mchloroperoxybenzoic acid (m-CPBA) gave 12 (70% yield). Subsequent N-alkylation²¹ of the substituted pyrrole 7 via opening of the epoxide in 12 with KOH/MeOH afforded 13 in a satisfactory yield (60%). Oxidation²² of the alcohol **13** with Dess-Martin periodinane (DMP) furnished the ketone 14 in 92% yield. The precursor 14 underwent an intramolecular spiroketalization^{10,23} in the presence of moderate acidic conditions to deliver a mixture of compounds 1, 2 and 4, together with another three new diastereoisomers (1a, 1b and 2a) (Figure 1 and Scheme 2). Separation of the above six diastereoisomeric spiro-alkaloids was successfully achieved by repeated chromatography on silica gel and followed by semi-preparative HPLC (Figure 5).

Xylapyrrosides A_1 (1a) and A_2 (1b) were both found by HREIMS to have the same molecular formula $(C_{12}H_{15}NO_5)$ as 1. They also exhibited quite similar ¹H and ¹³C NMR data to those of 1, and only slight differences around the deoxyketohexose moieties (from C-10 to C-13) could be observed. Further detailed comparison of their COSY and HMBC spectroscopic data (See Supplementary data) with those of **1** revealed that these three compounds possess the same planar structure (Scheme 2) but different relative configurations that can be easily deduced by the observed coupling constants and the NOE correlations. For compound **1a**, the large coupling constants ($J_{\text{H-10,11}} = 11.6 \text{ Hz}$; $J_{\text{H-10,11}} = 10.6 \text{ Hz}$; $J_{\text{H-10,11}}$ $_{12,13}$ = 10.7 Hz) indicated both H-11 (δ 3.89) and H-12 (δ 3.50) took axial orientations (i.e., the hydroxyl groups were in opposite orientations and both took equatorial positions). Clear NOE correlations of H-10_{ax} (δ 1.67)/H₂-8 (δ 4.50, 4.04), H-10_{ax}/H-12_{ax} (δ 3.50), H-10_{eq} (δ 2.23)/H-11_{ax} (δ 3.89), and H-11_{ax}/ H-13_{ax} (δ 3.42) were then observed. In a similar way, the relative configuration of compound 1b was determined as depicted in Scheme 2. The absolute configuration of 1a was finally unambiguously established as (9R, 11R, 12R) by CuKa X-ray crystallographic analysis (Figure 6 and Supplementary data).

Scheme 2. Route1: Synthesis of 1, 2, 4, and related spiro-alkaloids (1a, 1b, 2a).

Figure 5. HPLC-PDA profiles of the six synthesized spiro-alkaloids separated on a Fluophase PFP column ($7.7 \times 250 \text{ mm}$, $5 \mu \text{m}$, Thermo): **1** ($t_R = 25.1 \text{ min}$), **1a** ($t_R = 29.5 \text{ min}$), **1b** ($t_R = 19.4 \text{ min}$), **2** ($t_R = 26.3 \text{ min}$), **2a** ($t_R = 27.0 \text{ min}$), and **4** ($t_R = 20.1 \text{ min}$). The PDA detector measured absorbance at 299 nm. The elution program consisted of a linear gradient of methanol in water from 25% to 35% in 35 min, then followed by an isocratic elution with 100% methanol for 15 min (flow rate: 2.0 mL/min).

Figure 6. X-ray crystal structure of 1a.

Xylapyrroside B₁ (**2a**) was also assigned a molecular formula of C₁₂H₁₅NO₅ as determined by HR-EIMS, identical with those of compounds **1–4**. The ¹H and ¹³C NMR spectra of **2a** resembled those of **2** and **4**,⁸⁻¹² in which the deoxyhexose moiety existed as a furanose ring instead of a pyranose ring in **1**. This was supported by the observation of a key HMBC correlation between H-12 (δ 4.14) and C-9 (δ 103.6), as well as the lack of correlation from H₂-13 (δ 3.83 and 3.78) to C-9 (See Supplementary data). Detailed comparison of the NMR data of **2a** with those of **4** suggested that the only difference was the orientation of the hydroxy group at C-11; thus **2a** was assumed to be the 11-epimer of **4**.

Considering that the chiral center at C-12 of the above six synthesized spiro-alkaloids was introduced by the initial chemical (R)-9, it is reasonable that the absolute configuration at C-12 should be definitively assigned as R (Scheme 2). Therefore, the absolute configuration at C-11 of both 1b and 2a could be easily determined to be R based on the above analysis of their relative configurations. However, due to the shortage of singlecrystal data, determination of the absolute configuration at C-9 in 1b and 2a seems to be challenging. Interestingly, after careful analysis of the optical rotations of compounds 1, 1a, 2-4, and their diastereoisomers reported in the literature,^{3,5} we reasoned that the absolute configuration at the spiro-center (C-9) would be the key factor to influence the sign (positive or minus) of the $[\alpha]_D$ values. In general, such sugar-morpholine spiroketal pyrrolederived alkaloids with a 9*R* configuration all exhibit positive $[\alpha]_D$ values (1a: +132; 3: +65; 4: +255; capparisine B³: +38), while minus values were observed only for those compounds with a 9S configuration (1: $[\alpha]_D$ –189; 2: $[\alpha]_D$ –187). Accordingly, the absolute configuration at C-9 in **1b** ($[\alpha]_D$ –241) and **2a** ($[\alpha]_D$ +225) could be assigned as 9S and 9R (Figure 1), respectively.

The above synthetic route could efficiently afford the target compounds (only six steps from the commercially available 9), along with three new analogues (1a, 1b, 2a) for potential structure-activity relationship (SAR) studies. In Scheme 2, TBS was employed to protect the secondary hydroxyl group in 10, yielding an inseparable epimeric mixture of 11 (Schemes 2 and 3). Interestingly, when a more rigid protective group (e.g., benzyl) was used instead of TBS, an optical pure product 15 could be obtained as the major product that can be easily separated from its epimer by silica gel CC (Scheme 3). Thus, we explored a second synthetic strategy, which successfully furnished the [6,6]-spiroketal 1 (Scheme 4) or [6,5]-spiroketals 2 and 4 (Scheme 5) with much higher steroselectivity.

Scheme 3. Different protected groups on the secondary hydroxyl of 10.

After cleavage of the acetonide by 60% (v/v) TFA, the diol ${\bf 16}$ was furnished in 88% yield, and different protective groups were then employed to construct [6,6]- and [6,5]-spiroketals. As shown in Scheme 4, the primary hydroxyl group in 16 was protected with TBS (17, 85% yield) and the secondary hydroxyl group was subsequently converted to the benzyl ether 18 (90% yield), which underwent a few steps to proceed the target [6,6]spiroketal (Scheme 4). In contrast, the [6,5]-spiroketals were constructed by protecting the primary hydroxyl in 16 with benzyl ether (24, 75% yield) and the secondary hydroxyl with TBS ether (25, 82% yield) followed by a series of reactions (Scheme 5). Actually, subsequent epoxidation of terminal olefins provided 19 and 26 each in 75% yield. Ring opening of the epoxides in the presence of cerous chloride heptahydrate and sodium iodide gave 20 and 27 each in 80% yield,²⁴ and then the oxidation of both with DMP furnished ketones 21 and 28 each in 90% yield. Treatment of α -iodo ketones and pyrrolederivative 7 with K₂CO₃ in DMF afforded 22 and 29 each in 87% yield.²⁵ Compound 22 experienced an intramolecular spiroketalization under acidic condition (4N HCl) together with the cleavage of THP and TBS groups, giving 23 as the sole product in a 90% yield, which was then treated with TiCl₄ in CH₂Cl₂ to afford 1 (70%) (Scheme 4). Interestingly, the same treatment on compound 29 resulted in a pair of C-9 epimers (30, dr = 2:1) that finally afforded 2 (37%)

and **4** (32%) (Scheme 5). In our opinion, Athe large steric hindrance, which may be explained by considering the two possible transition states during the acid catalyzed spiroketalisation of **29**,^{26,27} was unfavorable for the production of 9R-epimer of **23** by spirocyclization and hence compound **3** could not be obtained. This phenomenon coincided in both synthetic strategies (Schemes 2 and 4), which was also consistent with the previous synthetic work by Teranishi et al.¹²

Scheme 4. Route 2: Stereoselective synthesis of 1.

2.3 Antioxidant evaluation

Considering that acortatarin A (4) was previously reported to have antioxidant activity,^{5,7} the obtained spiro-alkaloids (except the mass-limited 3) were also evaluated for their antioxidant effects on preventing the oxidative stress-induced cytotoxicity of A7r5 rat vascular smooth muscle cells (VSMCs). Indeed, oxidative stress, generated by excessive reactive oxygen species (ROS), is an important trigger of VSMC apoptosis and has been implicated in the pathogenesis of cardiovascular disorders.²⁸ As shown in Figure 7, tert-butyl hydroperoxide (tBHP), a lipidsoluble source of peroxide radicals employed in this study,² caused 40.4% cell death of VSMCs at a concentration of 200 μ M. Interestingly, this oxidative stress-induced cytotoxicity was found to be remarkably attenuated by pretreating VSMCs with the spiro-alkaloids and an antioxidant flavonoid (+)-catechin hydrate³⁰ (positive control). Compared with the tBHP-group, all the tested compounds at 100 μ M exhibited significant preventive effects against the tBHP-induced cytotoxicity in VSMCs with viability in the range of 85.3–103.8%. Among them, compounds 4 and 1b were found to show the most potent anti-oxidative stress activities, i.e., they both could significantly suppress the tBHP-induced apoptosis in VSMCs at all concentrations tested (25, 50, and 100 μ M). Moreover, the antioxidant effects of all the spiro-alkaloids were dose-dependent and reached the maximum at 100 µM.

Figure 7. Effects of tested compounds on cell viability of tBHP-stimulated A7r5 cells. Data were generated from at least three independent experiments, and eachperformed in triplicate. p < 0.05 vs unstimulated cells, p < 0.05 vs tBHP-stimulated cells.

3. Conclusions

In this study, four diastereoisometric alkaloids (1-4) with a unique pyrrole-fused morpholine spiroketal architecture, were isolated and identified from the commercially fermented product (Wuling Powder) of X. nigripes for the first time. The concise and efficient total syntheses of 1, 2, 4 and their analogues were achieved by two alternative strategies. Compared with the known procedures,⁸⁻¹² our synthetic procedures possess the following advantages: lower-cost starting material, simple preparation process and higher total yield. Particularly, the total synthesis towards the spiro-alkaloids with a pyranose ring (in the case of 1, 1a and 1b) was reported herein for the first time. The successful total syntheses could not only unambiguously confirm the absolute configurations of the new isolates, but also afford enough samples for future biological screenings. In fact, in order to support the traditional application of Wuling Powder in treating anxiety disorders and depression,^{15,16a,17} the wellestablished mouse behavioral despair tests (i.e., the tail suspension test³¹ and the forced swim test³²) will be used for evaluating the anti-depressant activity of the enriched spiroalkaloids 1, 2 and 4. In the present study, the spiro-alkaloids 4 and 1b could significantly inhibit the tBHP-induced apoptosis in VSMCs, which would provide new insights into deeper exploration of the unique spiro-alkaloids in drug discovery of cardiovascular diseases, and future studies on the mode of the antioxidant action are needed.

4. Experimental Section

4.1 General information

Optical rotations were measured on a JASCO P-1020 polarimeter. UV and IR spectra were recorded on a Shimadzu UV-2550 and an Avatar 360 ESP FTIR spectrometer, respectively. NMR spectra were recorded on a Varian Mercury Plus 400 MHz and Bruker Avance III 400 or 600 MHz spectrometers. Chemical shifts are expressed in δ (ppm) and referenced to the residual solvent signals. ESI-MS were measured on Waters UPLC H ClassSQD and Agilent 1100 series mass spectrometers; EI-MS was obtained from an Agilent 5975c mass spectrometer. HR-ESI-MS and HR-EI-MS were measured on Bruker Daltonics micrOTOF-QII or Waters Gct Premier mass spectrometers. Semi-preparative HPLC was performed on a Waters e2695 system coupled with a 2998 Photodiode Array Detector (PDA) and a 2424 Evaporating Light Scattering Detector (ELSD), and a Fluophase PFP column (7.7×250 nm, 5 μ m, Thermo). Column chromatography (CC) was performed using silica gel (200-300 mesh, Kang-Bi-Nuo Silysia Chemical Ltd., Yantai, China) and Sephadex LH-20 (GE Healthcare Bio-Sciences AB, Uppsala, Sweden). Silica gel-precoated plates (GF254, 0.25 mm, Kang-Bi-Nuo Silysia Chemical Ltd., Yantai, China) were used for TLC detection. Spots were visualized using UV light (254 nm) and 15% H₂SO₄-EtOH. All reactions were carried out under an atmosphere of nitrogen or argon unless specified. All solvents used for column otherwise chromatography were of analytical grade (Shanghai Titan Chem Co. Ltd, Shanghai, PR China), and solvents used for HPLC were of HPLC grade (Jiangsu Hanbon Sci. & Tech. Co. Ltd., PR China). All commercially available reagents including the substrates were used as received.

4.2 Isolation of compounds 1-4

The commercially fermented mycelia of X. nigripes, also called Wuling Powder, were produced by Zhejiang Jolly Pharmaceutical Company (Deqing County in Zhejiang Province, PR China). In September 2008, the crude samples were dried on site and then shipped to the laboratory, where they were lyophilized upon arrival. A 20 kg aliquot was extracted with 75% EtOH $(3 \times 20 \text{ L})$ at room temperature to afford a brown residue (1.3 kg), which was suspended in H₂O (2.0 L) and then successively extracted with petroleum ether (PE, 3×1.5 L), EtOAc $(3 \times 1.5 \text{ L})$ and *n*-BuOH $(3 \times 1.5 \text{ L})$. The EtOAc-soluble fraction (281.6 g) was subjected to silica gel CC (PE/EtOAc, from 20/1 to 2/1, v/v; CH₂Cl₂/MeOH, from 20/1 to 2/1, v/v) to give fifteen fractions (Fr. 1-15). Fr. 11 (3.95 g) was separated by a silica gel column (CH₂Cl₂/MeOH, from 50/1 to 30/1, v/v) to give six sub-fractions (Fr.11A-11F). Fr. 11B (200 mg) was repeatedly chromatographed on silica gel (CH₂Cl₂/MeOH 50:1, v/v) followed by gel permeation chromatography (GPC) on Sephadex LH-20 (MeOH) to furnish compound 4 (20.1 mg). Fr. 11C (140 mg) was first subjected to CC over silica gel (CH₂Cl₂/MeOH 50:1, v/v) and was finally refined by GPC on Sephadex LH-20 (MeOH) to afford compound 1 (4.0 mg). Compounds 2 (21.3 mg) and 3 (1.2 mg) were isolated and purified from Fr. 11D (550 mg) by semi-preparative HPLC on a Fluophase PFP column (MeOH/H₂O, from 25:75 to 35:65 in 40 min, v/v; flow rate: 1.5 mL/min; 2: $t_R = 34.6$ min, 3: $t_R = 33.0$ min).

Xylapyrroside A (= *ent*-capparisine **B**, 1): colorless crystal (acetone); $[\alpha]^{22}_{\text{D}}$ –189 (*c* 0.1, MeOH); UV (MeOH) λ_{max} (log ε) 254 (0.62), 296 (2.11) nm; IR (film) v_{max} : 3408, 1660, 1474, 1036 cm⁻¹; ¹H and ¹³C NMR data see Table 1; (+) ESIMS *m*/*z* 254 [M + H]⁺; HREIMS *m*/*z* 253.0952 [M]⁺ (calcd for C₁₂H₁₅NO₅, 253.0950, Δ = 0.8 ppm).

Xylapyrroside B (= 9-*epi*-acotatarin A,⁸⁻¹² 2): colorless gum; $[\alpha]_{D}^{22}$ -187 (*c* 0.1, MeOH) [lit.⁸: $[\alpha]_{D}^{27}$ -58 (*c* 0.04, MeOH); lit.⁹: $[α]_{D}^{19}$ -111 (*c* 1.0, MeOH); lit.¹⁰: $[α]_{D}^{20}$ -85 (*c* 0.2, MeOH); lit.¹¹: $[α]_{D}^{23}$ -73 (*c* 0.05, MeOH)]; UV (MeOH) $λ_{max}$ (log ε) 254 (0.36), 296 (1.36) nm; IR (film) v_{max} : 3336, 1644, 1452, 1046 cm⁻¹; ¹H and ¹³C NMR data (in CD₃OD) see lit.⁸; (+) ESIMS *m/z* 254 [M + H]⁺; HREIMS *m/z* 253.0951 [M]⁺ (calcd for C₁₂H₁₅NO₅, 253.0950, Δ = 0.4 ppm).

Pollenopyrroside A^4 (3): colorless gum; $[\alpha]_{D}^{22} + 65$ (*c* 0.01, MeOH) [lit.⁴: $[\alpha]_{D}^{20} + 126$ (*c* 0.08, MeOH)]; ¹H and ¹³C NMR data (in CD₃OD) are identical with those of literature; ⁵ (+) ESIMS m/z 254 [M+H]⁺.

Pollenopyrroside B⁵ (= acortatarin A,^{5,8-12}4): white powder; $[α]_{D}^{22} + 255$ (*c* 0.1, MeOH) [lit.⁵: $[α]_{D}^{27} + 178$ (*c* 0.4, MeOH); lit.⁸: $[α]_{D}^{27} + 191$ (*c* 0.27, MeOH); lit.⁹: $[α]_{D}^{19} + 200$ (*c* 0.4, MeOH); lit.¹⁰: $[α]_{D}^{27} + 195$ (*c* 0.15, MeOH); lit.¹¹: $[α]_{D}^{23} + 185$ (*c* 0.15, MeOH); lit.¹²: $[α]_{D}^{24} + 190$ (*c* 0.28, MeOH)]; UV (MeOH) $λ_{max}$ (log ε) 254 (0.58), 296 (2.01) nm; IR (film) v_{max} : 3326, 1644, 1452, 1035 cm⁻¹; ¹H and ¹³C NMR (in CD₃OD) data see lit.^{5,8}; (+) ESIMS *m*/*z* 254 [M + H]⁺; HREIMS *m*/*z* 253.0949 [M]⁺ (calcd for C₁₂H₁₅NO₅, 253.0950, Δ = -0.4 ppm).

4.3 Synthesis

1-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)but-3-en-1-ol (10): To a cooled (-78°C) solution of commercial (R)-2,2-dimethyl-1,3dioxolane-4-carbaldehyde 9 (5.0 g, 38.5 mmol) in anhydrous THF (100 mL), compound 17 (351 mg, 1.0 mmol) was treated with a solution of allylmagnesium chloride in THF (30 mL, 51 mmol, 1.7 M). After being stirred for 3h, the mixture was quenched with a saturated NH4Cl aqueous solution and warmed to room temperature. Then the mixture was extracted with EtOAc $(3 \times 50 \text{ mL})$ and the combined organic layers were washed with brine. Dried, filtrated and concentrated, the residue was purified by flash chromatography on silica gel (PE/EtOAc = 10/1) to give an inseparable epimer mixture of **10a** and **10b** (5.68 g, 86%; dr =5:3) as a pale yellow oil. $[\alpha]_{D}^{22} = -25.2$ (c 0.029, CHCl₃); IR (film) v_{max}: 3402, 2909, 2345, 2328, 1397, 1052, 663 cm⁻¹ ¹;¹H NMR (400 MHz, CDCl₃) data of 10a (major product): δ 5.85 (m), 5.18 (m), 5.13 (m), 4.03 (m), 3.94 (m), 3.78 (m), 2.34 (m), 2.23 (m), 1.44 (s), 1.37 (s) ppm; **10b** (minor product): δ5.85 (m), 5.15 (m), 4.03 (m), 3.76 (m), 3.60 (m), 2.23 (m), 2.18 (m), 1.45 (s), 1.38 (s) ppm; ¹³C NMR (100 MHz, CDCl₃) data of **10a**: δ 134.0, 118.3, 109.1, 78.0, 70.3, 65.2, 37.6, 26.5, 25.2 ppm; 10b: δ 134.0, 117.9, 109.4, 78.5, 71.6, 66.0, 38.2, 26.6, 25.3 ppm; HREIMS m/z 172.1097 [M]⁺ (calcd for C₉H₁₆O₃, 172.1099, $\Delta =$ -1.2 ppm).

Tert-Butyl((1-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)but-3-en-1yl)oxy)dimethylsilane (11): 2,6-Lutidine (5.3 ml, 45.3 mmol) was dropped to a stirred solution of alcohol 10 (3.9 g, 22.7 mmol) in dry CH₂Cl₂ (50 mL) at 0 °C, then TBSOTf (7.8 mL, 34.1 mmol) was dropped and the reaction was stirred 2 h. The mixture was quenched with water and separated. The aqueous layer was extracted with EtOAc (3 \times 50 mL) and the combined organic layers were washed with brine. Dried, filtrated and concentrated, the residue was purified by flash chromatography on silica gel (PE/EtOAc = 40/1) to give an inseparable epimer mixture of **11a** and **11b** (dr = 5:4). Colorless oil; $[\alpha]_{D}^{22} = +24.7$ (c 0.049, CHCl₃); IR (film) v_{max}: 2942, 2368, 2334, 1441, 1265, 1090, 821,646 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) data of **11a**: δ 5.84 (m), 5.09 (m), 5.05 (m), 3.96 (m), 3.81 (m), 2.29 (m), 1.39 (s), 1.33 (s), 0.88 (s), 0.07 (s), 0.06 (s); **11b**: δ 5.83 (m), 5.04 (m), 4.05 (dd, J = 13.1, 6.6 Hz), 3.96 (m), 3.74 (m), 2.27 (m), 2.10 (ddd, J = 14.0, 7.5, 7.0 Hz), 1.41 (s), 1.34 (s), 0.88 (s), 0.07 (s), 0.05 (s) ppm; ¹³C NMR (100 MHz, CDCl₃) data of **11a**: δ 134.1, 117.5, 108.8, 77.8, 72.1, 66.1, 39.2, 26.7, 25.9×3, 25.5, 18.1, -4.2, -4.5; **11b**: δ 135.1, 117.1, 109.1, 78.4, 73.1, 65.4, 37.5,

5.28 (d. I = 11

25.8×3, 26.5, 25.3, 18.2, -4.4, -4.6 ppm; (+) **HRESIMS** ndz (4H), 6.30 (d, J = 3.9 Hz, 1H), 5.28 (d, J = 11.2 Hz, 1H, CH_aN), 309.1859 [M+Na]⁺ (calcd for C₁₅H₃₀O₃SiNa, 309.1862, $\Delta = -0.9$ 4.60 (d, J = 11.2 Hz, 1H, CH_bN), 4.60-4.32 (m, 3H), 4.24-4.1 (m, 1H), 4.00 (m, 2H), 3.80 (m, 2H), 3.50 (m, 1H), 2.88-2.82 (n)

Tert-Butyl(1-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)-2-(oxiran-2yl)ethoxy)dimethylsilane (12): To a cooled solution (0 °C) of the ether 11 (3.0 g, 10.5 mmol) in dry CH₂Cl₂ (30 mL) was added m-CPBA (2.17 g, 12.6 mmol) in one portion. After stirring for overnight at r.t, the reaction was quenched with a solution of saturated NaHSO₃ aqueous solution and stirred for 10 min. Then the mixture was separated and the aqueous layer was extracted with CH_2Cl_2 (3× 50 mL). The combined organic layers were washed with saturated aqueous NaHCO₃ solution and brine. Dried, filtrated and concentrated, the residue was purified by flash chromatography on silica gel (PE/EtOAc = 20/1) to give 12 (2.2 g, 70%; containing four inseparable diastereomers) as colorless oil. $[\alpha]_{D}^{22} = +60$ (c 0.015, CHCl₃); IR (film) v_{max} : 2920, 2854, 2372, 1386, 1265, 1073, 838 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 4.14-3.69 (m, 4H), 3.15-3.04 (m, 1H), 2.83-2.76 (m, 1H), 2.55-2.46 (m, 1H), 1.84-1.54 (m, 2H), 1.41-1.40 (Me, 3H), 1.35-1.34 (Me, 3H), 0.90 [Si-C-(CH₃)₃, 9H], 0.12-0.07 [Si(CH₃)₂, 6H] ppm; ¹³C NMR (100 MHz, CDCl₃): δ 109.2, 109.1, 109.0, 108.9; 78.3, 78.3, 78.3, 78.2; 71.5, 70.9, 70.7, 70.7; 66.5, 66.3, 65.4, 65.1; 49.5, 49.3, 48.8, 48.6; 47.9, 47.5, 46.7, 46.6; 38.0, 37.6, 36.3, 35.5; 26.7, 26.5, 26.4, 26.3; 25.7×6, 25.6×6; 25.3, 25.1, 25.0, 24.3; 18.0, 18.0, 17.9, 17.9; -4.4, -4.5, -4.7, -5.0 ppm; HREIMS m/z 302.1911 [M]⁺ (calcd for C₁₅H₃₀O₄Si, $302.1913, \Delta = -0.7$ ppm).

yl)oxy)methyl)-1*H*-pyrrole-2-carbaldehyde (13): To a suspension of KOH (37 mg, 0.66 mmol) in dry MeOH (5 mL) was added pyrrole 7 (0.55 g, 2.63 mmol; for preparation procedurs, see Supplementary data) under N₂ atmosphere at r.t. Then a solution of epoxide 12 (1.0 g, 3.3 mmol) in MeOH was dropped and the reaction was refluxed for 48h. After cooling, the mixture was quenched with water and extracted with EtOAc (4× 50 mL). The combined organic layers were washed with brine, dried over MgSO₄, filtered and concentrated. The crude was purified by chromatography on silica gel (PE/EtOAc = 8/1) to give 13 (0.93 g, 55%; containing eight inseparable diastereomers) as a pale yellow oil. $[\alpha]_{D}^{22} = +10.5$ (*c* 0.1, CHCl₃); IR (film) v_{max}: 3254, 2904, 2849, 1654, 1189, 1008, 767 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 9.50–9.49 (CHO, 1H), 6.92 (d, J = 3.9 Hz, 1H), 6.29 (d, J = 3.8 Hz, 1H), 4.91-4.51 (m, 4H), 4.29-3.68 (m, 6H), 3.62-3.06 (m, 2H), 1.88-1.53 (m, 8H), 1.41-1.33 (2×CH₃, 6H), 0.87 (C(CH₃)₃, 9H), 0.14-0.05 (Si(CH₃)₂, 6H) ppm; HREIMS *m/z* 511.2968 [M]⁺ (calcd for C₂₆H₄₅NO₇Si, 511.2965, $\Delta = 0.6$ ppm).

$\label{eq:linear} \begin{array}{l} 1-(4-((\textit{tert-Butyldimethylsilyl})oxy)-4-((R)-2,2-\textit{dimethyl-1},3-\textit{dioxolan-4-yl})-2-\textit{oxobutyl})-5-(((\textit{tetrahydro-}2H-\textit{pyran-}2-m))-2-\textit{oxobutyl})-5-(((\textit{tetrahydro-}2H-\textit{pyran-}2-m))-2-m))-2-m))-2-m)) \\ \end{array}$

yl)oxy)methyl)-1H-pyrrole-2-carbaldehyde (14): To a cooled solution (0 °C) of alcohol 13 (2.4 g, 4.7 mmol) in dry CH₂Cl₂ (30 mL) was added DMP (3.98 g, 9.4 mmol) in one portion and stirred for 3h. Then the reaction was carefully quenched with a solution of mixture (V/V = 50: 50) saturated aqueous NaHCO₃ and Na₂S₂O₃ solution until the mixture turned a clear solution. Then the resulting mixture was separated and the the aqueous layer was extracted with CH₂Cl₂ (2× 50 mL). The combined organic layers were washed with brine, dried over MgSO₄, filtrated and concentrated. The residue was purified by flash chromatography on silica gel (PE/EtOAc = 8/1) to obtain the ketone 14 (2.2 g, 92%; containing four inseparable diastereomers) as a colorless oil. $[\alpha]^{22}_{D} = +13.3$ (*c* 0.07, CHCl₃); IR (film) v_{max} : 3354, 2920, 2843, 2357, 1654, 1068, 663 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 9.46 (s, 1H), 6.91 (d, *J* = 3.9 Hz,

AH), 6.30 (d, *J* = 3.9 Hz, 1H), 5.28 (d, *J* = 11.2 Hz, 1H, CH_aN), 4.60 (d, *J* = 11.2 Hz, 1H, CH_bN), 4.60-4.32 (m, 3H), 4.24-4.10 (m, 1H), 4.00 (m, 2H), 3.80 (m, 2H), 3.50 (m, 1H), 2.88-2.82 (m, 1H), 2.75-2.60 (m, 1H), 1.83-1.48 (m, 6H), 1.36-1.32 (2×CH₃, 6H), 0.85 (s, 9H; C(CH₃)₃), 0.10-0.09 (Si(CH₃), 3H), 0.06-0.04 (Si(CH₃)₂, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 202.1, 202.0, 201.7, 201.6, 179.8 (3C) 178.3, 138.9, 138.8 (2C), 138.7, 132.5 (3C), 131.1, 123.7 (2C), 123.6, 122.3, 111.8, 111.7 (2C), 111.6, 109.2 (3C), 107.9, 97.2, 97.1, 97.0, 95.9, 78.6, 78.5, 77.3, 77.2, 76.0, 75.9, 75.6, 75.3, 68.9, 68.7, 67.8, 67.7, 66.6, 65.2, 65.0, 64.9, 62.5 (2C), 62.4, 62.3, 59.3 (2C), 59.2 (2C); 55.2 (2C), 55.1, 53.8, 45.3, 45.2, 43.0, 42.8, 30.1 (3C), 28.9, 26.3 (2C), 26.2, 25.7 (7C), 25.1 (3C), 24.9, 24.8, 24.3, 19.4, 19.3, 19.2, 19.1, 17.9 (2C), 17.3 (2C), -4.5 (2C), -4.9 (2C), -5.0 (4C) ppm; HREIMS *m*/z 509.2811 [M]⁺ (calcd for C₂₆H₄₃NO₇Si, 509.2809, Δ = 0.4 ppm).

Xylapyrrosides A (1), B (2) and their analogues (Method 1): To compound 14 (3.9 g, 7.7 mmol) in THF (50 mL) was dropped a solution of 4N HCl (7.8 mL, 30.8mmol) at 0 °C. After stirring for 4h, the mixture was carefully neutralized with a saturated aqueous NaHCO₃ solution and extracted with EtOAc (4 \times 50 mL). The combined organic extracts were washed with brine, dried over MgSO₄, filtrated and concentrated. Analysis of the product by HPLC with a Fluophase PFP column (a linear gradient of MeOH in water from 25% to 35% over 35 min, then followed by isocratic elution with 100% methanol; flow rate: 2.0 mL/min) clearly revealed the presence of six compounds (Figure 6, detection by PDA at 299 nm), which were isolated by repeated chromatography on silica gel and semi-preparative HPLC with the Fluophase PFP column. The synthesized xylappyrosides A(1)and B (2), and pollenopyrroside B (4) showed physical and spectroscopic characteristics equivalent to the natural products.

Xylapyrroside A₁ (1a): colorless crystal (acetone); $[\alpha]^{22}_{D}$ +132 (c 0.1, MeOH); UV (MeOH) λ_{max} (log ϵ) 254 (0.59), 295 (2.15) nm; IR (film) v_{max} : 3375, 1633, 1402, 1024 cm⁻¹; ¹H NMR (400 MHz, CD₃OD): δ 9.38 (s, H-7), 7.04 (d, J = 4.0 Hz, H-3), 6.09 (d, J = 4.0 Hz, H-4), 4.86 (d, J = 15.8 Hz, H-6_a), 4.78 (d, J = 15.8Hz, H-6_b), 4.50 (d, J = 14.0 Hz, H-8_a), 4.04 (d, J = 14.0 Hz, H- $8_{\rm b}$), 3.89 (ddd, J = 11.2, 8.8, 5.2 Hz, H-11), 3.73 (dd, J = 10.4, 5.2 Hz, H-13_a), 3.50 (ddd, J = 10.4, 8.8, 5.2 Hz, H-12), 3.42 (dd, J =10.4, 10.4 Hz, H-13_b), 2.23 (dd, J = 13.2, 5.2 Hz, H-10_a), 1.67 (dd, J = 13.2, 11.2 Hz, H-10_b); ¹³C NMR (100 MHz, CD₃OD): δ 132.4 (C-2), 126.0 (C-3), 106.2 (C-4), 136.9 (C-5), 58.2 (C-6), 180.2 (C-7), 53.1 (C-8), 96.7 (C-9), 41.2 (C-10), 72.3 (C-11), 70.0 (C-12), 65.2 (C-13); ¹H NMR (400 MHz, Acetone- d_6): δ 9.46 (s, H-7), 6.97 (d, J = 4.0 Hz, H-3), 6.06 (d, J = 4.0 Hz, H-4), 4.86 (d, J = 15.6 Hz, H-6_a), 4.76 (d, J = 15.6 Hz, H-6_b), 4.49 (d, J= 14.0 Hz, H-8_a), 4.01 (d, J = 14.0 Hz, H-8_b), 3.87 (ddd, J = 11.6, 8.8, 5.6 Hz, H-11), 3.68 (dd, J = 10.8, 5.2 Hz, H-13_a), 3.51 (ddd, J = 10.4, 8.8, 5.2 Hz, H-12), 3.38 (dd, J = 10.8, 10.4 Hz, H-13_b), 2.20 (dd, J = 13.2, 5.6 Hz, H-10_a), 1.68 (dd, J = 13.2, 11.6 Hz, H- $10_{\rm b}$); ¹H NMR (400 MHz, CDCl₃): δ 9.43 (s, H-7), 6.90 (d, J = 4.0 Hz, H-3), 5.99 (d, J = 4.0 Hz, H-4), 4.79 (d, J = 15.6 Hz, H- 6_a), 4.74 (d, J = 15.6 Hz, H- 6_b), 4.59 (d, J = 14.4 Hz, H- 8_a), 4.03 $(d, J = 14.0 \text{ Hz}, \text{H-8}_{b}), 4.00 \text{ (ddd, overlapped, H-11)}, 3.80 \text{ (dd, } J$ = 10.8, 5.2 Hz, H-13_a), 3.62 (ddd, J = 10.4, 8.8, 5.2 Hz, H-12), 3.43 (t-like, J = 10.4 Hz, H-13_b), 2.24 (dd, J = 12.8, 5.2 Hz, H-10_a), 1.70 (dd, J = 12.8, 11.2 Hz, H-10_b); (+) ESIMS m/z 254 $[M+H]^+$; HREIMS m/z 253.0949 $[M]^+$ (calcd for $C_{12}H_{15}NO_5$, 253.0950, $\Delta = -0.4$ ppm).

Xylapyrroside A₂ (1b): white powder; $[\alpha]^{22}_{D}$ -241 (*c* 0.1, MeOH); UV (MeOH) λ_{max} (log ε) 254 (0.50), 296 (1.86) nm; IR (film) ν_{max} : 3419, 1633, 1447, 1025 cm⁻¹; ¹H NMR (400 MHz, CD₃OD): δ 9.38 (s, H-7), 7.03 (d, *J* = 4.4 Hz, H-3), 6.08 (d, *J* =

4.4 Hz, H-4), 4.89 (d, J = 16.0 Hz, H-6_a), 4.82 (d, J = 16.0 Hz, \bigvee H-6_b), 4.60 (d, J = 14.0 Hz, H-8_a), 4.16 (dd, J = 12.2, 1.6 Hz, H-13_a), 3.95 (d, J = 14.0 Hz, H-8_b), 3.91 (m, H-11), 3.61 (br d, J =12.2 Hz, H-13_b), 3.57 (m, H-12), 2.20 (dd, J = 14.6, 4.4 Hz, H-10_a), 1.92 (dd, J = 14.6, 2.8 Hz, H-10_b); ¹³C NMR (100 MHz, CD₃OD): *δ* 132.4 (C-2), 125.8 (C-3), 106.1 (C-4), 136.9 (C-5), 58.6 (C-6), 180.2 (C-7), 53.2 (C-8), 95.3 (C-9), 34.6 (C-10), 68.6 (C-11), 68.0 (C-12), 62.4 (C-13); ¹H NMR (400 MHz Acetone d_6): δ 9.46 (s, H-7), 6.97 (d, J = 4.0 Hz, H-3), 6.06 (d, J = 4.0 Hz, H-4), 4.92 (d, J = 16.0 Hz, H-6_a), 4.84 (d, J = 16.0 Hz, H-6_b), 4.57 (d, J = 14.0 Hz, H-8_a), 4.15 (dd, J = 12.0, 1.2 Hz, H-13_a), 3.93 (d, J = 14.0 Hz, H-8_b), 3.85 (m, H-11), 3.60 (br d, J = 12.0Hz, H-13_b), 3.56 (m, H-12), 2.27 (dd, J = 14.4, 4.0 Hz, H-10_a), 1.90 (dd, J = 14.4, 3.0 Hz, H-10_b); ¹H NMR (400 MHz, CDCl₃): δ 9.41 (s, H-7), 6.90 (d, J = 4.0 Hz, H-3), 6.00 (d, J = 4.0 Hz, H-4), 4.87 (d, J = 15.6 Hz, H-6_a), 4.82 (d, J = 15.6 Hz, H-6_b), 4.66 $(d, J = 14.0 \text{ Hz}, \text{H-8}_{a}), 4.14 \text{ (br } d, J = 11.6 \text{ Hz}, \text{H-13}_{a}), 3.99 \text{ (d}, J$ = 14.0 Hz, H-8_b), 3.95 (m, H-11), 3.70 (br d, J = 11.6 Hz, H-13_b), 3.72 (m, H-12), 2.27 (dd, J = 14.8, 4.0 Hz, H-10_a), 1.94 (dd, J =14.8, 2.4 Hz, H-10_b); (+) ESIMS m/z 254 [M+H]⁺; HREIMS m/z253.0952 [M]⁺ (calcd for $C_{12}H_{15}NO_5$, 253.0950, $\Delta = 0.8$ ppm).

Xylapyrroside B₁ (2a): colorless gum; $[α]^{22}_{D} + 225$ (*c* 0.1, MeOH); UV (MeOH) λ_{max} (log ε) 255 (0.85), 296 (2.54) nm; IR (film) ν_{max} : 3364, 1644, 1468, 1035 cm⁻¹; ¹H NMR (600 MHz, CD₃OD): δ 9.39 (s, H-7), 7.04 (d, *J* = 4.1 Hz, H-3), 6.08 (d, *J* = 4.1 Hz, H-4), 5.00 (d, *J* = 15.6 Hz, H-6_a), 4.83 (d, *J* = 15.6 Hz, H-6_b), 4.75 (d, *J* = 14.0 Hz, H-8_b), 4.14 (ddd, *J* = 6.9, 4.2, 2.9 Hz, H-11), 4.27 (d, *J* = 14.0 Hz, H-8_b), 4.14 (ddd, *J* = 6.8, 4.4, 4.2 Hz, H-12), 3.83 (dd, *J* = 12.0, 4.4 Hz, H-13_a), 3.78 (dd, *J* = 12.0, 6.8 Hz, H-13_b), 2.56 (dd, *J* = 14.5, 6.8 Hz, H-10_a), 2.08 (dd, *J* = 14.5, 2.9 Hz, H-10_b); ¹³C NMR (150 MHz, CD₃OD): δ 132.4 (C-2), 126.1 (C-3), 106.1 (C-4), 137.5 (C-5), 59.2 (C-6), 180.2 (C-7), 52.7 (C-8), 103.6 (C-9), 47.5 (C-10), 72.1 (C-11), 84.6 (C-12), 61.8 (C-13); (+) ESIMS *m*/*z* 254 [M+H]⁺; HREIMS *m*/*z* 253.0951 [M]⁺ (calcd for C₁₂H₁₅NO₅, 253.0950, Δ = 0.4 ppm).

(R)-4-((S)-1-(Benzyloxy)but-3-en-1-yl)-2,2-dimethyl-1,3-

dioxolane (15): To a stirred solution of alcohol 10 (5.0 g, 29.1 mmol) in anhydrous DMF (50 mL) at 0 °C was added sodium hydride (2.55 g, 64.0 mmol) in two portions and stirred for 30 min, then benzyl bromide (5.2 mL, 43.6 mmol) was added dropwise at the same temperature. After being stirred for 1h at 0-5 °C, the mixture was poured into crushed ice and stirred until the ice disappear. The resulting mixture was extracted with EtOAc (3 \times 100 mL) and the combined organic layers were washed with brine, dried over MgSO₄, filtrated and concentrated. The residue was purified by flash chromatography on silica gel (PE/EtOAc = 40/1) to give 15 (6.1 g, 80%) and epi-15 (0.7 g, 9.2%). **15** (major product): $[\alpha]^{22}_{D} = +14.6$ (*c* 0.1, CHCl₃); IR (film) v_{max}: 2975, 1463, 1254, 1210, 909, 734, 684 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.45–7.29 (m, 5H), 5.97 (ddt, J = 17.2, 10.1, 7.1 Hz, 1H), 5.22 (dq, J = 17.2, 1.5 Hz, 1H), 5.17 (br d, J = 10.2 Hz, 1H), 4.72 (d, J = 11.4 Hz, 1H), 4.65 (d, J = 11.4 Hz, 1H), 4.17 (ddd, J = 6.4, 6.3, 5.9 Hz, 1H), 4.10 (dd, J = 8.1, 6.3 Hz, 1H), 3.96 (dd, J = 8.1, 6.4 Hz, 1H), 3.64 (dd, J = 10.8, 5.9 Hz, 1H), 2.50 (m, 1H), 2.41 (m, 1H), 1.49 (s, 3H), 1.42 (s, 3H) ppm; 13 C NMR (100 MHz, CDCl₃): δ 138.4, 134.2, 128.3 (2C), 127.8, 127.6 (2C), 117.5, 109.0, 78.9, 77.2, 72.5, 66.4, 35.6, 26.7, 25.4 ppm; (+) HRESIMS m/z 285.1456 [M+Na]⁺ (calcd for $C_{16}H_{22}O_3Na$, 285.1461, $\Delta = -1.7$ ppm).

(2*R*,3*S*)-3-(Benzyloxy)hex-5-ene-1,2-diol (16): To a solution of 15 (1.0 g, 3.8 mmol) in CH_2Cl_2 (10 mL) was dropped 60% trifluoroacetic acid (5 mL) at 0 °C and stirred for 2h. Then the reaction was carefully quenched with saturated aqueous NaHCO₃ solution and the solvent was removed in vacuo. The aqueous

layer was extracted with EtOAc (4 × 30 mL) and the combined organic layers were washed with brine, dried over MgSO₄, filtrated and concentrated. The residue was purified by flash chromatography on silica gel (PE/EtOAc = 2/1) to produce diol **16** (0.75 g, 88%) as a colorless oil. $[\alpha]^{22}_{D} = -5.6$ (*c* 0.1, CHCl₃); IR (film) v_{max}: 3324, 2888, 1651, 1467, 1359, 1113, 842 cm⁻¹, ¹H NMR (400 MHz, CDCl₃): δ 7.41–7.29 (m, 5H), 5.92 (ddt, *J* = 17.2, 10.2, 7.1 Hz, 1H), 5.19 (dq, *J* = 17.2, 1.5 Hz, 1H), 5.14 (br d, *J* = 10.2 Hz, 1H), 4.65 (d, *J* = 11.4 Hz, 1H), 4.55 (d, *J* = 11.4 Hz, 1H), 3.88–3.65 (m, 5H), 3.56 (m, 1H), 2.45 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 138.1, 134.4, 128.4 (2C), 127.9, 127.8 (2C), 117.6, 79.9, 72.7, 72.3, 63.5, 34.9 ppm; (+) HRESIMS *m*/*z* 245.1157 [M+Na]⁺ (calcd for C₁₃H₁₈O₃Na, 245.1154, Δ = 1.2 ppm).

(2R,3S)-3-(Benzyloxy)-1-((tert-butyldimethylsilyl)oxy)hex-5-

en-2-ol (17): To a stirred solution of diol 16 (6.0 g, 27 mmol) and dimethylaminopyridine (0.82 g, 6.75 mmol) in dry CH₂Cl₂ (100 mL) was continuously added triethylamine (7.5 mL, 81 mmol) and tert-butyldimethylsilyl chloride (4.95 g, 32.4 mmol) at 0 °C. After stirring for overnight at r.t., the reaction was quenched with water and separated. The aqueous layer was extracted with CH_2Cl_2 (3× 100 mL) and the combined organic layers were washed with a solution of 1M KHSO₄ and brine. Dried, filtrated and concentrated, the residual oil was purified by column chromatography on silica gel (PE/EtOAc = 8/1) to generate 17 (7.7 g, 85%) as a colorless oil. $[\alpha]_{D}^{22} = -12.3$ (c 0.05, CHCl₃); IR (film) v_{max}: 3301, 2915, 2849, 2367, 1249, 1079, 832 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ7.37–7.29 (m, 5H), 5.94 (ddt, J = 17.2, 10.2, 7.1 Hz, 1H), 5.17 (br d, J = 17.2 Hz, 1H),5.10 (br d, J = 10.2 Hz, 1H), 4.65 (d, J = 11.6 Hz, 1H), 4.53 (d, J = 11.6 Hz, 1H), 3.77 (m, 1H), 3.70 (m, 2H), 3.53 (m, 1H), 2.47 (m, 2H), 0.91 (s, 9H), 0.08 (s, 6H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 138.3, 134.8, 128.4 (2C), 127.9 (2C), 127.7, 117.3, 80.5, 73.8, 72.8, 64.0, 35.6, 25.8 (3C), 18.0, -4.4, -4.6 ppm; (+) HRESIMS m/z 359.2019 $[M+Na]^+$ (calcd for C₁₉H₃₂O₃SiNa, 359.2018, $\Delta = 0.3$ ppm).

(((2R,3S)-2,3-Bis(benzyloxy)hex-5-en-1-yl)oxy)(tert-butyl)

dimethylsilane (18): To a stirred solution of alcohol 17 (7.5 g, 22.3 mmol) in anhydrous DMF (80 mL) was added sodium hydride (1.82 g, 44.6 mmol) in three portions at 0 °C and stirred for 30 min. Then benzyl bromide (4.13 mL, 26.8 mmol) was added dropwise and the reaction was stirred for 1h at 0-5 °C. The resulting mixture was poured into ice water. The aqueous layer was extracted with EtOAc (3× 150 mL) and the combined organic layers were washed with water, brine, dried over MgSO₄, filtrated and concentrated. The residual oil was purified by column chromatography on silica gel (PE/EtOAc = 40/1) to afford **18** (8.5 g, 90%) as a colorless oil. $[\alpha]_{D}^{22} = -29.1$ (c 0.06, CHCl₃); IR (film) v_{max}: 2931, 2854, 2359, 2334, 1095, 832, 695 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.37–7.28 (m, 10H), 5.90 (ddt, J = 17.2, 10.1, 7.1 Hz, 1H), 5.12 (br d, J = 17.2 Hz, 1H), 5.06 (br d, J = 10.1 Hz, 1H), 4.76 (d, J = 11.8 Hz, 1H), 4.65 (d, J = 11.8 Hz, 1H),4.60 (s, 2H), 3.86 (dd, J = 10.9, 4.2 Hz, 1H), 3.79 (dd, J = 10.9, 5.3 Hz, 1H), 3.68 (m, 1H), 3.60 (ddd, J = 5.6, 5.3)4.2 Hz, 1H), 2.45 (m, 2H), 0.92 (s, 9H), 0.07 (s, 6H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ138.8, 138.6, 135.4, 128.3 (4C), 127.9 (2C), 127.8 (2C), 127.5, 127.4, 116.9, 80.9, 78.5, 72.7, 72.2, 62.8, 35.0, 25.9×3, 18.3, -5.3, -5.4 ppm; (+) HRESIMS *m/z* 449.2487 $[M+Na]^+$ (calcd for C₂₆H₃₈O₃SiNa, 449.2488, $\Delta = -0.2$ ppm).

((2R,3S)-2,3-Bis(benzyloxy)-4-(oxiran-2-yl)butoxy)(tert-

butyl)dimethylsilane (19): To a stirred solution of the TBS protected compound **18** (4.6 g,10.7 mmol) in dry CH_2Cl_2 (50mL) was added *m*-CPBA (3.2 g, 12.8 mmol) in one portion at 0 °C.

After being stirred for overnight at r.t., the reaction was quenched with saturated aqueous NaHSO₃ solution and stirred for another 10min. The resulting mixture was separated and the aqueous layer was extracted with CH_2Cl_2 (3 × 100 mL). The combined organic layers were washed with saturated aqueous NaHCO₃ solution and brine. Dried over MgSO₄, filtrated and concentrated, the residue was purified by flash chromatography on silica gel (PE/EtOAc = 20/1) to give the corresponding epoxide as an inseparable epimeric mixture of **19a** and **19b** (3.6 g, 75%; dr =2:1). Colorless oil; $[\alpha]_{D}^{22} = +10.9$ (*c* 0.05, CHCl₃); IR (film) v_{max}: 2926, 2854, 1380, 1256, 1210, 1106, 778 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) data assignable to **19a**: δ 7.37-7.29 (m), 4.73 (d, J = 11.4 Hz), 4.57 (d, J = 11.4 Hz), 4.58-4.48 (m), 4.00 (m), 3.79 (ddd, J = 9.6, 3.1, 3.0 Hz), 3.50 (d, J = 5.2 Hz), 3.07 (m), 2.79 (dd, J = 4.7, 4.2 Hz), 2.51 (dd, J = 5.2, 2.7 Hz), 1.89 (ddd, J =14.3, 9.6, 4.4 Hz), 1.57 (ddd, J = 14.3, 7.3, 3.0 Hz), 0.89 (s), 0.07 (s), 0.06 (s) ppm; **19b**: δ 7.37–7.29 (m), 4.66 (d, J = 11.6 Hz), 4.58–4.48 (m), 4.50 (d, J = 12.4 Hz), 4.00 (m), 3.70 (m), 3.53 (d, J = 5.2 Hz), 3.07 (m), 2.79 (dd, J = 4.6, 4.4 Hz), 2.42 (dd, J =5.0, 2.7 Hz), 1.99 (ddd, J = 14.3, 7.6, 5.1 Hz), 1.65 (ddd, J =14.3, 6.1, 3.9 Hz), 0.90 (s), 0.08 (s), 0.07 (s) ppm;¹³C NMR (100 MHz, CDCl₃): δ138.6, 138.5, 138.2, 128.3 (2C) 127.9, 127.8, 127.7 (2C), 127.6, 78.6, 78.4, 73.3, 73.2, 73.1, 72.8, 72.2, 71.8, 71.7, 50.3, 50.2, 47.9, 47.0, 34.1, 33.6, 25.9, 18.2, -4.5, -4.8 ppm;(+) HRESIMS m/z 465.2428 [M+Na]⁺ (calcd for $C_{26}H_{38}O_4SiNa, 465.2437, \Delta = -1.9 \text{ ppm}$).

(4S,5R)-4,5-Bis(benzyloxy)-6-((tert-butyldimethylsilyl)oxy)-1iodohexan-2-ol (20): To a solution of epoxide 19 (2.0 g, 4.5 mmol) and cerium chloride heptahydrate (2 g, 5.4 mmol) in CH₃CN (20 mL) was added sodium iodide (0.81 g, 5.4 mmol). After stirring for 5 h, the mixture was concentrated in vacuo to give crude product, which was purified by flash chromatography on silica gel (PE/EtOAc = 15/1) to give **20** (2.1 g, 80%; dr = 2:1) as colorless oil. $[\alpha]_{D}^{22} = +12.5$ (*c* 0.075, CHCl₃); IR (film) v_{max} : 3331, 2926, 2849, 1463, 1260, 1057, 827 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ7.46-7.30 (m, 10H), 4.81-4.68 (m, 2H), 4.61-4.52 (m, 2H), 4.13 (ddd, J = 6.0, 5.8, 2.4 Hz, 0.34H), 4.09 (ddd, J= 5.2, 5.0, 3.2 Hz, 0.66H), 4.00-3.87 (m, 1H), 3.86-3.72 (m, 2H), 3.57-3.52 (m, 1H), 3.31-3.16 (m, 2H), 2.03-1.73 (m, 2H), 0.96-0.94 (9H), 0.14-0.10 (6H) ppm; 13 C NMR (100 MHz, CD₃OD): δ 140.1, 139.7, 129.4, 129.3, 129.0, 128.9, 128.8, 128.7, 128.6, 79.4, 74.8, 74.4, 74.0, 73.2, 68.9, 38.9, 38.5, 26.4, 19.1, 14.9, -4.3, -4.4, -5.1 ppm; (+) HRESIMS m/z 593.1562 [M+Na]⁺ (calcd for $C_{26}H_{39}IO_4SiNa$, 593.1565, $\Delta = -0.5$ ppm).

(4S,5R)-4,5-Bis(benzyloxy)-6-((tert-butyldimethylsilyl)oxy)-1iodohexan-2-one (21): Alcohol 20 (2.0 g, 3.5 mmol) was dissolved in dry CH₂Cl₂ (20 mL) at 0 °C then, DMP (2.98 g, 7.0 mmol) was added in one portion and the mixture was stirred for 3h. A mixture of saturated aqueous NaHCO3 and Na2S2O3 solution (V/V = 50:50) was carefully dropped and the resulting mixture was stirred until turned to clear. The organic layer was separated and the aqueous layer was extracted with CH_2Cl_2 (2 × 100 mL). The combined organic layers were washed with brine, dried over MgSO₄, filtrated and concentrated to give crude aldehyde, which was purified by flash chromatography on silica gel (PE/EtOAc = 8/1) to produce ketone 21 (1.8 g, 90%) as a colorless oil. $[\alpha]_{D}^{22} = +9.9$ (c 0.139, CHCl₃); IR (film) v_{max} : 3441, 2942, 2843, 1720, 1375, 1095, 843 cm⁻¹; ¹H NMR (400 MHz, CD₃OD): δ 7.40-7.28 (m, 10H), 4.72 (d, J = 11.8 Hz, 1H), 4.63 (d, J = 11.8 Hz, 1H), 4.59 (s, 2H), 4.19 (m, 1H), 4.09 (m, 1H), 3.91 (s, 2H), 3.79 (dd, J = 10.6, 5.2 Hz, 1H), 3.65 (dd, J = 10.6, 6.1Hz, 1H), 3.09 (dd, J = 16.6, 8.2 Hz, 1H), 2.99 (dd, J = 16.6, 3.7 Hz, 1H), 0.93 (s, 9H), 0.08 (s, 3H), 0.07 (s, 3H) ppm; ¹³C NMR (100 MHz, CD₃OD): δ 203.7, 139.9, 139.6, 129.4, 129.3, 129.1, 129.0, 128.8, 128.7, 81.9, 77.2, 73.7, 73.6, 63.3, 41.7,

26.4, 19.1, 7.8, -5.3, -5.3 ppm; (+) HRESIMS m/z 591.1408 [M+Na]⁺ (calcd for C₂₆H₃₇IO₄SiNa, 591.1404, $\Delta = 0.7$ ppm).

1-((4S,5R)-4,5-Bis(benzyloxy)-6-((tert-butyldimethylsilyl)oxy)-2-oxohexyl)-5-(((tetrahydro-2H-pyran-2-yl)oxy)methyl)-1Hpyrrole-2-carbaldehyde (22): To a solution of potassium carbonate (0.48 g. 3.5 mmol) and compound 7 (0.73 g, 3.5 mmol) in DMF (20 mL) was treated with a solution of ketone 21 (2 g, 3.5 mmol) in DMF (5 mL). After stirring for 6 h, the resulting mixture was poured into water and extracted with EtOAc (3×50 mL). The combined organic layers were washed with brine, dried over MgSO₄, filtrated and concentrated. The residual oil was purified by column chromatography on silica gel (PE/EtOAc = 10/1) to give 22 (1.9 g, 87%, dr = 2.1) as a colorless oil. $[\alpha]_{D}^{22} =$ +27.6 (c 0.033, CHCl₃); IR (film) v_{max}: 3339, 2936, 2849, 1654, 1386, 1024, 832 cm⁻¹; ¹H NMR (400 MHz, MHz, CD₃OD): 9.44 (s, 0.5H), 9.43 (s, 0.5H), 7.37-7.25 (m, 10H), 7.03 (d, *J* = 4.0 Hz, 1H), 6.33 (dd, J = 4.0 Hz, 0.5H), 6.32 (dd, J = 4.0 Hz, 0.5H), 5.31 (d, J = 16.4, Hz, 1H), 5.27 (d, J = 16.4 Hz, 1H), 4.65-4.40 (m, 7H), 4.12 (m, 1H), 4.06 (m, 1H), 3.79 (m, 1H), 3.54-3.43 (m, 3H), 2.91-2.73 (m, 2H), 1.69-1.33 (m, 6H), 0.91 (s, 9H), 0.09-0.06 (Si(CH₃)₂, 6H) ppm; ¹³C NMR (100 MHz, CD₃OD): δ205.3, 205.3, 181.5, 140.9, 139.9, 139.6, 134.3, 129.4, 129.2, 128.9, 128.7, 128.5, 125.4, 112.9, 112.8, 98.9, 98.8, 78.1, 78.0, 74.4, 74.0, 73.9, 73.7, 73.7, 72. 8, 63.6, 63.5, 60.6, 56.4, 41.9, 31.4, 26.4, 20.5, 20.4, 19.0, -4.4, -4.4 ppm; (+) HRESIMS m/z 672.3348 $[M+Na]^+$ (calcd for C₃₇H₅₁NO₇SiNa, 672.3333, $\Delta = 2.2$ ppm).

(2S,4S,5R)-4,5-Bis(benzyloxy)-1',3,4,4',5,6-hexahydrospiro

[pyran-2,3'-pyrrolo[2,1-c][1,4]oxazine]-6'-carbaldehyde (23): To ketone 22 (0.8 g, 1.2 mmol) in THF (10 mL) was treated with 4N HCl (1.3 mL, 4.9 mmol) at 0 °C. After being stirred for 4 h, the reaction was carefully neutralized with a saturated aqueous NaHCO₃ solution and the resulting mixture was extracted with EtOAc (4×50 mL). The combined organic extracts were washed with brine, dried over MgSO4, filtrated and concentrated. The residue was purified by flash chromatography on silica gel (PE/EtOAc = 8:1) to obtain 23 (0.53 g, 86%) as a colorless oil. $[\alpha]_{D}^{22} = +48.8 \ (c \ 0.025, \text{CHCl}_3); \text{ IR (film) } v_{\text{max}}: 3408, 2915, 2843,$ 1652, 1095, 1051, 684cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 9.45 (s, 1H), 7.45-7.30 (m, 10H), 6.91 (d, J = 4.1 Hz, 1H), 5.98 (d, J = 4.1 Hz, 1H), 4.77 (d, J = 16.0 Hz, 1H), 4.78-4.68 (m, 4H), 4.56 (d, J = 12.1 Hz, 1H), 4.55 (d, J = 12.1 Hz, 1H), 4.02 (d, J = 14.0 Hz, 1H), 3.98 (ddd, *J* = 12.4, 4.8, 2.8 Hz, 1H), 3.95 (dd, *J* = 12.4, 2.4 Hz, 1H), 3.74 (br s, 1H), 3.56 (dd, J = 12.4, 0.8 Hz, 1H), 2.29 (dd, *J* = 12.4, 12.2 Hz, 1H), 2.07 (dd, *J* = 12.4, 4.8 Hz, 1H) ppm; ³C NMR (100 MHz, CDCl₃): δ 178.7, 138.4, 138.3, 134.2, 131.1, 128.4, 128.4, 127.8, 127.7, 127.6, 127.4, 123.8, 104.6, 95.7, 72.8, 71.3, 71.0, 70.2, 62.5, 57.7, 52.4, 33.6 ppm; (+) HRESIMS m/z 456.1762 $[M+Na]^+$ (calcd for $C_{26}H_{27}NO_5Na$, 456.1781, $\Delta = -4.2$ ppm).

Xylapyrroside A (1) (Method 2): According to a known procedure, ⁸ a solution of compound **23** (0.25 g, 0.6 mmol) in CH₂Cl₂ (30 mL) was carefully treated with TiCl₄ at -78 °C for 40 h. Then the reaction was quenched with saturated aqueous NaHCO₃ solution and allowed to warm to room temperature. After removing solvent, the resulting mixture was extracted with EtOAc (4 × 20 mL) and the combined organic layers were washed with brine. Dried, filtrated and concentrated, the residue was purified by flash chromatography on silica gel (CH₂Cl₂/MeOH = 40/1) to give xylapyrroside A (1, 0.1 g, 70%) as an off-white solid. The spectral data of the synthetic **1** were identical to the reported data of natural product.

(2*R*,3*S*)-1,3-Bis(benzyloxy)hex-5-en-2-ol (24): Compound 16 (7 g, 3.1 mmol) in THF (20 mL) was treated with NaH (1.89 g, 4.7

mmol) at 0 °C for 30 min, then benzyl bromide (3.77 mL, 3.1 M mmol) was added dropwise at the same temperature and the reaction was stirred for 3h. The mixture was poured into ice water, and extracted with EtOAc (3 \times 200 mL). The combined organic layers were washed with brine, dried over MgSO₄, filtrated and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (PE/EtOAc = 5/1) to give 24 (7.0 g, 75%) as a colorless oil. $[\alpha]_{D}^{22} = +21.2$ (c 0.07, CHCl₃); IR (film) v_{max}: 3435, 2936, 2849, 1452, 1079, 1030, 750 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.41-7.29 (m, 10H), 5.96 (ddt, J = 17.2, 10.1, 7.1 Hz, 1H), 5.18 (dq-like, J =17.2, 2.0 Hz, 1H), 5.13 (dq-like, J = 10.1, 2.0 Hz, 1H), 4.65 (d, J= 11.4 Hz, 1H), 4.57 (s, 2H), 4.54 (d, J = 11.4 Hz, 1H), 3.92 (ddd, J = 6.5, 6.4, 3.5 Hz, 1H), 3.69 (dd, J = 9.6, 3.5 Hz, 1H),3.63 (dd, *J* = 9.6, 6.5 Hz, 1H), 3.60 (m, 1H), 2.47 (m, 2H) ppm; ^{13}C NMR (100 MHz, CDCl₃): δ 138.3, 137.9, 134.6, 128.4 (2C), 128.3 (2C), 127.8 (4C), 127.7, 127.6, 117.3, 79.1, 73.4, 72.2, 71.5, 71.0, 34.7 ppm; (+) HR-ESIMS m/z 335.1614 [M+Na]⁺ (calcd for $C_{20}H_{24}O_3Na$, 335.1623, $\Delta = -2.7$ ppm).

(((2R,3S)-1,3-Bis(benzyloxy)hex-5-en-2-yl)oxy)(tert-

butyl)dimethylsilane (25): The title compound was synthesized from alcohol 24 (3.7 g,11.8 mmol) through the above procedure. Product 25 (4.1 g, 82%) was obtained as colorless oil. $[\alpha]_{D}^{22} =$ +51.2 (c 0.025, CHCl₃); IR (film) v_{max}: 3065, 2923, 2849, 1463, 1254, 816, 728 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.37-7.28 (m, 10H), 5.90 (ddt, J = 17.2, 10.1, 7.1 Hz, 1H), 5.12 (br d, J =17.2 Hz, 1H), 5.06 (br d, J = 10.1 Hz, 1H), 4.63 (d, J = 11.6 Hz, 1H), 4.57 (d, J = 11.6 Hz, 1H), 4.55 (d, J = 12.1 Hz, 1H), 4.51 (d, J = 12.1 Hz, 1H), 3.94 (dd, J = 9.6, 4.6 Hz, 1H), 3.61 (dd, J =9.7, 4.1 Hz, 1H), 3.60 (m, 1H), 3.56 (dd, J = 9.7, 5.5 Hz, 1H), 2.38 (m, 2H), 0.91 (s, 9H), 0.09 (s, 3H), 0.08 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 138.8, 138.4, 135.6, 128.3 (2C), 128.2 (2C), 127.8 (2C), 127.7 (2C), 127.5, 127.4, 116.8, 80.4, 73.5, 73.4, 72.6, 72.0, 35.3, 25.9 (3C), 18.2, -4.4, -4.7 ppm; (+) HRESIMS m/z 449.2489 [M+Na]⁺ (calcd for $C_{26}H_{38}O_3SiNa$, 449.2488, $\Delta = 0.2$ ppm).

(((2R,3S)-1,3-Bis(benzyloxy)-4-(oxiran-2-yl)butan-2-

yl)oxy)(tert-butyl)dimethylsilane (26): The title compound was prepared from compound 25 (3.9 g,9.2 mmol) according to the above procedure. Product 26 (3.0 g, 75%) was obtained as an inseparable mixture of epimers 26a and 26b (dr = 5:2). Colorless oil; $[\alpha]_{D}^{22} = -18.9$ (c 0.037, CHCl₃); IR (film) v_{max}: 2947, 2854, 1382, 1249, 1073, 1041, 800 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) data of **26a**: δ 7.36-7.28 (m), 4.74 (d, J = 12.0 Hz), 4.67 (d, J =9.6 Hz), 4.64 (d, J = 9.6 Hz), 4.59 (d, J = 12.0 Hz), 3.81 (m), 3.71 (m), 3.58 (m), 2.99 (m), 2.76 (dd, J = 4.8, 4.0 Hz), 2.49 (dd, *J* = 4.8, 2.4 Hz), 1.80 (m), 1.65 (ddd, *J* = 14.3, 7.2, 3.6 Hz), 0.90 (s), 0.06 (s), 0.05 (s) ppm; **26b**: δ 7.36-7.28 (m), 4.78 (d, J = 12.0 Hz), 4.60 (d, J = 12.0 Hz), 4.58 (d, J = 9.6 Hz), 4.56 (d, J = 9.6Hz), 3.81 (m), 3.71 (m), 3.63 (m), 2.89 (m), 2.64 (dd, J = 4.8, 4.4 Hz), 2.39 (dd, J = 5.0, 2.8 Hz), 1.83 (m), 1.65 (ddd, J = 14.3, 7.2, 3.6 Hz), 0.90 (s), 0.06 (s), 0.05 (s) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 138.6, 138.4, 138.2, 128.3, 128.3, 127.8, 127.8, 127.7, 127.6, 127.6, 127.5, 78.6, 78.4, 73.3, 73.2, 73.1, 72.7, 72.2, 71.8, 71.7, 50.2, 50.1, 47.8, 47.0, 34.1, 33.6, 25.9, 18.1, -4.5, -4.8 ppm; (+) HRESIMS m/z 465.2448 $[M+Na]^+$ (calcd for $C_{26}H_{38}O_4SiNa$, 465.2437, $\Delta = 2.4$ ppm).

(4*S*,5*R*)-4,6-Bis(benzyloxy)-5-((*tert*-butyldimethylsilyl)oxy)-1iodohexan-2-ol (27): The title compound was prepared from epoxide 26 (1.6 g, 3.6 mmol) according to the above procedure. Product 27 (1.7 g, 80%; dr = 3:1) was obtained as an inseparable mixture of epimers 27a and 27b. Colorless oil; $[\alpha]_{D}^{22} = +25.3$ (*c* 0.03, CHCl₃); IR (film) v_{max}: 3413, 2936, 2854, 2361, 1380, 1030, 673 cm⁻¹; ¹H NMR (400 MHz, CD₃OD) data of 27a: δ 7.387.25 (m), 4.71 (d, J = 12.0 Hz), 4.68 (d, J = 12.0 Hz), 4.65 (d, J =11.2 Hz), 4.56 (d, J = 11.2 Hz), 3.94 (ddd, J = 10.1, 2.8, 2.6 Hz), 3.76 (m), 3.64 (m), 3.51 (m), 3.30 (dd, J = 10.1, 5.6 Hz), 3.24(dd, J = 10.1, 5.6 Hz), 1.92 (ddd, J = 14.0, 10.4, 2.8 Hz), 1.64(ddd, J = 14.4, 9.7, 2.3 Hz), 0.92 (s), 0.08 (s), 0.07 (s) ppm; 27b: δ 7.38-7.25 (m), 4.65 (d, J = 11.6 Hz), 4.52 (s), 4.47 (d, J = 11.6Hz), 4.12 (ddd, J = 6.1, 5.9, 2.8 Hz), 3.76 (m), 3.74 (m), 3.61 (m), 3.18 (dd, J = 10.4, 4.0 Hz), 2.98 (dd, J = 10.4, 5.2 Hz), 1.84 (ddd, J = 14.4, 8.5, 6.0 Hz), 1.74 (ddd, J = 14.4, 6.8, 4.0 Hz),0.93 (s), 0.11 (s), 0.09 (s) ppm;¹³C NMR (100 MHz, CD₃OD) data of **27a**: δ 140.1, 140.0, 129.4, 129.3, 129.0, 128.7, 128.6, 82.6, 77.8, 73.9, 73.7, 68.9, 63.8, 39.2, 26.4, 19.1, 15.0, -5.2 ppm; **27b**: δ 139.7, 139.6, 129.4, 129.3, 129.0, 128.8, 128.7, 78.7, 74.4, 72.9, 72.6, 68.9, 63.8, 38.1, 26.4, 19.1, 14.9, -4.4 ppm.(+) HRESIMS m/z 593.1542 [M+Na]⁺ (calcd for $C_{26}H_{39}IO_4SiNa$, 593.1560, $\Delta = -3.0$ ppm).

(4*S*,5*R*)-4,6-Bis(benzyloxy)-5-((*tert*-butyldimethylsilyl)oxy)-1iodohexan-2-one (28): The title compound was furnished from alcohol 27 (1.4 g, 2.5 mmol) according to the above procedure. Product 28 (1.28 g, 90%) was obtained as a colorless oil. $[α]^{22}_{D} =$ +46.0 (*c* 0.03, CHCl₃); IR (film) v_{max}: 3397, 2926, 2367, 1384, 1090, 805, 657 cm⁻¹; ¹H NMR (400 MHz, CD₃OD): δ 7.36-7.27 (m, 10H), 4.62 (d, *J* = 11.2 Hz, 1H), 4.52 (s, 2H), 4.52 (d, *J* = 11.2 Hz, 1H), 4.12-4.04 (m, 2H), 3.90 (s, 2H), 3.51 (dd, *J* = 10.1, 5.6 Hz, 1H), 2.93 (dd, *J* = 16.6, 3.7 Hz, 1H), 0.92 (s, 9H), 0.10 (s, 3H), 0.08 (s, 3H) ppm; ¹³C NMR (100 MHz, CD₃OD): δ 203.9, 139.7, 139.5, 129.4 (2C), 129.3 (2C), 129.1 (2C), 129.0 (2C), 128.7, 128.6, 78.6, 74.3, 73.9, 73.7, 72.7, 41.1, 26.4 (3C), 19.0, 7.7, -4.4 (2C) ppm; (+) HRESIMS *m*/z 591.1415 [M+Na]⁺ (calcd for C₂₆H₃₇O₄SiNa, 591.1398, Δ = 2.9 ppm).

$\label{eq:constraint} \begin{array}{l} 1-((4S,5R)-4,6-Bis(benzyloxy)-5-((\textit{tert-butyldimethylsilyl)oxy})-2-oxohexyl)-5-(((\textit{tertahydro-}2H-pyran-2-yl)oxy)methyl)-1H-\\ \end{array}$

pyrrole-2-carbaldehyde (29): The title compound was synthesized from ketone 28 (1.1 g, 1.9 mmol) using the above procedure. Product 29 (1.1 g, 87%; dr = 1:1) was obtained as a colorless oil. $[\alpha]_{D}^{22} = +3.6 (c \ 0.05, \text{CHCl}_3); \text{ IR (film) } v_{\text{max}}: 3408,$ 2926, 2843, 1665, 1446, 1386, 1024 cm⁻¹; ¹H NMR (400 MHz, CD₃OD): δ 9.44 (s, 0.5H), 9.43 (s, 0.5H), 7.37-7.25 (m, 10H), 7.03 (d, J = 4.0 Hz, 1H), 6.33 (dd, J = 4.0 Hz, 0.5H), 6.32 (dd, J= 4.0 Hz, 0.5H), 5.37-5.18 (m, 2H), 4.72-4.40 (m, 7H), 4.26-3.61 (m, 3H), 3.53-3.44 (m, 3H), 2.97-2.73 (m, 2H), 1.75-1.37 (m, 6H), 0.91 (SiC(CH₃)₃, 9H), 0.09-0.06 (Si(CH₃)₂, 6H) ppm; ¹³C NMR (100 MHz, CD₃OD): δ 205.3, 205.1, 181.5, 141.0, 139.9, 139.6, 134.3, 134.2, 129.4, 129.3, 129.2, 129.0, 128.9, 128.9, 128.7, 128.5, 125.4, 112.9, 112.8, 98.9, 98.7, 78.5, 78.0, 74.4, 74.1, 74.0, 73.7, 73.6, 72.8, 60.6, 56.4, 42.0, 31.4, 26.4, 20.6, 20.5, 19.0, -4.3, -4.4, -5.2 ppm; (+) HRESIMS m/z 672.3323 $[M+Na]^+$ (calcd for C₃₇H₅₁NO₇SiNa, 672.3332, $\Delta = -1.5$ ppm).

(4*S*,5*R*)-4-(Benzyloxy)-5-((benzyloxy)methyl)-1',4,4',5tetrahydro-3*H*-spiro[furan-2,3'-pyrrolo[2,1-c][1,4]oxazine]-

6'-carbaldehyde (30): The title compound was prepared from ketone **29** (0.9 g, 1.6 mmol) according to the above procedure. Product **30** (0.53 g, 86%) was obtained as a pair of epimers (**30a** and **30b**, dr = 2:1). Colorless oil; $[\alpha]^{22}_{D} = +33.6$ (*c* 0.05, CHCl₃); IR (film) v_{max} : 3463, 2920, 2849, 2361, 1656, 1035, 684 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) data of **30a**: δ 9.46 (s), 7.38-7.28 (m), 6.92 (d, J = 4.0 Hz), 6.01 (d, J = 4.0 Hz), 5.03 (d, J = 15.6 Hz), 4.68-4.38 (m), 4.37 (dd, J = 8.4, 4.4 Hz), 4.27 (d, J = 14.0 Hz), 4.10 (ddd, J = 7.9, 3.9, 2.0 Hz), 3.53 (dd, J = 10.8, 4.4 Hz), 3.49 (dd, J = 10.8, 4.4 Hz), 2.31 (dd, J = 14.2, 1.9 Hz), 2.20 (dd, J = 14.2, 8.0 Hz) ppm; **30b**: δ 9.44 (s), 7.38-7.28 (m), 6.91 (d, J = 4.0 Hz), 4.68-4.38 (m), 4.22 (d, J = 14.0

Hz), 3.82 (dd, J = 10.4, 4.8 Hz), 3.77 (dd, J = 10.4, 7.6 Hz), 2.47 (dd, J = 14.0, 1.8 Hz), 2.16 (dd, J = 14.0, 6.8 Hz) ppm; ¹³C NMR (100 MHz, CDCl₃) data of **30a**: δ 178.7, 137.8, 135.2, 131.1, 128.5, 127.9, 127.7, 127.6, 124.2, 104.8, 103.3, 84.8, 78.7, 73.5, 71.7, 70.0, 57.9, 51.0, 42.4 ppm; **30b**: δ 178.7, 138.0, 135.2, 131.0, 128.4, 127.9, 127.7, 127.6, 124.1, 104.7, 102.8, 83.0, 78.7, 73.4, 71.8, 69.4, 58.4, 51.6, 42.1ppm; (+) HRESIMS *m*/*z* 456.1787 [M+Na]⁺ (calcd for C₂₆H₂₇NO₅Na, 456.1781, Δ = 1.3 ppm).

Xylapyrroside B (2) and acortatarin A (4) (Method 2): According to a known procedure,¹⁹ a solution of compound **30** (0.52 g, 1.2 mmol) in CH₂Cl₂ (50 mL) was carefully treated with TiCl₄ at -78 °C for 40 h. Then the reaction was quenched with aqueous saturated NaHCO₃ solution and extracted with EtOAc (4 \times 30 mL). The combined organic extracts were washed with brine, dried over MgSO₄, filtrated and evaporated. The residue was purified by flash chromatography on silica gel (CH₂Cl₂/MeOH = 40/1) to afford compounds **2** (0.1 g, 32%) and **4** (0.11 g, 37%) as an off-white solid and exhibited physical and spectroscopic characteristics agreed to the natural products.

X-ray Crystal Data. Colorless crystals of 1 and 1a were both obtained in acetone. Crystal data were obtained on a Bruker APEX Duo CCD detector employing graphite monochromated Copper-K α radiation ($\lambda = 1.54178$ Å) at 140(2) K and operating in the ϕ/ω scan mode. The crystal structure was solved by direct method using the program SHELXS-97 and subsequent Fourier difference techniques, and was finally refined anisotropically by full-matrix least-squares on F2 using SHELXL-97. All nonhydrogen atoms were refined anisotropically. The hydrogen atom positions were geometrically idealized and allowed to ride on their parent atoms. Crystallographic data of 1 and 1a have been deposited at the Cambridge Crystallographic Data Centre (1: deposition No. CCDC-1029230; 1a: deposition No. CCDC-1029231). Copies of these data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB21EZ, UK. [fax: (+44) 1223-336-033; or email: deposit@ccdc.cam.ac.uk].

Xylapyrroside A (1): $C_{12}H_{15}NO_5$, M = 253.25, orthorhombic, *a* = 7.03200(10), *b* = 8.45490(10), *c* = 19.6634(4) Å, *a* = 90.00, β = 90.00, γ = 90.00 deg., V = 1169.08(3) Å³, T = 140(2) K, space group $P2_12_12_1$, Z = 4, 4329 reflections measured, 1986 independent reflections (R_{int} = 0.0274). The final R1 values were 0.0312 (I >2 σ (I)). The final R1 values were 0.0318 (all data). The final wR₂ values were 0.0807 (all data). The goodness fit on *F2* was 1.041. Flack parameter = 0.19(18). Crystallographic data of **1** have been deposited at the Cambridge Crystallographic Data Centre (deposition No. CCDC-1029230).

Xylapyrroside A₁ (1a): $C_{12}H_{15}NO_5$, M = 253.25, orthorhombic, a = 7.10980(10), b = 8.64620(10), c = 18.8598(4) Å, $\alpha = 90.00$, β = 90.00, $\gamma = 90.00$ deg., V = 1159.36(3) Å³, T = 140(2) K, space group $P2_12_12_1$, Z = 4, 7512 reflections measured, 2153 independent reflections ($R_{int} = 0.0463$). The final R1 values were 0.0288 (I >2 σ (I)). The final R1 values were 0.0290 (all data). The final wR₂ values were 0.0745 (all data). The goodness fit on F2 was 1.050. Flack parameter = -0.07(15). Crystallographic data of **1a** have been deposited at the Cambridge Crystallographic Data Centre (deposition No. CCDC-1029231).

4.4 Anti-oxidative stress assay

The inhibitory effects of the spiroalkaloids on oxidative stressinduced cellular damage were evaluated in A7r5 rat vascular smooth muscle cells (VSMC). The A7r5 cells, obtained from the American Type Culture Collection (Rockville, MD), were cultured (in DMEM containing 10% FBS, 100 U/mL

penicillin, and 100 µg/mL streptomycin in 5% CO₂ at 37°C. Cell viability was determined by conventional MTT assay.²⁹ Catechin hydrate (purity \ge 98%, Beyotime Biotechology, China) was used as a positive control.^{30a} In brief, A7r5 cells in 96-well plates were incubated with different concentrations of compounds (25, 50 and 100 µM) or catechin hydrate (50 and 100 µM) for 4 h, then stimulated with 200 µM of *tert*-Butyl hydroperoxide (tBHP, purity \ge 99%, Sigma-Aldrich) for 12 h. Cells were then incubated with MTT solution (0.5 mg/mL) in culture medium. After incubation at 37°C for 4 h, the culture medium containing MTT was removed. DMSO was then added into each well, and the absorbance at 570 nm was measured using a microplate reader (M1000, TECAN, Austria GmbH, Austria). Values were expressed as percentage of cell survival. Absorbance from tBHP-untreated cells was set at 100% (control group).

Acknowledgments

This work was supported by NSFC grants (No. 81273401, 81202420, 21472021), grants from the Ph.D. Programs Foundation of Ministry of Education (MOE) of China (No. 20120071110049, 20120071120049), and the National Basic Research Program of China (973 Program, Grant No. 2013CB530700). We also thank Zhejiang Jolly Pharmaceutical Company (ZJPC, Deqing County, China) for providing Wuling Powder and Ms. Jian Chen from ZJPC for the sample identification.

Supplementary data

Copies of NMR spectra, and X-ray crystal structure data are available as Supplementary data.

References and notes

- 1. Hu, J.-F.; Fan, H.; Xiong, J.; Wu, S.-B. Chem. Rev. 2011, 111, 5465– 5491.
- Fan, H.; Peng, J.-N.; Hamann, M. T.; Hu, J.-F. Chem. Rev. 2008, 108, 264–287.
- Yang, T.; Wang, C.-H.; Chou, G.-X.; Wu, T.; Cheng, X.-M.; Wang, Z.-T. Food Chem. 2010, 123, 705–710.
- Guo, J.-L.; Feng, Z.-M.; Yang, Y.-J.; Zhang, Z.-W.; Zhang, P.-C. Chem. Pharm. Bull. 2010, 58, 983–985.
- Tong, X.-G.; Zhou, L.-L.; Wang, Y.-H.; Xia, C.-F.; Wang, Y.; Liang, M.; Hou, F.-F.; Cheng, Y.-X. Org. Lett. 2010, 12, 1844–1847.
- 6. Jiang, D.-S.; Peterson, D. G. Food Chem. 2013, 141, 1345–1353.
- Zhao, Z.-F.; Zhou, L.-L.; Chen, X.; Cheng, Y.-X.; Hou, F.-F.; Nie, J. Chin. Med. J. 2013, 126, 1230–1235.
- Sudhakar, G.; Kadam, V. D.; Bayya, S.; Pranitha, G.; Jagadeesh, B. Org. Lett. 2011, 13, 5452–5455.
- 9. Wurst, J. M.; Verano, A. L.; Tan, D. S. Org. Lett. 2012, 14, 4442– 4445.
- Geng, H. M.; Chen, J. L.-Y.; Furkert, D. P.; Jiang, S.; Brimble, M. A. Synlett 2012, 23, 855–858.
- 11. Borrero, N. V.; Aponick, A. J. Org. Chem. 2012, 77, 8410-8416.
- Teranishi, T.; Kageyama, M.; Kuwahara, S. Biosci. Biotechnol. Biochem. 2013, 77, 676–678.
- Tang, Y.; Fu, Y.; Xiong, J.; Li, M.; Ma, G.-L.; Yang, G.-X.; Wei, B.-G.; Zhao, Y.; Zhang, H.-Y.; Hu, J.-F. J. Nat. Prod. 2013, 76, 1475–1484.
- Zang, Y.; Xiong, J.; Zhai, W.-Z.; Cao, L.; Zhang, S.-P.; Tang, Y.; Wang, J.; Su, J.-J.; Yang, G.-X.; Zhao, Y.; Fan, H.; Xia, G.; Wang, C.-G.; Hu, J.-F. *Phytochemistry* **2013**, *92*, 137–145.
- (a) Rogers, J. D.; Ju, Y.-M.; Lehmann, J. *Mycologia* 2005, 97, 914–923;
 (b) Ju, Y.-M.; Hsieh, H.-M. *Mycologia* 2007, 99, 936–957;
 (c) Ko, H.-J.; Song, A.; Lai, M.-N.; Ng, L.-T. J. Ethnopharmacol. 2011, 138, 762–768;
 (d) Song, A.;Ko, H.-J.; Lai, M.-N.; Ng, L.-T. *Immunopharm. Immunot.* 2011, 33, 454–460.

- (a) Zhao, Z.-Q.; Li, Y.-P.; Chen, H.-Y.; Huang, L.-Q.; Zhao,
 F.; Yu, Q.; Xiang, Z.-H.; Zhao, Z.-X. *Int. J. Clin. Exp. Med.* 2014, 7, 356–362; (b) Yang, X.-L.; Liu, J.-K.; Luo, D.-Q.; Zhang, S. *Nat. Prod. Res. Dev.* 2011, 23, 846–849.
- (a) Lin, Y.; Wang, X.-Y.; Ye, R.; Hu, W.-H.; Sun, S.-C.; Jiao, H.-J.; Song, X.-H.; Yuan, Z.-Z.; Zheng, Y.-Y.; Zheng, G.-Q.; He, J.-C. J. Ethnopharmacol. 2013, 145, 320–327; (b) Song, X.-H.; He, J.-C.; Zheng, T.-S.; Ye, R.; Yuan, Z.-Z. Chin. Arch. Trad. Chin. Med. 2010, 28, 477–478; (c) Yang, N.; Hao, W.-Y.; Liu, Y.-Y.; Ji, C.; Liang, Y.; Zuo, P.-P. Chin. J. Ethnomed. Ethnopharm. 2010, 5, 27–30; (d) Ma, Z.-Z.; Zuo, P.-P.; Chen, W.-R.; Tang, L.-J.; Shen, Q.; Sun, X.-H.; Shen, Y. Chin. Pharm. J. 1999, 34, 374–377;(e) Shi, L.-L.; Zhao, X.-H.; Wang, Y.; Zhang, J.; Zhang, H.-Y.; Wu, K.; Feng, B.; Wei, J. Chin. J. Neurol. 2009, 42, 776–779; (f) Chen, Y.; Lu, J.-X.; Zhu, M.; Luo, L. China J. Chin. Mater. Med. 2012, 37, 218–221.
- (a) Wu, G.-F. Acta Microbiol. Sin. 2001, 41, 363–366. (b) Gong, Q.-F.; Zhang, Y.-M.; Tan, N.-H.; Chen, Z.-H. China J. Chin. Mater. Med. 2008, 33, 1269–1272; (c) Lu, J.-X.;Zhu, M.; Chen, Y.; Zhang, P.; Fang, L. Chin. J. Pharm. Anal. 2011, 31, 764–767.
- Knizhnikov, V. A.; Borisova, N. E.; Yurashevich, N. Ya.; Popova, L. A.; Chernyad'ev, A. Yu. *Russian J. Org. Chem.* 2007, 43, 855–860.
- Chattopadhyay, A.; Vichare, P.; Dhotare, B. *Tetrahedron Lett.* 2007, 48, 2871–2873.
- 21. Link, J. T.; Raghavan, S.; Danishefsky, S. J. J. Am. Chem. Soc. 1995, 117, 552–553.
- 22. Gu, W.; Silverman, R. B. J. Org. Chem. 2011, 76, 8287-8293.
- O'Neil, G. W.; Ceccon, J.; Benson, S.; Collin, M.-P.; Fasching, B.; Fürstner, A. Angew. Chem. Int. Ed. 2009, 48, 9940–9945.

(a) Zhao, Z.-Q.; Li, Y.-P.; Chen, H.-Y.; Huang, L.-Q.; Zhao, 📈 24N Meimetis, L. G.; Williams, D. E.; Mawji, N. R.; Banuelos, C. A.; Lal,

- A. A.; Park, J. J.; Tien, A. H.; Fernandez, J. G.; De Voogd, N. J.; Sadar, M. D.; Andersen, R. J. J. Med. Chem. 2012, 55, 503–514.
- Arban, R.; Bianchi, F.; Buson, A.; Cremonesi, S.; Di Fabio, R.; Gentile, G.; Micheli, F.; Pasquarello, A.; Pozzan, A.; Tarsi, L.; Terreni, S.; Tonelli, F. *Bioorg. Med. Chem. Lett.* **2010**, *20*, 5044–5049.
- Reddy, C. R.; Srikanth, B.; Dilipkumar, U.; Rao, k. V. M.; Jagadeesh, B. Eur. J. Org. Chem. 2013, 525–532.
- Aho, J. E.; Pihko, P. M.; Rissa, T. K. Chem. Rev. 2005, 105, 4406– 4440.
- Dhalla, N. S.; Temsah, R. M.; Netticadan, T. J. Hypertens. 2000, 18, 655–673.
- Ishikado, A.; Sono, Y.; Matsumoto, M.; Robida-Stubbs, S.; Okuno, A.; Goto, M.; King, G. L.; Blackwell, T. K.; Makino, T. *Free Radic. Biol. Med.* 2013, 65, 1506–1515.
- (a)Ashafaq, M.; Raza, S. S.; Khan, M. M.; Ahmad, A.; Javed, H.; Ahmad, M. E.; Tabassum, R.; Islam, F.; Siddiqui, M. S.; Safhi, M. M.; Islam, F. *Neurochem. Res.* 2012, *37*, 1747–1760. (b) Han, Z.-Z.; Zu, X.-P.; Wang, J.-X.; Li, H.-L.; Chen, B.-Y.; Liu, Q.-X.; Hu, X.-Q.; Yan, Z.-H.; Zhang, W.-D. *Tetrahedron* 2014, *70*, 962–966.
- Cryan, J. F.; Mombereau, C.; Vassout, A. *Neurosci. Biobehav. Rev.* 2005, 29, 571–625.
- Petit-Demouliere, B.; Chenu, F.; Bourin, M. Psychopharmacology 2005, 177, 245–255.

¹²

Supplementary Material for

Xylapyrrosides A and B, Two Rare Sugar-Morpholine Spiroketal Pyrrole-Derived Alkaloids from *Xylaria nigripes*: Isolation, Complete Structure Elucidation, and Total Syntheses

Ming Li,^a Juan Xiong,^{a,*} Ya Huang,^a Li-Jun Wang,^a Yu Tang,^a Guo-Xun Yang,^a Xin-Hua Liu,^b Bang-Guo Wei,^{c,*} Hui Fan,^d Yun Zhao,^d Wen-Zhu Zhai,^d and Jin-Feng Hu^{a,*}

^aDepartments of Natural Products Chemistry and ^bPharmacology, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, PR China ^cDepartment of Chemistry, Fudan University, No. 220 Handan Road, Shanghai 200032, PR China

^dDepartment of Natural Products for Chemical Genetic Research, Key Laboratory of Brain Functional Genomics (Ministry of Education), East China Normal University, No. 3663 Zhongshan Road, Shanghai 200062, PR China

S1

Table of Contents

1. X-ray crystallographic data for compounds 1, 1a and 4	S3
2. Synthetic procedures towards compound 7	S5
3. Copies of Spectra	

Ctill All

1. X-ray crystallographic data for compounds 1, 1a and 4.

	Xylapyrroside A (1)	Xylapyrroside A ₁ (1a)
Empirical formula	$C_{12}H_{15}NO_5$	$C_{12}H_{15}NO_5$
Formula weight	253.25	253.25
Temperature	140(2) K	140(2) K
Wavelength	1.54178 Å	1.54178 Å
Crystal system	Orthorhombic	Orthorhombic
space group	P2(1)2(1)2(1)	P2(1)2(1)2(1)
Unit cell dimensions		
a (alpha)	7.03200(10) Å (90 deg)	7.10980 (10) Å (90 deg)
b (beta)	8.45490(10) Å (90 deg)	8.64620(10) Å (90 deg)
c (gamma)	19.6634(4) Å (90 deg)	18.8598(4) Å (90 deg)
Volume	1169.08(3) Å ³	1159.36(3) Å ³
Z, Calculated density	4, 1.439 mg/m ³	4, 1.451 mg/m^3
Absorption coefficient	0.952 mm ⁻¹	0.960 mm ⁻¹
F(000)	536	536
Crystal size	0.10 x 0.05 x 0.04 mm	0.35 x 0.16 x 0.05 mm
Theta range for data collection	4.50 to 69.94 deg.	4.69 to 69.63 deg.
Limiting indices	-8<=h<=8, -10<=k<=8,	-8<=h<=8, -7<=k<=10,
Limiting indices	-23<=l<=18	-22<=l<=22
Reflections collected / unique	4329 / 1986 [R(int) = 0.0274]	7512 / 2153 [R(int) = 0.0463]
Completeness to theta $= 69.94$	96.6 %	99.1 %
Absorption correction	Semi-empirical from equivalents	Semi-empirical from equivalents
Max. and min. transmission	0.9629 and 0.9108	0.9536 and 0.7300
Refinement method	Full-matrix least-squares on F ²	Full-matrix least-squares on F ²
Data / restraints / parameters	1986 / 0 / 165	2153 / 0 / 166
Goodness-of-fit on F^2	1.041	1.050
Final R indices [I > 2sigma(I)]	$R_1 = 0.0312, wR_2 = 0.0798$	$R_1 = 0.0288, wR_2 = 0.0741$
R indices (all data)	$R_1 = 0.0318$, $wR_2 = 0.0807$	$R_1 = 0.0290, wR_2 = 0.0745$
Absolute structure parameter	0.19(18)	-0.07(15)
Largest diff. peak and hole	0.141 and -0.214 e. Å ⁻³	0.263 and -0.198 e. $Å^{-3}$

Table S1. X-ray Crystallographic Data for 1 and 1a.

Colorless crystals of **1** and **1a** were both obtained in acetone. Crystal data were obtained on a Bruker APEX Duo CCD detector employing graphite monochromated Copper-K α radiation (λ =1.54178 Å) at 140(2) K and operating in the φ/ω scan mode. The crystal structure was solved by direct method using the program SHELXS-97 and subsequent Fourier difference techniques, and was finally refined anisotropically by full-matrix least-squares on F2 using SHELXL-97. All non-hydrogen atoms were refined anisotropically. The hydrogen atom positions were geometrically idealized and allowed to ride on their parent atoms. Crystallographic data of **1** and **1a** have been deposited at the Cambridge Crystallographic Data Centre (**1**: deposition No. CCDC-1029230; **1a**: deposition No. CCDC-1029231). Copies of these data can be obtained free of charge *via* www.ccdc.cam.ac.uk/conts/retrieving.html or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB21EZ, UK. [fax: (+44) 1223-336-033; or email: deposit@ccdc.cam.ac.uk].

	Acortatarin A (4)
Empirical formula	$C_{12}H_{15}NO_5$
Formula weight	253.25
Temperature	173(2) K
Wavelength	0.71073 Å
Crystal system	Orthorhombic
space group	P2(1)2(1)2(1)
Unit cell dimensions	
a (alpha)	7.1019(3) Å (90 deg)
b (beta)	8.6521(3) Å (90 deg)
c (gamma)	18.8596(7) Å (90 deg)
Volume	1158.85(8) Å ³
Z, Calculated density	4, 1.452 mg/m ³
F(000)	536
Reflections collected / unique	2046 / 1214
Data Completeness (theta $= 25.01$)	1.68/1.00
Max. and min. transmission	0.960 and 0.945
Parameters	163
Goodness-of-fit on F^2	1.076
R (reflections)	$R_1 = 0.0252, wR_2 = 0.0636$

Table S2. X-ray Crystallographic Data for 4.

Figure S1. X-ray crystal structure of acortatarin A (4).

Colorless crystals of 4 were obtained in MeOH. Crystal data were obtained on a Bruker-AXS SMART APEX II CCD detector employing graphite monochromated Mo-Ka radiation (λ =0.71073 Å) at 173(2) K and operating in the φ/ω scan mode. The crystal structure was solved by direct method using the program SHELXS-97 and subsequent Fourier difference techniques, and was finally refined anisotropically by full-matrix least-squares on F2 using SHELXL-97. All non-hydrogen atoms were refined anisotropically. The hydrogen atom positions were geometrically idealized and allowed to ride on their parent atoms. Crystallographic data for 4 have been deposited at the Cambridge Crystallographic Data Centre (deposition No. CCDC-1029232). Copies charge of these data can be obtained free of via www.ccdc.cam.ac.uk/conts/retrieving.html or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB21EZ, UK. [fax: (+44) 1223-336-033; or email: deposit@ccdc.cam.ac.uk].

2. Synthetic procedures towards compound 7

1H-Pyrrole-2,5-dicarbaldehyde pre-7a

The 1*H*-pyrrole-2,5-dicarbaldehyde (**pre-7a**) was prepared by known method [Knizhnikov, et al. *Russian J. Org. Chem.* **2007**, *43*, 855–860]. IR (film): v_{max} 3424, 2909, 2849, 1682, 1660, 1424, 1276, 1167, 794 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 10.33 (br s, 1H), 9.80 (s, 2H), 7.03 (d, J = 1.2 Hz, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 181.2, 135.5, 119.5 ppm; HR-EIMS m/z 123.0321 [M]⁺ (calcd for C₆H₅NO₂, 123.0320, $\Delta = 0.8$ ppm).

5-(Hydroxymethyl)-1H-pyrrole-2-carbaldehyde pre-7b

To a solution of dialdehyde **pre-7a** (6.0 g, 48.8 mmol) in dry methanol (100 mL) at 0 $^{\circ}$ C was added sodium borohydride (0.46 g, 12.2 mmol) in one portion. After being stirred for 30 min, the reaction was quenched with ice water and concentrated in vacuum. The resulting aqueous was extracted with EtOAc (3 × 100 mL) and the combined organic layers were washed with brine, dried, filtrated and concentrated. The residue was purified by flash chromatography on silica gel (PE/EtOAc = 4/1) to give mono-aldehyde **pre-7b** (5.92 g, 98%) as a white amorphous powder. IR (film): v_{max} 3304, 2915, 2849, 1495, 1364, 1200, 1063, 756 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 10.61 (br s, 1H, D₂O-exchangeable), 9.38 (s, 1H), 6.96 (dd, *J* = 3.7, 2.6 Hz, 1H), 6.22 (dd, *J* = 3.7, 2.2 Hz, 1H), 4.81 (d, *J* = 4.2 Hz, 2H), 3.46 (t, *J* = 4.2 Hz, 1H, D₂O-exchangeable) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 179.2, 141.8, 132.2, 123.4, 109.0, 57.9 ppm; HR-EIMS *m/z* 125.0478 [M]⁺ (calcd for C₆H₇NO₂, 125.0477, Δ = 0.8 ppm).

5-(((Tetrahydro-2H-pyran-2-yl)oxy)methyl)-1H-pyrrole-2-carbaldehyde 7

To a solution of **pre-7b** (1.5 g, 12.1 mmol) and PPTS (54 mg, 0.24 mmol) in CH_2Cl_2 (40 mL) was treated with DHP (1.08 g, 13.1 mmol). After stirring for overnight, the reaction was diluted with saturated aqueous NaHCO₃ solution. The mixture was separated and the aqueous layer was extracted with CH_2Cl_2 (2 × 50 mL). The combined

ACCEPTED MANUSCRIPT

organic layers were washed with brine. Dried, filtrated and concentrated, the residue was purified by flash chromatography on silica gel (PE/EtOAc = 5/1) to give **7** (2.45 g, 94%, dr = 1:1) as a colorless oil. IR (film): v_{max} 3254, 2942, 1614, 1391, 1178, 1068, 805 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) : δ 9.71 (br s), 9.47 (s), 6.91 (d, J = 3.5 Hz), 6.90 (d, J = 3.5 Hz), 6.22 (d, J = 3.5 Hz), 6.21 (d, J = 3.5 Hz), 4.76 (d, J = 13.5 Hz), 4.69 (m), 4.62 (d, J = 13.5 Hz), 3.91 (m), 3.57 (m), 1.87-1.59 (m, 6H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 180.3, 178.9, 139.3, 137.9, 134.1, 132.6, 123.1, 121.6, 111.2, 109.8, 100.3, 98.8, 64.1, 63.6, 62.7, 62.1, 31.8, 30.4, 26.6, 25.2, 20.9, 19.4 ppm; (+) HR-ESIMS *m/z* 232.0944 [M+Na]⁺ (calcd for C₁₁H₁₅NO₃Na, 232.0948, $\Delta = -1.3$ ppm).

S7

Figure S7. HSQC spectrum of 1 in CD₃OD

Figure S9. HMBC spectrum of 1 in CD₃OD-expansion

Figure S11. HR-EIMS of 1

Elemental Composition Report

File Number: 20130412004 Sample Number:LM-4-3

253.0952

Single Mass Analysis Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off

253.0950

0.2

Monoisotopic Mass, Odd and Even Electron Ions 11 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass) Elements Used: C: 0-15 H: 0-20 N: 0-1 O: 0-5 Minimum: -1.5 50.0 5.0 10.0 Maximum: PPM 0.8 DBE i-FIT Formula Calc. Mass mDa Mass

6.0

5546077.0

C12 H15 N O5

Figure S16. NOESY spectrum of 2 in CD₃OD

Figure S17. NOESY spectrum of 2 in CD₃OD-expansion

Figure S18. HR-EIMS of 2

Elemental Composition Report File Number: 20130412002 Sample Number:LM-4-1 Single Mass Analysis Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Monoisotopic Mass, Odd and Even Electron Ions 11 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass) Elements Used: C: 0-15 H: 0-20 N: 0-1 O: 0-5 Minimum: -1.5 Maximum: 5.0 10.0 50.0 PPM DBE mDa Mass Calc. Mass i-FIT Formula 0.4 253.0951 253.0950 0.1 6.0 5546040.5 C12 H15 N O5 Page 1 **Elemental Composition Report** Single Mass Analysis Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Monoisotopic Mass, Odd and Even Electron lons 11 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass) Elements Used: C: 0-15 H: 0-20 N: 0-1 O: 0-5 LM-4-1 20130412002 70 (1.167) TOF MS EI+ 6.68e+001 253.0951 100 % 0 m/z 252.900 253.000 253.100 253.200 253.300 Minimum: Maximum: -1.5 50.0 5.0 10.0 mDa PPM DBE i-FIT Formula Mass Calc. Mass 5546040.5 C12 H15 N 05 253.0950 6.0 253.0951 0.1 0.4

Figure S22. ¹H-¹H COSY spectrum of 3 in CD₃OD-expansion

Figure S23. (+) ESI-MS of 3

Figure S25. ¹³C NMR spectrum of 4 in CD₃OD

S25

Figure S28. HSQC spectrum of 4 in CD₃OD

Figure S31. NOESY spectrum of 4 in CD₃OD

Figure S32. NOESY spectrum of 4 in CD₃OD-expansion

Figure S33. HR-EIMS of 4

253.0949

Elemental Composition Report

253.0950

File Number: 20130412006 Sample Number:LM-4-6

Single Mass Analysis Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off

Monoisotopic Mass, Odd and Even Electron Ions 11 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass) Elements Used: C: 0-15 H: 0-20 N: 0-1 O: 0-5 Minimum: 5.0 10.0 50.0 Mass Calc. Mass mDa PPM DBE i-FIT Formula

6.0

5546058.5

C12 H15 N O5

-0.4

-0.1

Elementa	al Composition	Report						Page
Single Ma Folerance Element pr	ass Analysis = 5.0 mDa / DE rediction: Off	3E: min = -1	.5, max = {	50.0				
1 formula(lements U : 0-15 H M-4-6	e) evaluated with 1 Ised: H: 0-20 N: 0-1	O: 0-5	i limits (up to	o 50 best iso	otopic matches fo	r each mass)		
0130412006	6 98 (1.634) Cm (98:1	12)		253.	0949		TC	1.10e+00
00 %- -	6 98 (1.634) Cm (98:1	12)		253.	0949		TC	1.10e+00
0130412006 100 %- 0	6 98 (1.634) Cm (98:1 252.900	253	000	253.	0949 3.100	253.200	 253.300	mis Er 1.10e+00
20130412000 100 %- 0 inimum: aximum:	6 98 (1.634) Cm (98:1 252.900	253	000 10.0	253. 25 -1.5 50.0	0949 3.100	253.200	 253.300	mis En 1.10e+00
100 %- 0 tinimum: tass	698(1.634)Cm(98:1 252.900 Calc. Mass	253. 5.0 mDa	000 10.0 PPM	253. 25 -1.5 50.0 DBE	0949 3.100 i-FIT	253.200 Formula	 253.300	mis Ei 1.10e+00

S29

Figure S42. HR-EIMS of 1a

lementa	I Composition	Report							Page 1
ingle Ma olerance = lement pr	ass Analysis = 5.0 mDa / DB ediction: Off	8E: min = -1	1.5, max = 5	50.0					
onoisotopi I formula(e ements Us : 0-15 H M-4-2	c Mass, Odd and E e) evaluated with 1 sed: l: 0-20 N: 0-1	iven Electror results within O: 0-5	n lons n limits (up to	50 best isc	otopic matches fo	r each mass)			
0130412003	175 (2.917) Cm (174	:184)						то	F MS EI+
00-				253.	0949				
%									
%-									
% 0	252,000	265	2000	25	2 100	252 200		252 200	—— m/z
% 0	252.900	253	3.000	25	3.100	253.200		253.300	—— m/z
%- 0	252.900	25:	3.000 10.0	25 -1.5 50.0	3.100	253.200		253.300	—— m/z
%- 0	252.900 Calc. Mass	253 5.0 mDa	3.000 10.0 PPM	25 -1.5 50.0 DBE	3.100 i-FIT	253.200 Formula		253.300	—— m/z
0 0 1 nimum: nximum: nss i3.0949	252.900 Calc. Mass 253.0950	253 5.0 mDa -0.1	10.0 PPM -0.4	25 -1.5 50.0 DBE 6.0	3.100 i-FIT 5546025.5	253.200 Formula C12 H15	N 05	253.300	—— m/z

S36

Figure S52. HR-EIMS of 1b

Elemental Composition Report

File Number: 20130412007 Sample Number:LM-4-6'

Single Mass Analysis Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off

Monoisotopic Mass, Odd and Even Electron Ions 11 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass) Elements Used: C: 0-15 H: 0-20 N: 0-1 O: 0-5 Minimum: 5.0 10.0 50.0 Mass Calc. Mass mDa PPM DBE i-FIT Formula 253.0952 253.0950 0.2 0.8 6.0 5546038.5 C12 H15 N O5

lemental	Composition I	Report						
olerance =	ss Analysis 5.0 mDa / DBl diction: Off	E: min = -1	.5, max = 5	0.0				
onoisotopio 1 formula(e lements Us 2 0-15 H	Mass, Odd and Ev evaluated with 1 re ed: 0-20 N: 0-1	ven Electron esults withir D: 0-5	i lons i limits (up to	50 best isot	topic matches for	each mass)		
M-4-6' 0130412007	262 (4.367) Cm (251:	264)					то	F MS EI+ 5.18e+00
					052			
00				253.0	1952			
00				253.0	1972			
00				253.0	997			
00 				253.0	1952			
00- - - - -				253.0	1952			m/2
00 	252.900	253	.000	253.0	3.100	253.200	 253.300	m/2
00 %- 0 	252.900	253	2. 000 10.0	253.0 253 -1.5 50.0	3,100	253.200	253.300	—— m/2
00 % inimum: aximum: ass	252.900 Calc. Mass	253 5.0 mDa	3.000 10.0 FFM	253.0 253 -1.5 50.0 DBE	3.100 i-FIT	253.200 Formula	 253.300	—— m/2

Figure S57. HSQC spectrum of 2a in CD₃OD

Figure S59. NOESY spectrum of 2a in CD₃OD

Figure S60. HR-EIMS of 2a

Elemental Composition Report

File Number: 20130412005 Sample Number:LM-4-5

Single Mass Analysis Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off

Elementa	I Composition	Report							Page '
Single Ma Tolerance = Element pr	ass Analysis = 5.0 mDa / DE ediction: Off	3E: min = -	1.5, max = 5	50.0					
Aonoisotopi 1 formula(e Elements Us C: 0-15 H .M-4-5 20130412005	c Mass, Odd and E e) evaluated with 1 sed: I: 0-20 N: 0-1 5 240 (4.000) Cm (237	iven Electro results withi O: 0-5	n lons n limits (up te	o 50 best isc	otopic matches fo	r each mass)			TOF MS EI-
				253.0	0951				5.27e+00
%-									
%	252.900	25	3.000	25:	3.100	253.200		253.300	m/2
%- 0 inimum: aximum:	252.900	5.0	3. 000 10.0	25 : -1.5 50.0	3.100	253.200	· ·] · · ·	253.300	m/2
%- 0 inimum: aximum: ass	252.900 Calc. Mass	25 5.0 mDa	3.000 10.0 PPM	25: -1.5 50.0 DBE	3.100 i-FIT	253.200 Formula		253.300	
% 0 linimum: laximum: lass 53.0951	252.900 Calc. Mass 253.0950	25: 5.0 mDa 0.1	3.000 10.0 PPM 0.4	25: -1.5 50.0 DBE 6.0	i-FIT 5546035.0	253.200 Formula C12 H15	N 05	253.300	
%- 0 inimum: iaximum: iass 53.0951	252.900 Calc. Mass 253.0950	25: 5.0 mDa 0.1	3.000 10.0 PPM 0.4	25: -1.5 50.0 DBE 6.0	3.100 i-FIT 5546035.0	253.200 Formula C12 H15	N 05	253.300	m/2

Figure S63. HR-EIMS of pre-7a

Elemental Composition Report

File Number: 20130412008 Sample Number:pyr-1

Single Mass Analysis Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off

Monoisotopic Mass, Odd and Even Electron Ions 11 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass) Elements Used: C: 0-15 H: 0-20 N: 0-1 O: 0-2 Minimum: -1.5

winimum:				-1.5		
Maximum:		5.0	10.0	50.0		
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Formula
123.0321	123.0320	0.1	0.8	5.0	5546025.5	C6 H5 N O2

Monoisotop 11 formula(ic Mass, Odd and Ev e) evaluated with 1 r	ven Electron esults within	lons limits (up to	50 best isot	opic matches fo	r each mass)	ũ	
Elements U C: 0-15 F	sed: H: 0-20 N: 0-1 (0: 0-2						
20130412008	3 333 (5.551) Cm (311:	:334)						TOF MS E 2.03e+0
100				123.03	321			
%								
0 12	2.925 122.950	122.975	123.000	123.025	123.050	123.075 123.100	123.125	123.150
linimum: Maximum:		5.0	10.0	-1.5				
ass	Calc. Mass	mDa	PPM	DBE	i-FIT	Formula		
23.0321	123.0320	0.1	0.8	5.0	5546025.5	C6 H5 N 02		
						~ .		
					-			

Figure S66. HR-EIMS of pre-7b

byr-2 (7) 20130412009		TOF MS E 8.48e+0						
%-								
0	124.950	12	5.000	12	5.050	125.100	125.150) m
inimum: aximum:		5.0	10.0	-1.5 50.0				
ass	Calc. Mass	mDa	PPM	DBE	i-FIT	Formula		
25.0478	125.0477	0.1	0.8	4.0	5546359.5	C6 H7 N	02	
					*			

Figure S69. (+) HR-ESIMS of 7

Figure S72. HR-EIMS of 10

Elemental Composition Report

File Number: 20130415011 Sample Number:WL-2

Single Mass Analysis Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off

lementar	Composition R	eport						
Single Mas Folerance = Element pre	ss Analysis 5.0 mDa / DBE diction: Off	: min = -1.	5, max = 50	0.0				
Aonoisotopic formula(e) e Elements Use	Mass, Odd and Eve evaluated with 1 resp ed: 0-25 O [:] 0-3	en Electron ults within I	lons imits (up to 5	i0 best isotop	ic matches for e	each mass))	
VL-2 0130415011	75 (1.250) Cm (75:77)							TOF MS 1 1.80e+
100-				172.10	97			
-								
%								
%-								
0 171.950	172.000	••••••••••••••••••••••••••••••••••••••	72.050	172.100	172.15	0	172.200	172.250
%- 0 171.950 finimum: faximum:	172.000	1	72.050 10.0	172.100 -1.5 50.0	172.15	0	172.200	172.250
%- 0 171.950 Minimum: Maximum: Mass	172.000 Calc. Mass	1' 5.0 mDa	72.050 10.0 PPM	172.100 -1.5 50.0 DBE	172.15 i-FIT	0 Formula	172.200	172.250
%- 0 171.950 Minimum: Maximum: Mass 172.1097	172.000 Calc. Mass 172.1099	1 5.0 mDa -0.2	72.050 10.0 PPM -1.2	172.100 -1.5 50.0 DBE 2.0	172.15 i-FIT 5546025.5	0 Formula C9 H16	172.200 1 5 03	172.250

Figure S75. (+) HR-ESIMS of 11

Figure S77. ¹³C NMR spectrum of 12 in CDCl₃

Figure S78. (+) HR-EIMS of 12

File Number: 20130329014 Sample Number: WL-I

Single Mass Analysis Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off

Monoisotopic Mass, Odd and Even Electron lons 10 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass) Elements Used: C: 0-15 H: 0-30 O: 0-4 Si: 0-1

Minimum:				-1.5		
Maximum:		5.0	10.0	50.0		
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Formula
302.1911	302.1913	-0.2	-0.7	2.0	5546192.5	C15 H30 O4 Si

Elementa	Composition	Report
----------	-------------	--------

Page 1

TOF MS EI+

I

L

Single Mass Analysis Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off

Monoisotopic Mass, Odd and Even Electron lons 10 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass) Elements Used: C: 0-15 H: 0-30 O: 0-4 Si: 0-1

WL-I	
20130329014 146 (2.434) Cm (146:17)	3)

100				302.1	911			
0 301.900	302.000		302.100	30	2.200	302.300	302.400	m/z
Minimum: Maximum:		5.0	10.0	-1.5 50.0				
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Formula		
302.1911	302.1913	-0.2	-0.7	2.0	5546192.5	C15 H30	O4 Si	

Figure S81. HR-EIMS of 13

Elemental Composition Report

File Number: 20130329013 Sample Number: WL-II

Single Mass Analysis Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off

Monoisotopic Mass, Odd and Even Electron Ions 30 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass) Elements Used: C: 0-26 H: 0-45 N: 0-1 O: 0-7 Si: 0-1

0.0-20 1	1. 0-40 14. 0-1	0.0-1	01. 0-1					
Minimum:				-1.5				
Maximum:		5.0	10.0	50.0				
Mass	Calc. Mass	s mD	a PPM	DBE	i-FIT	Formula		
511.2968	511.2965	0.3	0.6	6.0	5546073.0	C26 H45	N 07	Si

Elemental Composition Report

Page 1

TOF MS EI+ 1.08e+002

Single Mass Analysis Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off

Monoisotopic Mass, Odd and Even Electron lons 30 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass) Elements Used: C: 0-26 H: 0-45 N: 0-1 O: 0-7 Si: 0-1

WL-II 20130329013 215 (3.584)

100

%

511.2968

0 510.80 m/z 511.80 511.20 511.30 511.40 511.50 511.60 511.70 510.90 511.00 511.10 Minimum: -1.5 50.0 10.0 Maximum: 5.0 mDa PPM DBE i-FIT Formula Mass Calc. Mass 5546073.0 C26 H45 N 07 Si 6.0 511.2968 511.2965 0.3 0.6

Figure S84. HR-EIMS of 14

Elemental Composition Report

File Number: 20130329015 Sample Number: WL-III

Single Mass Analysis Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off

Monoisotopic Mass, Odd and Even Electron Ions 30 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass) Elements Used: C: 0-26 H: 0-45 N: 0-1 O: 0-7 Si: 0-1

Minimum:				-1.5		
Maximum:		5.0	10.0	50.0		
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Formula
509.2811	509.2809	0.2	0.4	7.0	5546066.5	C26 H43 N O7 Si

Elemental Composition Report Page 1 Single Mass Analysis Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Monoisotopic Mass, Odd and Even Electron Ions 30 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass) Elements Used: C: 0-26 H: 0-45 N: 0-1 O: 0-7 Si: 0-1 WL-III 20130329015 216 (3.600) Cm (199:216) TOF MS EI+ 9.52e+001 509.2811 100 % 0-- m/z 508.80 508.90 509.00 509.10 509.20 509.30 509.40 509.50 509.60 509.70 Minimum: Maximum: -1.5 5.0 10.0 Calc. Mass mDa PPM DBE i-FIT Formula Mass 509.2811 509.2809 0.2 0.4 7.0 5546066.5 C26 H43 N 07 Si

Figure S87. (+) HR-ESIMS of 15

--- End Of Report ---

Agilent Technologies

Page 1 of 1

Printed at: 2:21 PM on: 12/23/2013

Figure S90. (+) HR-ESIMS of **16**

Single M Tolerance Element pr	ass Analysis = 2.0 PPM / D rediction: Off	BE: min =	-1.5, max	k = 50.0					
Number of	isotope peaks us	sed for i-FI	T = 3						
Monoisotop 275 formula Elements U	ic Mass, Even Elec (e) evaluated with sed:	ctron lons 1 results wit	thin limits	(up to 50 clo	sest results for eac	h mass)			
C: 5-80 H:	: 2-120 N: 0-1 (D: 0-20 Na	a: 0-1 Si	: 0-1 I: 0-1					
WL-11				LCT P	XE KE324				26-Sep-2013
WL-11_0926	32 (0.705) AM2 (Ar,1	1000.0,0.00,	0.70); ABS	; Cm (25:41)					1: TOF MS ES+
100				245.11	57				1.148+004
0/									
70									
229.14	233 9795	230 3	210	244.8241	246.1192	1921		259 1042	
230.0	235.0	200.0	40.0	245.0	250.0	254.	255.0	260	0 m/z
linimum: laximum:		5.0	2.0	-1.5					
lass	Calc. Mass	mDa	2.0	50.0	2	,			
45.1157	245.1154	0.3	1 2	DBE	1-FIT	1-FIT	(Norm)	Formula	1
		0.5	1.2	4.3	91.1	0.0		C13 H18	O3 Na

Figure S91. ¹H NMR spectrum of 17 in CDCl₃

Figure S93. (+) HR-ESIMS of 17

	a composition	Report						Page
olerance lement p lumber of	ass Analysis = 2.0 PPM / DE rediction: Off isotope peaks us	BE: min = -1. ed for i-FIT :	5, max = 5 = 3	0.0				
lonoisotop 44 formula lements U	ic Mass, Even Elect (e) evaluated with 1 sed:	ron lons results within	n limits (up ti	o 50 closes	st results for eac	h mass)		
5-80 H	2-120 N: 0-1 O	: 0-20 Na: 0)-1 Si: 0-1	I: 0-1				
L-45 L-45_0926	29 (0.653) AM2 (Ar,1	1000.0,0.00,0.7	0); ABS; Cm	LCT PXE	KE324			26-Sep-201: 17:04:3: 1: TOF MS ES+
0			359	9.2019				1.01e+004
% 0 <u>337.</u>	2191 342.2122346.2	390 354.24	136358.2383	360.205 361.20	7 039 368.2224 370.237	2 375.1833	378.2192 ³⁸⁴	2355 386 2353
0 337.: 335.0	2191 342.2122 _{346.2} 340.0 345.0	390 354.24 350.0	136358.2383 355.0	360.205 361.20 360.0	7 039 368.2224 370.237 365.0 370.0	² 375.1833 375.0	378.2192 ³⁸⁴ . 380.0	.2355 386.2353 385.0 390.0 m/z
% 0 337. 335.0 nimum: ximum:	2191 342.2122 _{346.2} 340.0 345.0	390 354.24 350.0 5.0	36358.2383 355.0 2.0	360.205 361.20 360.0 -1.5 50.0	7 039 368.2224 370.237 365.0 370.0	² 375.1833 375.0	378.2192 ³⁸⁴ . 380.0	.2355 386.2353 385.0 390.0 m/z
% 0 337. 335.0 nimum: ximum: ss	2191 342.2122346.2 340.0 345.0 Calc. Mass	390 354.24 350.0 5.0 mDa	336358.2383 355.0 2.0 PPM	360.205 361.20 360.0 -1.5 50.0 DBE	7 368.2224 370.237 365.0 370.0	2 375.1833 375.0 i-FIT (N	378.2192 ^{384.} 380.0 3	.2355386.2353m/z 385.0390.0m/z

Figure S96. (+) HR-ESIMS of **18**

lement	tal Composition	on Report										Page
ingle N	ass Analysis	DBE: min = -1	5. max = 1	50.0								
lement p umber c	prediction: Off of isotope peaks	used for i-FIT	= 3									
onoisoto 07 formi	pic Mass, Even El ula(e) evaluated w	ectron lons vith 2 results with	iin limits (u	o to 50 clo	sest resu	ults for e	ach mass)					
5-80 H	H: 2-120 N: 0-1	O: 0-20 Na: 0	0-1 Si: 0-1	I I: 0-1								
L-46 L-46_092	6 44 (0.969) AM2 (A	r,11000.0,0.00,0.7	'0); ABS; Cn	LCT PX	E KE324						: 1: T	26-Sep-2013 17:00:04 OF MS ES+
0				449	2487							9.76e+004
V.												
0					450.2522	?						
	439.1933 441.	2204 443.2611 44	14.2788	448.2742	451	2526 452	2.2542 454.2	2274 456	6.5043	46	0.2888	461.2930
436.0	438.0 440.0	442.0 444.0	446.0	448.0	450.0	452.0	454.0	456.0	458.0	46	0.0	462.0 m/z
nimum: Kimum:		5.0	3.0	-1.5 50.0								
35	Calc. Mass	mDa	PPM	DBE	i-E	FIT	i-FIT	(Norm)	Form	ula		
9.2487	449.2488	-0.1	-0.2	8.5	211	4	0.0		C26	H38	03	Na
	449.2481	0.6	1.3	16.5	225	. 4	13.9		S1 C32	H33	02	

S86

Figure S97. ¹H NMR spectrum of 19 in CDCl₃

Figure S99. (+) HR-ESIMS of **19**

	composition	Report									ago i
ingle Ma	ss Analysis	_									
olerance =	3.0 PPM / DB	E: min = -1	$.5, \max = 5$	50.0							
umber of i	sotope peaks use	ed for i-FIT	= 3								
onoisotopic	Mass, Even Elect	ron lons 2 results wit	hin limits (ur	to 50 close	est results for ea	ch mass)					
ements Us	ed:	2 results with				ion maco)					
5-80 H: 2	2-120 N: 0-1 O	: 0-20 Na:	0-1 Si: 0-1	I: 0-1							
L-47				LCT PXE	KE324					26	-Sep-201
47 0000 0	0 - 11 - 12		70): APC: Cm	(21.24)						1. TOP	16:55:3
L-47_0926 2	23 (0.511) AIVIZ (AF, 1	1000.0,0.00,0	.70), ADS, CII	1 (21.34)						1. 101	1.09e+00
00			465.3	2428							
00			465.	2428							
00			465.:	2428							
%			465.	466.2464							
%			465.	2428 466.2464							
384.22	²⁵ 409 2476 418.	2909 443.2	465. 599 449 2669	2428 466.2464 467.2467 ₄₈	31.2196 497.2551	516.351	2 529 220	2 55	7 3414	571 16	96
00 % 0 384.222 390	25 409.2476 418. 400 410 420	2909 443.2 430 440	465. 599 449.2669 450 460	466.2464 467.2467 48 470 480	31.2196 497.2551 490 500 51	516.351	¹² 529.220 530 540	2 55 550	7.3414	571.16	96 580
00 384.22: 0 390	25 409.2476 418. 400 410 420	2909 443.2 430 440	465. 599 <u>449</u> 2669 450 460	466.2464 467.2467 470 480	31.2196 497.2551 490 500 51	516.35 ¹ 0 520	¹² 529.220 530 540	2 55 550	7.3414	571.16 570	96 580
00 % 384.22: 390 .nimum: .ximum:	²⁵ 409.2476 ^{418.3} 400 410 420	2909 443.2 430 440 5.0	465. 599 449.2669 450 460 3.0	466.2464 467.2467 480 -1.5 50.0	81.2196 497.2551 490 500 51	516.351 0 520	¹² 529.220 530 540	2 55 550	7.3414	571.16 570	96 580
00 % 0 384.22: 0 390 	25 409.2476 418. 400 410 420 Calc. Mass	2909 443.2 430 440 5.0 mDa	465. 599 449 2669 450 460 3.0 PPM	466.2464 467.2467 470 480 -1.5 50.0 DBE	31.2196 497.2551 490 500 51 i-FIT	516.351 0 520 i-FIT	(Norm)	2 55 550 Form	7.3414 560 ula	571.16 570	96 580
00 % 0 384.222 390 Inimum: aximum: aximum:	25 409.2476 418. 400 410 420 Calc. Mass	2909 443.2 430 440 5.0 mDa	465. 599 449 2669 450 460 3.0 PPM	466.2464 467.2467 470 480 -1.5 50.0 DBE	31.2196 497.2551 490 500 51 i-FIT 62 2	516.35 0 520 i-FIT	2 _{529.220} 530 540 (Norm)	2 55 550	7.3414 560 ula	571.16	96 m/2 580

S89

Figure S102. (+) HR-ESIMS of **20**

	Composition	Report					Page 1
Single Ma	ss Analysis						
lement pr	- I.U PPINI / DBI	E: min = -1.	5, $max = 5$	0.0			
lumber of i	isotope peaks use	d for i-FIT :	= 3				
			0				
onoisotopio	C Mass, Even Electr	on lons	in limite (4- FO -1			
ements Us	ed:	results with	in limits (up	to 50 closes	st results for e	each mass)	
5-80 H:	2-120 N: 0-1 O:	0-20 Na: 0)-1 Si: 0-1	I: 0-1			
1 -48-1				LOT DVE W			
				LCT PXE K	E324		26-Sep-2013
L-48-1_0926	6 34 (0.759) AM2 (Ar,1	1000.0,0.00,0	.70); ABS; Cr	m (24:40)			1: TOF MS ES+
							1.73e+004
00				593.1562			
00				593.1562			
00				593.1562			
%			591	593.1562			
%			591.	593.1562 .1416 594.15	595		
497.2631	512.3147 527.2493	569.16	591 571.1752 06 588.203	593.1562 .1416 594.15 35	595 606 _{609.1289}	634 1819 644.2593	³ 672,3333 cod 4100
00 497.2631 500 51	512.3147 527.2493 0 520 530 540	569.16 550 560	591. 571.1752 06 588.203 570 580	593.1562 .1416 594.15 595.11 35 590 600	595 606 _{609.1289} 610 620	634.1819 644.2593 630 640 650	672.3333 694.4108 m/z
20 % 0 497.2631 500 51 nimum:	512.3147 527.2493 0 520 530 540	569.16 550 560	591. 571.1752 06 588.203 570 580	593.1562 .1416 594.15 595.11 590 600	595 606 _{609.1289} 610 620	634.1819 644.259 630 640 650	672.3333 694.4108 660 670 680 690
00 497.2631 500 51 nimum: ×imum:	512.3147 527.2493 0 520 530 540	569.16 550 560 5.0	591. 571.1752 06 588.203 570 580 1.0	593.1562 .1416 594.15 595.11 590 600 -1.5 50.0	595 606 _{609.1289} 610 620	634.1819 644.259 630 640 650	³ 672.3333 694.4108 _{m/z} 660 670 680 690
00 % 0 497.2631 500 51 nimum: ximum: ss	512.3147 527.2493 0 520 530 540 Calc. Mass	559.16 550 560 5.0 mDa	591, 571,1752 06 588,203 570 580 1.0 PPM	593.1562 .1416 594.15 595.11 590 600 -1.5 50.0 DBE	595 606 _{609.1289} 610 620 i-FIT	634.1819 644.2593 630 640 650 i-FIT (Norm)	672.3333 694.4108 m/z 560 670 680 690
00 497.2631 500 51 nimum: ximum: ss 3.1562	512.3147 527.2493 0 520 530 540 Calc. Mass 593.1560	569.16 550 560 5.0 mDa 0.2	591. 571.1752 06 588.200 570 580 1.0 PPM 0.3	593.1562 .1416 594.15 590 600 -1.5 50.0 DBE 7.5	595 606 _{609.1289} 610 620 i-FIT 76.1	634.1819 644.2593 630 640 650 i-FIT (Norm) 0.0	672.3333 694.4108 m/z 660 670 680 690 m/z Formula C26 H39 O4 Na

S92

Figure S104. ¹³C NMR spectrum of 21 in CD₃OD
Figure S105. (+) HR-ESIMS of 21

lementa	I Compositi	on Report						Page 1
ingle Ma olerance = lement pr umber of	ass Analysis = 1.0 PPM / ediction: Off isotope peaks	DBE: min = -1	.5, max = 5 = 3	0.0				
onoisotopi 04 formul	c Mass, Even E a(e) evaluated	Electron lons with 2 results wit	hin limits (up	to 50 closes	st results for e	each mass)		
5-80 H:	2-120 N: 0-1	O: 0-20 Na:	0-1 Si: 0-1	I: 0-1				
L-48-2 L-48-2_092	6 6 (0.141) AM2	(Ar,11000.0,0.00,0).70); ABS; Cn	LCT PXE K n (5:16)	E324			26-Sep-2013 16:46:20 1: TOF MS ES+ 6.45e+00'
00				59	1.1408			0.400700
%					592.1433			
52	27.2366 542.1163	548.2761 566.3	569.1576 575.	586.184 1653	593.1437	607.1179 620.7	262 642.2528	650.3526
520	530 540	550 56	0 570	580 5	90 600	610 620	630 640	650
nimum:		5.0	1.0	-1.5 50.0				
ximum:					i-FTT	i-FIT (Nort	n) Formula	
ss	Calc. Mas:	s mDa	PPM	DBE	1-611	(110-11	in LOLINGICA	

S95

Figure S108. (+) HR-ESIMS of 22

umber of	isotope peaks us	ed for i-FIT	= 3							
98 formul 98 formul ements U 5-80	ic Mass, Even Elect la(e) evaluated with sed: H: 2-120 N: 0-1	ron lons 3 results wit O: 0-20	hin limits (ι Na: 0-1	up to 50 closes Si [.] 0-1	st results for e	each mass)				
L-50				LCT PXE K	E324				26-Sep	-2013
L-50_0926	32 (0.671) AM2 (Ar,1	1000.0,0.00,0	.70); ABS; C	m (22:39)				1: 1	TOF MS	5 ES+
0				672.3348					1.01	e+004
%				673.3	372					
				674.3	382					
0	548.2824 566.298	83 632	.3486 66	7.3792 688.3	3109 723.4	427 734.4265 767	.4410 8	17.4574	833.47	47
520	540 560 580	600 6	20 640	660 680	700 720	740 760 7	780 800	820	840	1102
nimum:				-1.5						
nimum: ximum:		5.0	3.0	-1.5 50.0						
nimum: ximum: ss	Calc. Mass	5.0 mDa	3.0 PPM	-1.5 50.0 DBE	i-FIT	i-FIT (Nor	m) Formul	.a		
nimum: ximum: ss 2.3348	Calc. Mass	5.0 mDa -0.9	3.0 PPM -1.3	-1.5 50.0 DBE	i-FIT 55.8	i-FIT (Nor 1.7	m) Formul C39 H	.a 150 N	07	Si
nimum: ximum: ss 2.3348	Calc. Mass 672.3357 672.3360	5.0 mDa -0.9 -1.2	3.0 PPM -1.3 -1.8	-1.5 50.0 DBE 16.5 9.5	i-FIT 55.8 59.5	i-FIT (Nor 1.7 5.3	m) Formul C39 H C34 H Na	.a 150 N 151 N	07 011	Si
nimum: ximum: ss 2.3348	Calc. Mass 672.3357 672.3360 672.3333	5.0 mDa -0.9 -1.2 1.5	3.0 PPM -1.3 -1.8 2.2	-1.5 50.0 DBE 16.5 9.5 13.5	i-FIT 55.8 59.5 54.4	i-FIT (Norn 1.7 5.3 0.2	m) Formul C39 H C34 H Na C37 H Si	.a 150 N 151 N 151 N	07 011 07	Si Na
nimum: ximum: ss 2.3348	Calc. Mass 672.3357 672.3360 672.3333	5.0 mDa -0.9 -1.2 1.5	3.0 PPM -1.3 -1.8 2.2	-1.5 50.0 DBE 16.5 9.5 13.5	i-FIT 55.8 59.5 54.4	i-FIT (Nor 1.7 5.3 0.2	m) Formul C39 H C34 H Na C37 H Si	.a 150 N 151 N 151 N	07 011 07	Si Na
nimum: ximum: ss 2.3348	Calc. Mass 672.3357 672.3360 672.3333	5.0 mDa -0.9 -1.2 1.5	3.0 PPM -1.3 -1.8 2.2	-1.5 50.0 DBE 16.5 9.5 13.5	i-FIT 55.8 59.5 54.4	i-FIT (Nor 1.7 5.3 0.2	m) Formul C39 H C34 H Na C37 H Si	.a 150 N 151 N 151 N	07 011 07	si Na
nimum: ximum: ss 2.3348	Calc. Mass 672.3357 672.3360 672.3333	5.0 mDa -0.9 -1.2 1.5	3.0 PPM -1.3 -1.8 2.2	-1.5 50.0 DBE 16.5 9.5 13.5	i-FIT 55.8 59.5 54.4	i-FIT (Nor 1.7 5.3 0.2	m) Formul C39 H C34 H Na C37 H Si	a 150 N 151 N 151 N	07 011 07	Si Na

Figure S111. (+) HR-ESIMS of 23

--- End Of Report ---

Agilent Technologies

Page 1 of 1

Printed at: 1:33 PM on: 12/21/2013

Figure S114. (+) HR-ESIMS of 24

Elemental	Composition F	Report						Page 1
Single Ma Tolerance = Element pre Number of i	ss Analysis 500.0 mDa / D ediction: Off isotope peaks use	BE: min = d for i-FIT :	-1.5, max = = 9	500.0				
Monoisotopio 1 formula(e) Elements Us C: 10-20 I 10:43:30	c Mass, Even Electro evaluated with 1 res ed: H: 15-25 O: 1-3 5 978)	on lons ults within li Na: 1-1	mits (up to 5	0 closest res	sults for each m	ass)		1' TOF MS FS+
100 % 	7				33:	336.1684		1.82e+004
285	.1715 298.7785 3	02.3092 306	6.2795 319.	1918 322.78	31 330.3391	337.1721	353.2720	358.3716
and a second s	290.0 300	.0	310.0	320.0	330.0	340.0	350.0	360.0
Minimum: Maximum:		500.0	1000.0	-1.5 500.0				
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	i-FIT (Norm)	Formula	
335.1614	335.1623	-0.9	-2.7	8.5	305.1	0.0	C20 H24 O3	Na

Figure S117. (+) HR-ESIMS of 25

--- End Of Report ---

Agilent Technologies

Page 1 of 1

Printed at: 4:15 PM on: 12/27/2013

Figure S120. (+) HR-ESIMS of 26

Figure S123. (+) HR-ESIMS of 27

Elemental	Composition F	Report						Page 1
Single Ma Tolerance = Element pre Number of is	ss Analysis 1000.0 PPM / diction: Off sotope peaks use	DBE: min = - d for i-FIT =	-1.5, max = 9	500.0				
Monoisotopic 2 formula(e) Elements Use C: 26-26 H:	Mass, Even Electro evaluated with 1 res ed: 35-40 O: 4-4 N	on lons sults within lim la: 1-1 Si: 1-	its (up to 50 1 l: 0-1) closest rest	ults for each ma	iss)		
15:28:17 WL-29A 144 (6	5.329)							1: TOF MS ES+
100- 	50 585.5854 5 585.0 586.0	87.0068 587.6 111111111111111111111111111111111111	671 589. 589.0	4497 590.56 590.0 5 -1.5	27 ^{591.5086} 592 591.0 592.0	593.1542 594.1 594.1 593.0 594.0	667 595.1752 595.0 596.0	725 597.1489 ************************************
Maximum:		500.0	1000.0	500.0				
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	i-FIT (Norm)	Formula	
593.1542	593.1560	-1.8	-3.0	7.5	127.9	0.0	C26 H39 O4	Na Si I

Figure S125. ¹³C NMR spectrum of 28 in CD₃OD

Figure S126. (+) HR-ESIMS of 28

--- End Of Report ---

Agilent Technologies

Page 1 of 1

Printed at: 4:17 PM on: 12/27/2013

Figure S127. ¹H NMR spectrum of 29 in CD₃OD

Figure S129. (+) HR-ESIMS of 29

Elemental	Comp	osition F	Report								Page 1
Single Mas Tolerance = Element pre Number of is	ss Ana 1000.0 diction: sotope p	Iysis PPM / I Off peaks use	DBE: min = d for i-FIT =	-1.5, max = 9	500.0						
Monoisotopic 1 formula(e) e Elements Use C: 26-37 H 09:50:53 WL-20 97 (4.2)	Mass, E evaluated ed: 1: 35-52 78)	ven Electro I with 1 res N: 1-1	on lons sults within lin O: 4-7 Ni	nits (up to 50 a: 1-1 Si:	l closest resi 1-1	ults for each ma	ass)			1: TOF	MS ES+
100- - 		670.8513 6	71.0840 671.15	¹⁹⁶ 671.3066	671.7076	672.1058	672,6	916 672.9169			26e+002
	670.50		671.00	671.5	0	672.00	672.50	673.0)	67	3.50
Minimum: Maximum:			500.0	1000.0	-1.5 500.0						
Mass	Calc.	Mass	mDa	PPM	DBE	i-FIT	i-FIT (Norm)	Formula			
672.3323	672.3	333	-1.0	-1.5	13.5	35.9	0.0	C37 H51	N 07	Na	Si

Figure S132. (+) HR-ESIMS of 30

--- End Of Report ---

Agilent Technologies

Page 1 of 1

Printed at: 1:32 PM on: 12/21/2013