Co(III)(salen)-catalyzed HKR of two stereocentered alkoxy- and azido epoxides: a concise enantioselective synthesis of (*S*,*S*)-reboxetine and (+)-*epi*-cytoxazone[†]

R. Santhosh Reddy, Pandurang V. Chouthaiwale, Gurunath Suryavanshi, Vilas B. Chavan and Arumugam Sudalai*

Received 29th March 2010, Accepted 5th May 2010 First published as an Advance Article on the web 4th June 2010 DOI: 10.1039/c0cc00650e

The HKR of racemic syn- or anti- alkoxy- and azido epoxides catalyzed by Co(salen) complex affords a practical access to a series of enantioenriched syn- or anti- alkoxy- and azido epoxides and the corresponding 1,2-diols. This strategy has been successfully employed in the concise, enantioselective synthesis of bioactive molecules such as (S,S)-reboxetine and (+)-epi-cytoxazone.

The enantiomerically pure *syn-* or *anti-* alkoxy- and azido epoxides and the corresponding diols are valuable 'building blocks' for asymmetric synthesis of bioactive pharmaceuticals and as chiral auxiliaries and ligands.¹ In principle, access to these building blocks may be provided by several methods, such as Sharpless epoxidation and dihydroxylation,² as well as other multistep methods.³ These latter methods necessitate protection/deprotection of various functional groups, thereby limiting the overall yield and the enantioselectivity of the process, particularly unsuitable for atom economic synthesis.

Jacobsen's Hydrolytic Kinetic Resolution (HKR), that uses readily accessible Co-based chiral salen complexes as catalyst and water as the only reagent to afford chiral epoxides and diols of high ee in excellent yields, has been comprehensively studied in recent years to reveal its mechanistic and synthetic aspects.⁴ Despite these achievements, HKR has only been applied to the resolution of simple terminal epoxides with one stereocentre.⁵ To the best our knowledge, study related to HKR of functionalized epoxides with two stereocentres is rare.⁶ In the present work, we have thus extended the scope of the applicable substrates to cover multi-functionalized molecules with two stereocentres. The aim of such an investigation is to access enantiomerically enriched alkoxy- or azido epoxides and diols by a direct and simple method from the respective racemic materials, thus complementing the other tedious routes.² Due to their importance as 'building blocks' for the synthesis of highly functionalized molecules, racemic alkoxy or azido epoxides are subjected to HKR with chiral Co-catalysts. We now report a flexible, novel method that employs HKR of racemic alkoxy and azido epoxides to generate two stereocentres of high optical purities in a single step (Scheme 1).

E-mail: a.sudalai@ncl.res.in; Fax: +91-02025902675 † Electronic supplementary information (ESI) available: Full experimental procedures, ¹H NMR, and ¹³C NMR, spectra of all new

Scheme 1 Co-catalyzed HKR of syn-alkoxy and azido epoxides.

We envisioned that application of the HKR method to racemic functionalized epoxides would enable us to obtain both enantiomers of syn or anti epoxides and 1,2-diols depending upon the chiral ligand chosen. The racemic syn- and antialkoxy and azido epoxides, the substrates for HKR, were then efficiently prepared in highly diastereoselective manner from the corresponding (E)- and (Z)-allylic alcohols (8 & 9), respectively, involving essentially a two-step reaction sequence of NBS-bromination in the presence of alcohols or azides, as the case may be, followed by treatment with base to form the corresponding racemic epoxides (Schemes 2 and 3). In this strategy, the relative stereochemistry between the alkoxy or azido and epoxide groups is established prior to the HKR step itself and in this way a simple asymmetric reaction can be used to form the key enantiomerically pure alkoxy- or azido epoxides with two stereocentres.

To test this proposal, we prepared the *syn*-alkoxy epoxide 2a from allylic alcohol **8** by a modified procedure reported in the literature.⁷

Scheme 2 Synthesis of racemic syn-alkoxy- and azido epoxides.

Scheme 3 Synthesis of racemic anti-alkoxy- and azido epoxides.

compounds. See DOI: 10.1039/c0cc00650e

Chemical Engineering and Process Development Division, National Chemical Laboratoty, Pashan Road, Pune, 411008, India.

Table 1 Co-catalyzed HKR of syn-benzyloxy- and azido epoxides

2 & 3	R	X	Epoxides			Diols		
			4 & 5	Yield $(\%)^a$	ee $(\%)^d$	6 & 7	Yield $(\%)^a$	ee (%)
2a	Н	OBn	4a	45	98	6a	44	98 ^b
2b	OMe	OBn	4b	49	96	6b	47	98^{b}
2c	Me	OBn	4c	48	96	6c	45	96 ^b
2d	Cl	OBn	4d	45	95	6d	42	98^c
2e	Br	OBn	4e	44	98	6e	47	98^c
2f	SMe	OBn	4f	48	96	6f	47	97^c
2g	Н	OMe	4g	48	97	6g	47	98^b
2h	OMe	OMe	4h	47	98	6ĥ	46	97^{b}
2i	Me	OMe	4 i	44	97	6i	45	98^b
2j	Br	OMe	4i	45	97	6j	42	98^c
2k	SMe	OMe	4k	47	98	6k	46	97^c
3a	\mathbf{H}^{e}	N_3	5a	48	96	7a	47	98^{b}
3b	OMe ^e	N_3	5b	48	98	7b	48	97^{b}

^{*a*} Isolated yield after column chromatographic purification. ^{*b*} ee determined by chiral HPLC analysis (see the ESI \dagger). ^{*c*} ee determined by Mosher's ester analysis. ^{*d*} ee determined by Mosher's ester analysis of the corresponding mono protected diol. ^{*e*} Reaction carried at 0 °C.

Initially, when HKR of racemic syn-benzyloxy epoxide (2a) was performed with (R,R)-salen Co(OAc) complex (1) $(0.5 \text{ mol}\%)^8$ and H₂O (0.5 equiv.), the corresponding chiral epoxide 4a (45%) and diol (6a) (44%) were isolated in high yields and optical purity. Encouraged by the observation of high enantioselectivity [4a (98%) and 6a (97%)] in this reaction, we examined its scope by subjecting several racemic syn-alkoxy- and azido epoxides (2a-k & 3a-b) to HKR, which indeed proceeded smoothly, with complete regiocontrol, to give the respective enantiopure epoxides (4 & 5) and diols (6 & 7) in excellent yields and ees. Table 1 shows the results of such a study. The reaction exhibited extraordinary generality with respect to the degree of functionalization of epoxides. The configuration of both chiral alkoxy- and azido epoxides (4 & 5) and diols (6 & 7) was ascertained by comparing their optical rotations with those reported in the literature.^{3c,d}

Similarly, *anti*-epoxides (10a & 11a), were readily prepared from *cis*-butenediol 9 by following a three-step reaction sequence (Scheme 3). When subjected to HKR under identical conditions, these racemic epoxides (10 & 11) gave the

Table 2 Co-catalyzed HKR of anti-benzyloxy epoxides

corresponding enantiopure *anti*-epoxides (12 & 13) and diols (14 & 15) in high isolated yields and ees. The results are presented in Table 2.

A wide range of synthetic applications of this HKR procedure is readily envisaged and is amply illustrated in the short synthesis of (S,S)-reboxetine (19), a selective norepinephrine reuptake inhibitor (NRI),⁹ and (+)-*epi*-cytoxazone (21), a cytokine modulator.¹⁰ For (S,S)-reboxetine, chiral epoxide (4a) was chosen as the starting material (Scheme 4).

Regiospecific opening of epoxide **4a** with 30% NH₄OH gave amino alcohol **16** in 83% yield, which was condensed with chloroacetyl chloride under basic conditions to afford imide **17** in 72% yield. Alcohol **18** was obtained in 88% yield by a standard sequence of reactions. The transformation of **18** to (S,S)-reboxetine (**19**) was achieved in 98% ee.

Synthesis of (+)-*epi*-cytoxazone (**21**) was readily achieved in 99% ee from chiral azido diol **7b** in a concise,^{2e} two-step reaction sequence which involved azide reduction with PMHS to give amino diol **20**, followed by base-mediated cyclization (Scheme 5).

		10a (25 11a (27 11b (27	$ \begin{array}{c} \overbrace{\\ (S,S)=1}{(S,S)=1} (S,S) \\ \hline \\ \hline \\ (SR, 3RS) \\ (SS, 3RS) \\ (SS, 3SR) \\ (SS, 3SR) \\ \hline \\ (SS, 3SR) \\ \hline \\ \end{array} $	0.5 mol%), 0.5 equiv.), C, 14 h 12a (25 13a (2F 13b (2F	$ \begin{array}{c} $	ОН ŌН & 15			
	R	Х	Epoxides			Diols			
10 & 11			12 & 13	Yield $(\%)^a$	ee $(\%)^d$	14 & 15	Yield $(\%)^a$	ee (%)	
10a 11a 11b	$CH_2OTBS \\ CH_2OTBS^e \\ Ph^e$	OBn N ₃ N ₃	12a 13a 13b	47 48 48	96 96 97	14a 15a 15b	49 46 47	97 ^c 98 ^c 98 ^b	

^{*a*} Isolated yield after column chromatographic purification. ^{*b*} ee determined by chiral HPLC analysis (see the ESI[†]). ^{*c*} ee determined by Mosher's ester analysis. ^{*d*} ee determined by Mosher's ester analysis of the corresponding mono protected diol. ^{*e*} Reaction carried at 0 °C.

Scheme 4 Synthesis of (S,S)-reboxetine (19).

Scheme 5 Synthesis of (+)-epi-cytoxazone (21).

In summary, the (salen)Co(III)-catalyzed HKR of racemic alkoxy- and azido epoxides provides a highy practical route to enantiopure *syn-* or *anti-*alkoxy- and azido epoxides and the corresponding 1,2-diols in a single step. The reaction is convenient to carry out under mild conditions displaying a wide range of substrate scope. We believe that this HKR strategy will find applications in the field of asymmetric synthesis of bioactive molecules owing to the flexible nature of the synthesis of racemic alkoxy- and azido epoxides and the ready availability of catalyst in both enantiomeric forms.

R.S.R and P.V.C. thank CSIR New Delhi, for the award of senior research fellowships and DST (No. SR/S1/OC-72/2006) New Delhi, for financial support. The authors are also thankful to Dr B. D. Kulkarni, Head, Chemical Engineering and Process Development Division, for his constant encouragement.

Notes and references

 (a) M. C. Desai, S. L. Lefkowitz, P. F. Thadeio, K. P. Longo and R. M. Snider, J. Med. Chem., 1992, 35, 4911–4913; (b) X.-P. Fang, J. E. Anderson, C.-J. Chang, P. E. Fanwick and J. L. McLaughlin, J. Chem. Soc., Perkin Trans. 1, 1990, 1655–1661; (c) X.-P. Fang, J. E. Anderson, C.-J. Chang, J. L. McLaughlin and P. E. Fanwick, *J. Nat. Prod.*, 1991, **54**, 1034–1043; (*d*) Y. A. Hannun and R. M. Bell, *Science*, 1989, **243**, 500–507; (*e*) J. F. Bower, R. Jumnah, A. C. Williams and J. M. J. Williams, *J. Chem. Soc.*, *Perkin Trans. 1*, 1997, 1411–1420.

- (a) M. Iwashima, T. Kinsho and A. B. Smith, *Tetrahedron Lett.*, 1995, **36**, 2199–2202; (b) H. Nozaki, Y. Nnbo and J. Otera, *Tetrahedron*, 1991, **47**, 7625–7634; (c) K. Ogasawara, M. Yanase and S. Takano, *Synthesis*, 1989, 39–40; (d) D. Prat and R. Lett, *Tetrahedron Lett.*, 1986, **27**, 707–710; (e) A. Grajewska and M. D. Rozwadowska, *Tetrahedron: Asymmetry*, 2007, **18**, 803–813; (f) C. Bonini and G. Righi, *Tetrahedron*, 2002, **58**, 4981–5021.
- 3 (a) J. Barluenga, B. Baragana, A. Alonso and J. M. Concellon, J. Chem. Soc., Chem. Commun., 1994, 969–970; (b) J. Barluenga, B. Baragana and J. M. Concellon, J. Org. Chem., 1995, 60, 6696–6699; (c) C. Gravier-Pelletier, M. Milla, J. C. Depezay and L. Y. Merrer, Eur. J. Org. Chem., 2001, 3089–3996; (d) S. K. Cherian and P. Kumar, Tetrahedron: Asymmetry, 2007, 18, 982–987.
- 4 M. Tokunaga, J. F. larrow, F. Kakiuchi and E. N. Jacobsen, *Science*, 1997, **277**, 936–938.
- 5 (a) P. Kumar, S. V. Naidu and P. Gupta, *Tetrahedron*, 2007, 63, 2745–2785; (b) P. Kumar and P. Gupta, *Synlett*, 2009, 1367–1382; (c) Q. Yu, Y. Wu, L. J. Xia, M. H. Tang and Y. L. Wu, *Chem. Commun.*, 1999, 129–130.
- 6 Y. J. Kim and J. Tae, Synlett, 2006, 61-64.
- 7 D. V. Ende and A. Krief, Angew. Chem., Int. Ed. Engl., 1974, 13, 279–280.
- 8 S. E. Schaus, B. D. Brandes, J. F. Larrow, M. Tokunaga, K. B. Hansen, A. E. Gould, M. E. Furrow and E. N. Jacobsen, *J. Am. Chem. Soc.*, 2002, **124**, 1307–1315.
- 9 (a) J. J. Willaman and B. G. Schubert, Alkaloid-Bearing Plants and their Contained Alkaloids. U.S. Department of Agriculture Technical Bulletin, 1961, p. 1234; (b) P. Melloni, A. D. Torre, E. Lazzari, G. Mazzini and M. Meroni, Tetrahedron, 1985, 41, 1393-1399; (c) M. A. Raggi, F. Bugamelli, C. Sabbioni, A. Ferranti, S. Fanali and V. Volterra, J. Pharm. Biomed. Anal., 2002, 27, 209; (d) D. Ohman, B. Norlander, C. Peterson and F. Bengtsson, J. Chromatogr., A, 2002, 947, 247-254; (e) J. Prabhakaran, V. J. Majo, J. J. Mann and J. S. D. Kumar, Chirality, 2004, 16, 168–173; (f) E. Brenner, R. M. Baldwin and Tamagnan, Org. Lett., 2005, 7, 937-939; (g) T. X. Metro, G. D. G. Pardo and J. Cossy, J. Org. Chem., 2008, 73, 707-710; (h) D. M. Aparicio, D. Gnecco, A. Galindo, J. R. Juárez, M. L. Orea, A. Mendoza and J. L. Terán, Tetrahedron: Asymmetry, 2009, 20, 2764-68.
- (a) H. Kakeya, M. Morishita, K. Kobinata, M. Osono, M. Ishizuka and H. Osada, J. Antibiot., 1998, **51**, 1126–1128;
 (b) H. Kakeya, M. Morishita, K. Kobinata, T. Morita, K. Kobayashi and H. Osada, J. Org. Chem., 1999, **64**, 1052–1053.