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ABSTRACT

o =z Z O
%—NH HN—?

PPh, PhyP

AN 2 2

PMB-OH +

CoHig-n  (dba)gPdy*CHCI,

70%

O
OPMB - steps 0 LhHs
HO/\\;I/\ _steps Ho. ] H
CoHig-n CoHig-n

The deracemization of 3-nonyl-3,4-epoxybut-1-ene with Pd(0) in the presence of chiral ligands using p-methoxybenzyl alcohol as a nucleophile
proceeds regio- and enantioselectively to form the monoprotected vinylglycidol in 99% ee. This chiral building block was converted in seven
steps to (—)-malyngolide, an antibiotic showing significant activity against Mycobacterium smegmatis and Streptococcus pyogenes. An interesting
aspect involves controlling the diastereoselectivity of protonation of an enolate via a distal hydroxyl group.

The regio- and enantioselective alkylation of vinyl epoxides
using the Pd-catalyzed asymmetric allylic alkylation (AAA)

offers a potentially powerful approach to vinylglycidols as
chiral building blocks: A particularly challenging task, the

the question of the geometry of the intermediatallylpal-

ladium complexes | and II. Since they lead to enantiomeric
products and the syn-anti isomerization involving the sub-
stituted terminus would not be expected to occur at ap-

stereocontrolled creation of quaternary centers, as shown inpreciable ratedjf both are formed kinetically, only low ee’s
eq 1, appears to be approachable by this strategy. Given thesan be expected. We chose to explore this issue in the context
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working model, a key question becomes the effect of the
size of the R group on the process both in terms of regio-
and enantioselectivity. A particularly nettlesome aspect is
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of a total synthesis of)-malyngolide () whose retrosyn-
thetic analysis is outlined in Scheme 1. The target should

Scheme 1. Retrosynthetic Analysis of<)-Malyngolide
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be accessible by chain extension of the primary alcohal of
with a propionate equivalent. Hydroboration-oxidatior3of
which could derive asymmetrically from racemicwould
constitute a short efficient synthesis:)¢(Malyngolide, an
antibiotic possessing significant activity agaihéycobac-
terium smegmatiand Streptococcus pyogenesas isolated
from the blue green algayngbya Majusculd The first
asymmetric synthesis by Mukaiyama involves use of a chiral
auxiliary #2 Most syntheses employ either chiral auxiliaries
or building blocks from the “chiral pool*-¢ Few employ
asymmetric catalysiswhich allows equal access to either
enantiomer.

An advantage of the deracemization of vinyl epoxides via
AAA is the ease of access of the substrate. The known
bromoketones® produced from 2-undecanone by the pro-
cedure of Zav'ylov reacts with vinylmagnesium bromide
to produce epoxidd® directly in 65% vyield (see eq 2}.

Exposure of a 1:1 mixture of racemic epoxide and
p-methoxybenzyl alcohol to 1 mol % of a palladium(0)
catalyst and 3 mol % of ligan@in the presence of 1 mol %
of triethylboron gave PMB etheB'® as the exclusive

With the availability of the vinylglycidol3 with high
enantiopurity, the stage is now set for the synthesis of either
enantiomer of malyngolide. The initial strategy examined
the introduction of the additional required propionate unit
in an intramolecular fashion. Thus, the silylated vinylglycidol
7 (see Scheme 2) was deprotected to the alc8h@lq 3).

Scheme 2. Synthesis of {)-Malyngolide*
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a(a) TIPSOSGCF;, (C;Hs)aN, CHyCl,, 0 °C; (b) 9-BBN-H, 4
mol % of (PhP)RNCI, THF, rt; HO,, NaOH, THF, 50°C; (c)
CH3SOCI, (CoHs)3sN, CH,Cl,, —78 °C; (d) CHCH(CO,C,Hs),,
NaH, PhCH, 100°C; (e) DDQ, CHCl,, H,0, rt; (f) NaOH, HO,
C.HsOH, reflux; HOAc; PhCH, reflux; (g) TBAF, THF, 0°C; (h)
see text.

regioisomer. Chiral HPLC analysis established the ee as

97—-99%. Alternatively, the enantiomeric ethent3 was
obtained by simply changing the ligand ¢ot6.
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occurred in early attempts to form the alcoldl Use of
hydroboration catalyzed by Wilkinson's catalifstwith
sodium perborate as oxidahtavoided the problem and
allowed clean formation af0. However, attempts to activate
the alcohol toward displacement by making the sulfonate
11 led predominantly to the acyl-migrated produ&

Switching to an intermolecular alkylation strategy avoided
the issue as shown in Scheme 2. Again, rhodium-catalyzed
hydroboration, to form alcohdl3,'° was preferred, but other-
wise the sequence to the mesylateand subsequently the
alkylation productl5¥ proceeded straightforwardly. After
oxidative removal of the PMB; hydrolysis of the hydroxy
diester16 and acidification to effect decarboxylation, fol-
lowed by heating, gave the monosilyl derivatiVéas a 1:1
mixture of (—)-malyngolidel and its C-2 epimer quantita-
tively.

Enhancement of the desired epimewas envisioned to
be possible as outlined in eq 4. If the dianit®would adopt
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the conformation depicted, initial protonation of the more

to internal delivery of the proton to forrh. In the event,
addition of 4 equiv of LDA in THF to the 1:1 mixture
followed by inverse quenching into a solution of PPTS in
acetonitrile gave a 3:1 mixture dfepi1 from which pure

1 was isolated in 61% vyield, puepi1 in 20% yield, and a
mixture of 1 and epil in 5% yield. Recycling the latter
two fractions just once would raise the yield of pureo
76%.

This nine-step route from bromoketoBerovided enan-
tiomerically pure {)-malyngolide in 12.5% overall yield
which can be improved to 16.5% overall yield with one
recycling. This strategy allows access to other interesting
targets. For example, tanikolidekgj, recently isolated from
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the marine cyanobacteriunhyngbya majuscula shows
antifungal and brine-shrimp toxiciff.Clearly, this target is
easily accessed by this strategy starting from 2-tridecanone
usingent6 as the ligand for the dynamic kinetic asymmetric
transformation (DYKAT) and malonate for the chain exten-
sion.

The DYKAT of vinyl epoxides nicely accommodates
rather bulky groups. This observation strongly indicates that
the initial palladium-promoted ionization generates only one
geometric isomer, | or Il, regardless of the length of R. These
results suggest a broad scope for this deracemization of
3-substituted vinyl epoxides.
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