ARTICLE IN PRESS

Bioorganic & Medicinal Chemistry Letters xxx (2018) xxx-xxx

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Synthesis and cytotoxicity of novel imidazo[4,5-*d*]azepine compounds derived from marine natural product ceratamine A

Xuan Pan^a, Lulu Tao^a, Ming Ji, Xiaoguang Chen, Zhanzhu Liu*

State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, PR China

ARTICLE INFO

Article history: Received 21 December 2017 Revised 1 February 2018 Accepted 2 February 2018 Available online xxxx

Keywords: Ceratamine A Microtubule Heck reaction Anticancer

ABSTRACT

A series of novel imidazo[4,5-*d*]azepine compounds derived from marine natural product ceratamine A were designed and synthesized in 7 steps. Most compounds exhibited comparable cytotoxicity against five human cancer cell lines (HCT-116, HepG2, BGC-823, A549 and A2780) to natural product ceratamine A. Compound **1k**, bearing methoxy group at C-14, C-15 and C-16, showed the best *in vitro* cytotoxicity, which was better than ceratamine A. The structure and activity relationships study showed that the benzyloxymethyl group on *N*-3 played an important role on the cytotoxicity.

© 2018 Elsevier Ltd. All rights reserved.

Over the past 30 years, marine natural products have gained a lot of attention as an important source of drug candidates.¹ Several anticancer drugs derived from marine natural products have achieved great successes in clinic.² This trend indicates that marine natural products would continue to play a key role in anticancer drug discovery.³

Ceratamine A (Fig. 1) is a heterocyclic alkaloid isolated from marine sponge *Pseudoceratina* sp., which displayed potent antimitotic activity through promoting tubulin polymerization. The fact that ceratamine A has a totally different binding site on microtubule from paclitaxel makes it a promising lead compound in anticancer drug discovery.⁴ However, the lack of availability from natural source brings huge difficulty in its further biological evaluation.

In our previous work, we have reported an efficient approach to synthesize ceratamine A^5 and its analogues.⁶ Some analogues exhibited slight increases in cytotoxicity compared with ceratamine A, and a preliminary structure and activity relationship was obtained. It was found that the introduction of bulky groups at C-14 and C-16 could increase the cytotoxity, and that the substituents on *N*-7 played a significant role on high potency. During the evaluation of cytotoxicity, we were pleased to find that the intermediate **1a**⁶ with the imidazo[4,5-*d*]azepine skeleton exhibited comparable cytotoxicity against four human cancer cell lines

* Corresponding author.

^a These authors contributed equally.

https://doi.org/10.1016/j.bmcl.2018.02.004 0960-894X/© 2018 Elsevier Ltd. All rights reserved.

Fig. 1. Marine natural product ceratamine A.

(HCT-116, HepG2, BGC-823 and A2780) to ceratamine A and better cytotoxicity against A549 than ceratamine A (Fig. 2). Because the synthesis of intermediate **1a** was apparently easier than ceratamine A and its analogues, we attempted to synthesize some derivatives with the imidazo[4,5-d]azepine skeleton in order to discover potential anticancer candidate with simpler structure.

In this paper, a series of analogues of compound **1a** as ceratamine A simplified derivatives were synthesized in 7 steps as depicted in Scheme 1. The synthetic route generally follows that reported by us previously.⁶ The key step was to employ Heck reaction⁷ to construct the imidazo[4,5-*d*]azepine core. Firstly, amine **5** was easily prepared from commercially available histamine dihydrochloride over 4 steps. Treatment of amine **5** with substituted cinnamic acids **6** generated by Knoevenagel condensation⁸ afforded compounds **7a-d** in satisfying yields. Benzylation of **7ad** with NaH afforded amides **8a-n**. The target compounds **1a-n**

E-mail address: liuzhanzhu@imm.ac.cn (Z. Liu).

X. Pan et al./Bioorganic & Medicinal Chemistry Letters xxx (2018) xxx-xxx

were then successfully prepared through Heck reaction. We also synthesized compound **9a** to check the effect of the benzyloxymethyl (BOM) group on the cytotoxicity (Scheme 2). The structures of the target compounds were confirmed by ¹HNMR, ¹³CNMR and HRMS data. It should be noted that the methylene protons signals of 7-membered ring broadened in the ¹H NMR spectra due to the flipping of 7-membered lactam ring⁹ (see the Supplementary data). This phenomenon was well studied by variable-temperature ¹H NMR in our previous work.⁶

The cytotoxicity of these compounds against five human cancer cell lines (HCT-116, HepG2, BGC-823, A549 and A2780) was evaluated by the standard MTT assay. The results are shown in Table 1.

Scheme 2. Reagents and conditions: (a) AlCl₃, CH₂Cl₂, r.t., 1 h.

Table 1				
Cytotoxicity of compounds	1a-n	and	9a.	

Compound	IC ₅₀ (µmol/	$IC_{50} (\mu mol/L)^a$			
	HCT-116	HepG2	BGC-823	A549	A2780
Ceratamine A	12.4	7.8	20.0	26.8	11.2
1a ^b	20.0	13.9	20.4	9.9	20.4
1b	7.94	44.65	39.08	11.38	21.19
1c	11.19	39.40	72.94	19.56	24.77
1d	6.23	40.87	52.60	22.47	31.29
1e	3.80	34.30	14.57	16.05	26.28
1f	13.95	72.54	80.99	18.34	48.29
1g	10.50	47.94	75.70	11.79	22.20
1h	31.05	44.40	71.59	46.80	43.11
1i	24.69	53.32	31.28	25.55	25.25
1j	8.46	18.03	27.84	20.58	23.85
1k	8.90	10.04	12.92	8.56	8.97
11	67.06	>100	>100	36.02	>100
1m	36.00	51.41	42.62	52.49	28.24
1n	19.36	23.71	93.26	26.43	72.83
9a	>100	>100	>100	51.14	>100

^a The IC₅₀ values represent the inhibitory concentration of 50% of cell growth.

^b Compound **1a** was synthesized previously.⁶

Scheme 1. Reagents and conditions: (a) Boc₂O, 4N NaOH, dioxane/H₂O (2:1), r.t., 2 h, 95%; (b) NBS, THF, r.t. 5 h, 92%; (c) BOMCI, Et₃N, THF, r.t., overnight, 82%; (d) CF₃COOH, CH₂Cl₂, r.t., 4 h, 93%; (e) EDCI, DMAP, CH₂Cl₂, r.t., 30 h; (f) NaH, DMF, r.t., overnight, 76–92% (over 2-step); (g) Pd(PPh₃)₄, Methyl dicyclohexylamine, DMF, 120 °C, 20 h, 50–65%.

2

As illustrated in Table 1, most compounds exhibited cytotoxicity against these five cell lines with IC_{50} values of micromolar level. It is worth noting that compound **1a** exhibited better cytotoxicity than the analogues **1b-j** and **1n**, indicating that substituents at R^2 (whether bulky groups, electron-donating groups or electron-withdrawing groups) may be not preferable. It is evident that R^1 had an appreciable influence on the cytotoxicity. In particular, compound **1k** ($R^1 = 3$, 4, 5-OCH₃) had the most potent inhibitory activities, even better than the natural product ceratamine A. However, introduction of CF₃ group at C-15 (compound **1m**) or pyridine ring (compound **1l**) led to a decrease in cytotoxicity. Compound **9a**, with the benzyloxymethyl (BOM) group being cleaved, exhibited obviously weaker cytotoxicity than compound **1a**, which indicated that the benzyloxymethyl (BOM) group on *N*-3 was critical for high potency.

In conclusion, a series of ceratamine A simplified derivatives possessing imidazo[4,5-*d*]azepine core was designed and synthesized from histamine dihydrochloride in 7 steps. Compared with natural product ceratamine A, these newly synthesized compounds exhibited comparable cytotoxicity. Especially, compound **1k**, bearing methoxy group at C-14, C-15 and C-16, showed even better cytotoxicity than ceratamine A. In addition, the synthesis of these compounds was more concise and the total yield was higher (7-step, 26.4–38.7%) than that of ceratamine A and its analogues (12-step, 7.8–13.8%). These results demonstrated that this type of ceratamine A simplified derivatives were more appropriate for further exploration on developing efficient anticancer candidates. Further structural optimization and biological studies of compound **1k** are in progress and will be reported in due course.

Acknowledgment

This work was financially supported by CAMS Innovation Fund for Medical Sciences (CIFMS, 2016-I2M-3-009).

A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.bmcl.2018.02.004.

References

- 1. Molinski TF, Dalisay DS, Lievens SL, Saludes JP. Nat Rev Drug Discov. 2009;8:69–85.
- 2. Newman DJ, Cragg GM. J Nat Prod. 2007;70:461.
- 3. Montaser R, Luesch H. Future. Med Chem. 2011;3:1475.
- 4. (a) Manzo E, van Soest R, Matainaho L, Roberge M, Andersen RJ. Org Lett. 2003;5:4591-4594:
- (b) Karjala G, Chan Q, Manzo E, Andersen RJ, Roberge M. Cancer Res. 2005;65:3040-3043.
- 5. Feng QG, Tao LL, Liu ZZ. J Org Chem. 2013;78:12814.
- 6. Tao LL, Pan X, Ji M, Chen XG, Liu ZZ. Tetrahedron. 2017;73:2159–2171.
- 7. Waly MA. Prakt Chem. 1994;336:86-88.
- Zhang P, Hu HR, Huang ZH, Lei JY, Chu Y, Ye DY. Bioorg Med Chem Lett. 2012;22:7232–7236.
- 9. (a) Donets PA, Van der Eycken EV. Org Lett. 2007;9:3017–3020; (b) Perkin-Elmer NMR. Quarterly. 1975;15.