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ABSTRACT: We developed a new umpolung strategy for 
catalytically forming a chiral a-alkoxyalkyl anion from an 
aromatic aldehyde for use in asymmetric synthesis. The 
reaction between aromatic aldehydes and aryl or allyl elec-
trophiles with a silylboronate utilizing a chiral copper–N-
heterocyclic carbene catalyst and a palladium–bisphosphine 
catalyst in a synergistic manner occurred with high enanti-
oselectivities to deliver the three-component coupling 
products, chiral silyl-protected secondary alcohol deriva-
tives. Our method features the catalytic generation of enan-
tioenriched chiral a-alkoxyalkylcopper(I) intermediates 
from aldehydes and their subsequent palladium-catalyzed 
stereospecific cross-coupling. 

Chiral a-heteroatom-substituted carbanions are attractive 
C(sp3) nucleophiles for the organic synthesis of chiral mole-
cules. Specifically, a-alkoxyalkyl anions are highly valuable 
in constructing chiral alcohols found in a majority of pharma-
ceutical drugs and bioactive natural products.1 Conventionally, 
chiral a-alkoxyalkyl anions are presynthesized as stoichio-
metric organometallic reagents (Figure 1a, right).2–5 Hoppe 
and co-workers prepared chiral a-alkoxyalkyllithium com-
pounds by enantiotopic a-deprotonation of aliphatic alcohol 
derivatives with highly basic alkyllithium reagents and a stoi-
chiometric amount of chiral amines (Figure 1b).2 The obtained 
a-alkoxyalkyllithiums could be converted into other organo-
metallic reagents, such as organozinc, organostannane and 
organoboron compounds. Alternatively, the asymmetric reduc-
tion of acylmetal compounds such as acylsilanes or acylstan-
nanes, which are presynthesized in multistep operations,  al-
lows the preparation of chiral a-hydroxycarbanion equivalents 
(Figure 1c).3 More recently, copper-catalyzed enantioselective 
nucleophilic silylation and borylation of carbonyl compounds 
have been introduced as new approaches for the preparation of 
a-alkoxyalkylmetal compounds, but their application to organ-
ic synthesis has been underdeveloped (Figure 1d).4 

Earlier, we showed that a nucleophilic a-
alkoxyalkylcopper(I) species was formed catalytically from 
aldehydes through the addition of a silylcopper(I) species fol-
lowed by 1,2-Brook rearrangement in the palladium-catalyzed 
cross-coupling with aryl bromides.6,7 This prompted us to in-
vestigate whether the process could be adapted to the asym-
metric version by use of a chiral ligand in the copper catalyst 

(Figure 1e). Here, we report an asymmetric catalysis using 
aromatic aldehydes as chiral a-alkoxyalkyl anions (Figure 1a, 
left). The reaction between aromatic aldehydes and aryl or 
allyl electrophiles with a silylboronate by the merger of a chi-
ral copper–N-heterocyclic carbene (NHC) catalyst and a palla-
dium–bisphosphine catalyst in a synergistic manner occurred 
with high enantioselectivities to deliver the three-component 
coupling products, chiral silyl-protected secondary alcohol 
derivatives.8  

 
Figure 1. Generation of chiral a-alkoxyalkyl anions. 

 
On the basis of our preliminary research with the achiral 

catalyst system,6 various chiral NHC ligands on copper were 
examined for catalytic activity and enantiocontrol in the cross-
coupling between o-tolualdehyde 1a (0.3 mmol) and bromo-
chlorobenzene 2a (0.2 mmol) with (dimethylphenylsi-
lyl)boronic acid pinacol ester [PhMe2SiB(pin)] (0.3 mmol) in 
the presence of palladium(II) acetylacetonate [Pd(acac)2] (5 
mol %), 1,1'-bis(diisopropylphosphino)ferrocene (DIPPF) (10 
mol %), CuCl (25 mol %), a chiral imidazolinium salt (25 
mol%) and NaOSiMe3 (0.25 mmol) as a base in toluene at 
60 °C (Table 1).9 Copper–NHC complexes were prepared in 
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situ from CuCl, L·HBF4, and NaOSiMe3. The ring-saturated 
C2-symmetric NHC ligand [(S,S)-L1],10 which has two stereo-
genic carbon centers in the imidazolidine ring with two mesit-
yl groups at both nitrogen atoms, possessed slight catalytic 
activity (20%) and enantioselectivity (21% ee) (entry 1). Simi-
lar chiral NHC ligands bearing 3,5-di-t-butyl-phenyl (L2), 2-
isopropyl-phenyl (L3)11 or 2-biphenyl (L4)12 groups instead of 
the mesityl groups in L1 were examined (entries 2–4). Among 
them, L4 was the most effective for the product yield (60%) 
and enantioselectivity (86% ee) (entry 4). 
 
Table 1. Screening of chiral NHC ligands and bases for cross-coupling 
between 1a and 2a.a The HBF4 salts of L2, L5–L7 were newly 
synthesized in this study. 

 
entry Cu cat. 

(mol %) 
NHC base temp. yield 

(%) 
ee  
(%)b 

1 25 L1 NaOSiMe3 60 20 21 
2 25 L2 NaOSiMe3 60 20 44 
3 25 L3 NaOSiMe3 60 51 74 
4 25 L4 NaOSiMe3 60 60 86 
5 25 L5 NaOSiMe3 60 54 87 
6 25 L6 NaOSiMe3 60 72 89 
7 25 L7 NaOSiMe3 60 73 74 
8c 15 L6 NaOSiMe3 60 78 89 
9c 15 L6 NaOSiMe3 40 52 90 
10 25 L6 NaOtBu 60 13 57 
11 25 L6 NaOMe 60 0 – 

 
a Reaction was carried out with 1a (0.3 mmol), 2a (0.2 mmol), 
PhMe2SiBpin (0.3 mmol), Pd(acac)2 (5 mol%), DIPPF (10 mol %), 
CuCl/L·HBF4 (15 or 25 mol %), alkoxide base (0.25 mmol) in toluene 
(1.0 mL) at 40 or 60 °C for 3 h. DIPPF, 1,1’-
bis(diisopropylphosphino)ferrocene. b Enantiomeric excess determined by 
HPLC analysis. c NaOSiMe3 (0.23 mmol) was used. 

 
Next, we prepared a new chiral NHC ligand (L5) bearing a 

2-(2,6-difluorophenyl)phenyl group instead of one of the 2-
biphenyl groups in L4 to modify the steric hindrance in close 
proximity to the copper center. The Cu–L5 catalyst system 
imparted an enantioselectivity (87% ee) slightly better than the 
system with the non-fluorinated NHC ligand (L4) (entry 5). 
Changing the 2-biphenyl group of L5 to a 2-isopropylphenyl 
group (L6) increased the product yield (72%) and enantiose-

lectivity (89% ee) (entry 6). The Cu loading could be reduced 
to 15 mol % with a slightly increased yield and the high enan-
tioselectivity remained unchanged (entry 8). The enantioselec-
tivity was further increased to 90% ee by lowering the reaction 
temperature to 40 °C (entry 9). The use of the corresponding 
non-fluorinated NHC ligand L7 resulted in a significant reduc-
tion in enantioselectivity (entry 7). Thus, the fluoro groups in 
L6 were important. 

The steric and electronic nature of the alkoxide moiety of 
the base was important (Table 1). Thus, the use of more basic 
NaOtBu instead of NaOSiMe3 diminished the product yield 
and enantioselectivity (entry 10). This result might be due to 
the formation of achiral silyl(tert-butoxy)cuprate species upon 
partial dissociation of NHC ligand.13 A smaller and weaker 
alkoxide base NaOMe induced no reaction (entry 11). 
 
Table 2. Substrate scopea 

 
a Reaction was carried out with 1 (0.3 mmol), 2 (0.2 mmol), PhMe2SiBpin 
(0.3 mmol), Pd(acac)2 (5 mol %), DIPPF (10 mol %), CuCl/L6·HBF4 (15 
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Enantiomeric excess was determined by HPLC analysis. b The reaction 
temperature was increased to 60 °C. c Pd(acac)2 (2.5 mol %), DIPPF (5 
mol %), CuCl/L6·HBF4 (10 mol %), and NaOSiMe3 (0.22 mmol) were 
used and the reaction temperature was increased to 80 °C.  

 
Table 2 summarizes the results of the reactions of various 

aryl bromides under the Cu–L6 catalyst system.14 Bromoben-
zene or 2-bromonaphthalene reacted with 1a with high enanti-
oselectivities (3ab and 3ac). Due to the mildness of the reac-
tion conditions, various functional groups were tolerated. For 
example, aryl bromides bearing fluoro, trifluoromethyl, tri-
fluoromethoxy, methoxycarbonyl, methoxy, benzyl ether, 
THP ether and pivaloyl substituents at the meta- or para-
positions of the aromatic ring reacted to afford the correspond-
ing chiral benzhydryl silyl ether products with high enantiose-
lectivities (88–92% ees) (3ad–3ak). Heteroaryl bromides such 
as bromopyridine or bromothiophene were compatible with 
the enantioselective reaction (3al and 3am).15 

The range of aldehydes is also shown in Table 2.14 Benzal-
dehyde, p-tolualdehyde or p-tert-butyl-benzaldehyde reacted 
with 2a with high enantioselectivities (3ba–3da). Functional-
ized benzaldehydes such as m-anisaldehyde, piperonal or 3-
fluorobenzaldehyde underwent the coupling, giving the corre-
sponding chiral benzhydryl silyl ethers with a useful level of 
enantioselectivities (3ea–3ga).  The reaction with 3-
thiophenecarboxaldehyde afforded the coupling product with 
moderate enantiocontrol (3ha). Aliphatic aldehydes and aro-
matic or aliphatic ketones did not participate in the reaction 
(data not shown).16 

 

 
Figure 2. Mechanistic considerations. 

 
A reaction mechanism consisting of two distinct catalytic 

cycles, namely copper and palladium catalysis, is illustrated in 
Figure 2a.6a Initially, the reaction of a chiral NHC-ligated cop-
per complex (A), a silylboronate and NaOSiMe3 forms a silyl-
copper(I) species (B) and trimethylsilyloxyboronate. The en-
antioselective addition of silylcopper(I) (B) across the C=O 
bond of aldehyde 1 produces a stereodefined a-silyl-
substituted copper(I) alkoxide (C),4a which subsequently un-
dergoes stereospecific [1,2]-Brook rearrangement to give chi-
ral a-silyloxybenzylcopper(I) species (D).17 Next, the stereo-
specific Cu/Pd transmetalation between D and arylpalladi-
um(II) bromide (F), which is generated from oxidative addi-
tion of aryl bromide 2 to palladium(0)-bisphosphine complex 
(E), produces the corresponding chiral organopalladium(II) 
complex (G).18 Finally, reductive elimination from G releases 
the enantioenriched product 3, regenerating the palladium(0) 
complex (E) for the next catalytic cycle. 

To obtain stereochemical information on the present palla-
dium/copper-catalyzed pathway, two-component reactions 
between aldehydes and a silylboronate were examined. For 
this study, we used L4 instead of L6 due to the instability of 
the in situ generated stoichiometric copper complex with L6. 
The copper-catalyzed carbonyl addition of a silylboronate to 
benzaldehyde 1b using trimethylsilanol as a proton source 
occurred to give (S)-a-silyl-substituted benzyl alcohol 4b in 
52% isolated yield with 82% enantioselectivity (Figure 2b).19 
Next, the reaction of a stoichiometric amount of a chiral silyl-
copper(I) complex, which was prepared in situ from CuCl, 
L4·HBF4, PhMe2SiB(pin) and NaOtBu (1/1/1/2), with deuter-
ated benzaldehyde-a-d1 (1b-d) was also performed without 
any proton sources (Figure 2c). The reaction gave, after addi-
tion of acetic acid, chiral deuterated benzyl silyl ether 5b-d 
with (S) configuration.20,21 The stereochemical outcomes ob-
served in the three-component reactions indicated the copper-
mediated [1,2]-Brook rearrangement proceeded with inversion 
of configuration (C → D, Figure 2a).22, 23 Additionally, com-
parison of the absolute configuration of 5b-d with that of the 
benzhydryl silyl ether (3ba) obtained by the coupling reaction 
with aryl bromide (Scheme 1d) indicated that the Cu/Pd 
transmetalation between a stereodefined a-
silyloxybenzylcopper(I) species (D) and arylpalladium(II) 
intermediate (F) could occur with retention of configuration  
(D → G, Figure 2a).24 

Finally, the present reaction was not limited to aryl electro-
philes as coupling partners, but was also applicable to different 
coupling partners. For example, the synergistic palladi-
um/copper-catalyzed cross-coupling reaction using allylic 
carbonate 6a occurred to produce enantioenriched chiral 
homoallylic alcohol derivative 7aa with 80% ee in 70% yield 
(Scheme 1).14 Without significant modification of the reaction 
conditions, especially with respect to the chiral NHC ligand, a 
high enantiomeric purity of the product is guaranteed. 
 
Scheme 1. Allylic cross-coupling. 
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In conclusion, asymmetric reactions between aromatic alde-
hydes and aryl bromides with a silylboronate occurred with 
high enantioselectivities to yield the three-component coupling 
products, chiral silyl-protected secondary alcohol derivatives. 
The reaction was enabled by the merging of a new chiral cop-
per–N-heterocyclic carbene catalyst and a palladium–
bisphosphine catalyst in a synergistic manner. Preliminary 
results showed that this palladium/copper catalysis is also 
amenable to the reaction of an allylic carbonate as the cou-
pling partner. Our method features the catalytic generation of 
enantioenriched chiral a-alkoxyalkylcopper(I) intermediates 
from aldehydes and their subsequent palladium-catalyzed ste-
reospecific cross-coupling with aryl or allyl electrophiles. This 
protocol provides a new umpolung strategy for catalytically 
forming a chiral a-alkoxyalkyl anion from an aromatic alde-
hyde for use in asymmetric synthesis. Mechanistic investiga-
tions aided by theoretical calculations are currently ongoing in 
our laboratory. 
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