A NEW CONVENIENT METHOD FOR β -LACTAM FORMATION FROM β -AMINO ACIDS USING BIS(5'-NITRO-2'-PYRIDYL) 2,2,2-TRICHLOROETHYL PHOSPHATE

Sunggak Kim,^{*} Suk Bok Chang, and Phil Ho Lee Department of Chemistry Korea Advanced Institute of Science and Technology, Seoul 131, Korea

Summary: Bis(5'nitro-2'-pyridyl) 2,2,2-trichloroethyl phosphate is found to be a new efficient Condensing agent for β -lactam formation from β -amino acids in acetonitrile.

Although many synthetic methods for β -lactam formation have been developed,¹ one of the most important methods is β -lactam formation via the dehydration of β -amino acids. Thus, several efficient condensing agents such as triphenyl phosphine/2,2'-dipyridyl disulfide² and 2-chloro-1-methylpyridinium iodide³ have been reported in recent years.⁴ Although organophosphate types of condensing agents have attracted a great deal of interest in the peptide synthesis,⁵ as far as we are aware, no successful report has appeared for their applications to form β -lactams from β -amino acids by intramolecular condensation. We wish to report that bis(5'-nitro-2'-pyridyl) 2,2,2-trichloroethyl phosphate is very effective for the β -lactam formation from β -amino acids.

$$POCl_3 + CCl_3CH_2OH \xrightarrow{py} [CCl_3CH_2O-P-Cl_2] + HO \xrightarrow{0} HO_2 \xrightarrow{0} CCl_3CH_2O-P-[-O \xrightarrow{0} HO_2]_2$$

The reagent was conveniently prepared by the reaction of phosphorous oxychloride with 1 equiv of 2,2,2-trichloroethanol and 3 equiv of pyridine in dichloromethane at 0 °C for 1.5 h and then at room temperature for 30 min followed by the addition of 2 equiv of 2-hydroxy-5-nitro-pyridine and subsequent stirring at room temperature for 2 h. The reagent was obtained in 75% yield as stable white crystalline solids.⁶

Among the solvents tested in this study, acetonitrile gave the best results and is generally recommended, although dichloromethane and tetrahydrofuran were also effective to some extent. In a typical experiment, 3-benzylaminobutyric acid was suspended in acetonitrile (0.01M solution), the reagent (1.1 equiv) and triethylamine (2.1 equiv) were added, and the mixture was stirred at room temperature for 10 h.⁷ After aqueous workup with Na₂ O_3 solution and removal of the solvent in vacuo, the crude product was further purified by passing through a short column of silica gel. As shown in Table 1, N-substituted β -amino acids were cleanly cyclized into the corresponding β -lactams in high yields in acetonitrile at room temperature in most cases. However, the present method appeared to be less effective in the formation of β -lactams from N-unsubstituted β -amino acids. Although clear conclusions regarding the reaction mechanism await further study, the reaction may proceed via the intermediacy of a carboxylic-phosphoric mixed anhydride.

The noteworthy features of the present method include (i) a successful application of a new organophosphate condensing agent for β -lactam formation from β -amino acids, (ii) easy separation of β -lactams from the reaction mixture, (iii) mild conditions, and (iv) high yields for N-substituted β -lactams.

c, $R_1=CH_3$; $R_2=R_3=H$; $R_4=CH_2C_6H_5$ h, $R_1=R_2=H$; $R_3=CH_3$; $R_4=n-C_8H_{17}$ d, $R_1=H$; $R_2=R_3=CH_3$; $R_4=CH_2C_6H_5$ i, $R_1=R_2=R_4=H$; $R_3=n-C_3H_7$ e, $R_1=R_2=H$; $R_3=n-C_3H_7$; $R_4=CH_2C_6H_5$ j, $R_1=R_4=H$; $R_2=R_3=CH_3$

β-lactam	time, h	isolated yield, %	β-lactam	time, h	isolated yield, %
IIa	5b	70	IIf	6	91
IIb	10	84	IIg	6	87
IIc	10	84	IIh	5	80
IId	14	93	IIi	12 ^b	44
IIe	6	. 85	IIj	12 ^b	40

Table 1. Synthesis of β -Lactams from β -Amino Acids^a

^aThe reaction was carried out with an 1:1 mixture of β -amino acids and the reagent in the presence of 2 equiv of triethylamine in acetonitrile (0.01M solution at room temperature. ^b The reaction was done at reflux.

Acknowledgment. We thank Korea Science and Engineering Foundation for financial support.

References

- For excellent reviews, see: (a) N. S. Isaacs, <u>Chem. Soc. Rev.</u>, <u>15</u>, 181 (1976). (b) A. K. Mukerjee and A. K. Singh, <u>Tetrahedron</u>, <u>34</u>, 1731 (1978). (c) K. Hirai, <u>Synth. Org. Chem. Jpn.</u>, <u>38</u>, 97 (1980).
- 2. S. Kobayashi, T. Iimori, T. Izawa, and M. Ohno, J. Am. Chem. Soc., 103, 2406 (1981).
- 3. H. Huang, N. Iwasawa, and T. Mukaiyama, Chem. Lett., 1465 (1984).
- 4. (a) N. Ikota, H. Shibata, and K. Koga, <u>Heterocycles</u>, <u>14</u>, 1077 (1980). (b) Y. Watanabe and T. Mukaiyama, <u>Chem. Lett.</u>, 443 (1981). (c) M. Klich and G. Teutsch, <u>Tetrahedron Lett.</u>, 3849 (1984).
- For very recent examples, see: (a) M. Miyake, M. Kirisawa, and N. Tokutake, <u>Chem. Lett.</u>, 123 (1985). (b) R. D. Tung and D. H. Rich, <u>J. Am. Chem. Soc.</u>, <u>107</u>, 4342 (1985). (c) S. Kim H. Chang, and Y. K. Ko, <u>Tetrahedron Lett.</u>, 1341 (1985). (d) S. Kim and S. S. Kim, <u>J. Chem. Soc.</u>, <u>Chem. Commun.</u>, 719 (1986).
- 6. mp 158-160 °C; ¹H-NMR(CDCl₃)δ 5.05 (d, 2H, J=8 Hz), 7.23 (d, 2H, J=8 Hz), 8.60 (m, 2H), 9.25 (d, 2H, J=4 Hz); IR(KBr) 1475, 1360, 1255 cm⁻¹.
- The reagent may be converted into 5'-nitro-2'-pyridyl 2,2,2-trichloroethyl phosphoric acid after the reaction, although its structure was not determined by isolation. (Received in Japan 20 January 1987)