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ABSTRACT: Primary amines are an important structural
motif in active pharmaceutical ingredients (APIs) and
intermediates thereof, as well as members of ligand libraries
for either biological or catalytic applications. Many chemical
methodologies exist for amine synthesis, but the direct synthesis of primary amines with a fully substituted α carbon center is an
underdeveloped area. We report a method which utilizes photoredox catalysis to couple readily available O-benzoyl oximes with
cyanoarenes to synthesize primary amines with fully substituted α-carbons. We also demonstrate that this method enables the
synthesis of amines with α-trifluoromethyl functionality. Based on experimental and computational results, we propose a
mechanism where the photocatalyst engages in concurrent tandem catalysis by reacting with the oxime as a triplet sensitizer in
the first catalytic cycle and a reductant toward the cyanoarene in the second catalytic cycle to achieve the synthesis of hindered
primary amines via heterocoupling of radicals from readily available oximes.

■ INTRODUCTION

Primary amines are constituent members of ligand libraries as
either final ligands or valuable synthetic intermediates.1 When
the retrosynthesis of a target molecule is designed, amines
represent key points of disconnection, thereby having a
significant impact on the choice of synthetic route. The ability
to utilize amines in the synthesis of a diverse library of final
ligands is directly affected by access to a wide array of primary
amines. General motif 1 is readily found in a number of
patented pharmaceutical agents, a small selection of which is
illustrated in Figure 1.2

The synthesis of amines is an area of research rich in
methodologies which generate products via C−N bond
formation, addition to CN double bonds, and, more
recently, α-C−H functionalization of amines.3 When the
synthesis of a primary amine is required, specifically one with a
fully substituted α-carbon, the number of applicable method-
ologies decreases dramatically. These methodologies can be
sorted into 2e− approaches and 1 e− approaches to amine
synthesis.
The 2e− approach, pioneered by Ellman and co-workers, can

be effected via addition of nucleophiles to tert-butyl
sulfinimides (Scheme 1A).4 When this methodology is applied
to the synthesis of primary amines with fully substituted α-
carbons, the synthesis of ketone-derived sulfinimides often
requires the use of strong Lewis acids and heat. The synthesis
of amines from sulfinimides then requires an organometallic
reagent, followed by deprotection with strong acid. We
postulated that an alternative synthetic methodology based
on a single-electron disconnection could bypass the need to
utilize harsh organometallic reagents and enable the use of
starting materials which are bench stable and easily
synthesized.
The rapid adoption of photoredox catalysis has resulted in a

multitude of methodologies which effect α-amino functional-
ization (Scheme 1B).5 However, the vast majority of these
methodologies require full substitution of the nitrogen with
alkylations, arylation, or activating groups, a strategy that
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Figure 1. Pharmaceutical agents containing primary amines with fully
substituted α-carbons.
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requires subsequent deprotection to yield a primary amine.
Finally, many of these methodologies do not contain examples
for synthesizing amine-bearing fully substituted carbons.
Two notable exceptions to the above statement have

recently appeared. Dixon reported an interesting strategy
toward α-amino functionalization of primary amines utilizing
quinones as in situ oxidants to generate imine intermediates,
with in situ alkylation by both two- and one-electron methods.6

Concurrently with our work, Gilmore reported three examples
of hindered amine syntheses via photoredox catalysis, utilizing
ketones in the presence of excess ammonia gas (1 atm NH3),
strong acid, and excess Hantzsch ester at elevated temper-
ature.7 Our efforts focused on developing benchtop-stable

starting materials, such as oximes and iminium salts, that could
be utilized to generate α-amino radicals under mild conditions.
Herein (Scheme 1C), we report a photoredox-catalyzed

method to synthesize primary amines starting from bench-
stable, easily formed O-benzoyl oximes8 or iminium chloride
salts and a cyanoarene.9 This methodology enables rapid
access to fully substituted primary amines through easily
synthesized bench-stable precursors without the requirement
for subsequent deprotection.

■ RESULTS AND DISCUSSION
We utilized a high-throughput experimentation (HTE)10

approach to identify conditions which would produce our
desired product from oxime 3a and cyanopyridine 4a via
photoredox catalysis (Table 1). This approach enabled rapid
identification of a number of conditions that provide the
desired product 5, with the best results being in DMSO with
diisopropylamine (DIPA) as the terminal reductant and Ir-
based photocatalysts, particularly Ir[dF(Me)ppy]2dtbbpyPF6
(PC1), which furnishes product in 71% yield.
Interestingly, the tris-phenylpyridine derivative, Ir(ppy)3

(PC4), affords only trace product, despite being the most
reducing iridium-based photocatalyst in the screen.11 The
organic photocatalyst 4CZIPN (PC8), which has redox
properties similar to those of PC3, also gives only trace
product when DMSO is used as the solvent.12 Reactions using
acetonitrile or acetone as the solvent deliver only trace
amounts of the desired product, while 1,2-dichloroethane
proved unsuccessful, except for a moderate 19% yield when
PC2 was utilized as a photocatalyst. Analysis of the reaction
profile revealed multiple pyridine-based byproducts, but no
homocoupling of the reduced 4-cyanopyridine was observed
(i.e., formation of 4,4′-dipyridyl).13 Using 4-cyanopyridine in
excess dramatically improves the reaction profile, eliminating
most pyridine-based byproducts (Supporting Information,
Table S2).
Using the oxime coupling partner as the limiting reagent and

4a in excess (2.2 equiv), we chose to fine-tune our optimized
reaction conditions. Photocatalyst loading could be decreased
to as low as 2 mol% while maintaining high yields of product
5a. Increasing the limiting substrate (oxime) concentration
from 0.1 to 0.2 M did not affect the yield at a 0.3 mmol scale;
under these conditions, however, the reaction became
heterogeneous. We anticipated that a homogeneous reaction
would be more advantageous for reaction scale-up, enabling
improved light penetration into the reaction mixture, and
therefore we elected to conduct our reactions at 0.1 M. We
hypothesized that the overall transformation would generate
benzoic acid during the course of the reaction via N−O bond
scission of the oxime and DIPA oxidation. We elected to utilize
1 equiv of benzoic acid to prevent a potential induction phase
for the reduction of 4-cyanopyridine, should this process
require a proton source.14 Empirically, we observed that, at
high concentrations of DIPA, reactions initially form a biphasic
mixture. We observed that the inclusion of benzoic acid
improved the solubility of DIPA, generating a homogeneous
solution after 30 s of mixing.
Our initial HTE experiments revealed that DIPA was the

optimal stoichiometric reductant in DMSO when the oxime
was used as the excess coupling partner. Diisopropylethylamine
(DIPEA) is commonly used in photoredox chemistry as a
stoichiometric reductant.15 While DIPEA is easier to oxidize
than DIPA, oxidation generates a secondary α-amino radical

Scheme 1. Approaches to the Synthesis of Sterically
Hindered Amines: (A) Prior Art of Conventional 2e−

Synthesis of Primary Amines; (B) Prior Art of Photoredox-
Catalyzed Syntheses of Primary Amines Compared to This
Work (C)
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which we observed to compete for coupling with 4-cyano-
pyridine. Interestingly, DIPA was never observed to cross-
couple with 4-cyanopyridine. To test the role of the reductant
in the reaction under the conditions utilizing pyridine as the
excess coupling partner, we compared DIPA, DIPEA, Hantzsch
ester, and tris-p-methoxyphenylamine ((PMP)3N) in the
reductive coupling reaction (Table 2). We observed that, in
larger scale reactions (0.3 mmol), DIPA gives product 5a in
86% yield. As expected, removing DIPA as a reductant
produces no product in the reaction. The use of the more
oxidizable tertiary amine DIPEA results in a much lower yield

(27%). Additionally, adducts of DIPEA and 4-cyanopyridine
were observed via UPLC-MS analysis. Reactions with
Hanstzch ester give yields similar to those obtained using
DIPEA as the terminal reductant. The use of (PMP)3N instead
of DIPA does not afford any product 5a. From this result we
inferred the importance of DIPA as both an electron source
and either a proton or hydrogen atom source for the reaction.
While the solvent can function as a hydrogen atom donor in
many radical reactions, we note that the estimated bond
dissociation energy of the α-amino C−H bonds in DIPA
should be significantly lower than those of the C−H bonds
present in DMSO. DFT calculations predict that hydrogen
atom abstraction from DMSO by the α-amino radical of DIPA
is unfavorable, based on the Gibbs free energy for the reaction
being +17.4 kcal/mol.16

Encouraged by the success of the reaction and postulating
that it proceeds via a benzylic α-amino radical, we wondered if
this radical intermediate could also be attained via the
reduction of iminium salts. The reduction potential of benzylic
ketimines in the presence of strong acid was reported to be ca.
−0.7 V vs SCE.7 Based on these results, the photocatalytic
manifold could reduce benzylic iminium salt 6a, the analog of
the oxime 3a, for coupling with cyanopyridine toward
generating product 5a (Scheme 2).

As a model reaction, we subjected iminium salt 6a to a
photocatalytic reaction with our optimal photocatalyst, PC1,
and DIPA as stoichiometric reductant. With the concern that
the α-amino radical may dimerize more readily under these
conditions, we utilized the iminium salt as the excess reagent
(2.2 equiv). Gratifyingly, our first reaction under these

Table 1. Reaction Discovery via High-Throughput
Experimentationa

aAssay yields determined by ultraperformance liquid chromatography
(UPLC) analysis of crude reactions (10 μmol scale) relative to an
internal standard.

Table 2. Optimized Reaction and Control Experiments

entry deviation from standard reaction conditions yield (%)b

1 none 86
2 no DIPA 0
3 no photocatalyst 0
4 DIPEA instead of DIPA 27
5 Hantzsch Ester instead of DIPA 26
6 (PMP)3N amine instead of DIPA 0

a3a (0.3 mmol), 4a (2.2 equiv), benzoic acid (1.0 equiv), PC1 (2.0
mol%), amine base (3.6 equiv), DMSO (0.1 M), blue LEDs (455 nm,
5W per reaction), 40 °C. bAssay yield determined by a UPLC
calibrated to an authentic sample of purified product.

Scheme 2. Reductive Coupling via Iminium Chloride Salt
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conditions furnished the desired product in 81% yield. The
reaction profile showed clean formation of product without the
formation of significant amounts of side products.17 Therefore,
we elected to move forward with these conditions to elaborate
a complementary scope using either oximes (Method A) or
iminium chloride salts (Method B) for coupling with
cyanoarenes (Table 3).
With optimized catalytic conditions in hand, we chose to

explore the scope of the oxime coupling partner in the reaction
(Method A, Table 3). We began by testing our reaction at a 0.3
mmol scale, utilizing our model oxime 3a (1 equiv) and excess
4-cyanopyridine 4a (2.2 equiv). The reaction was irradiated for
2.5 h in a temperature-controlled (40 °C) TAK 120
photoreactor with 455 nm light (5 W per vial), enabling up
to 10 reactions to be run in parallel at a time.18 These
optimized conditions provided primary amine 5a in 86% yield.
Next, we tested the scope of oximes compatible in the
reductive coupling.
First, benzylic oximes which contain para-substituents of

varying electronic properties were tested using the optimized
reaction conditions. Gratifyingly, electronically varied products
5a−5f are obtained in excellent yield, regardless of whether the
substituent on the arene is electron-withdrawing or electron-
donating. Compound 5g, containing an ortho-methyl sub-
stituent, is formed in 32% yield, requiring extended reaction
times of 16 h for complete consumption of the oxime (vide

inf ra). Products that incorporate larger arenes (5h−5k) or
longer alkyl groups (5l) were successfully synthesized.
Compound 5n, containing a cyclopropyl substituent, was
synthesized in 56% yield without producing the related ring-
opened product.19 Synthesis of compound 5o provides a
desirable ester functionality in 32% yield. The analogous 2-
pyridyl-derived oxime reacts to form only trace amounts of
primary amine product.20 Other heterocyclic oximes tested did
not yield product.21

When expanding our scope, we recognized that primary
amines containing an α-trifluoromethyl group represent a
unique architecture which is not easily accessed with
traditional synthetic methodologies. Based on our initial
mechanistic hypothesis, we thought this functional group
should be well tolerated in the reaction. Therefore, we tested
the reactivity of O-benzoyl oximes derived from readily
available trifluoromethyl ketones. Compound 5p, a primary
amine with an α-trifluoromethyl group, was synthesized in 65%
yield. We note that aryl bromides are also tolerated in the
reaction, with compound 5q forming in 29% yield. Compound
5r containing a pyrazole is assembled in 57% yield, indicating
the oxime reaction tolerates heterocycles more efficiently when
they are included through a biaryl linkage to the benzylic
oxime (i.e., separating the α-amino radical from the hetero-
cycle via a phenylene linker is beneficial for high yield of the
coupling product). Trifluoromethyl derivatives of acetophe-

Table 3. Oxime and Iminium Chloride Scope for Primary Amine Synthesisa,b

aMethod A: 0.3 mmol of oxime 3 at 0.1 M in DMSO containing 4-cyanopyridine (2.2 equiv), i-Pr2NH (3.6 equiv), benzoic acid (1.0 equiv), PC1
(2 mol%) illuminated by blue LEDs (455 nm, 5W per reaction) at 40 °C for 2.5 h. bMethod B: 4-cyanopyridine (0.3 mmol) at 0.1 M in DMSO
containing iminium salt 6 (2.2 equiv), i-Pr2NH (3.6 equiv), PC1 (2 mol%) illuminated by blue LEDs (455 nm, 5W per reaction) at 40 °C for 2.5 h.
cYields from Method A and Method B are denoted by values next to the letters A and B and unless noted otherwise are assay yields determined by
a UPLC calibrated to an authentic sample of purified product. Value in brackets are isolated yields. dReaction was run on a 3.6 mmol scale.
eReaction duration of 3.5 h. fReaction duration of 16 h.

Journal of the American Chemical Society Article

DOI: 10.1021/jacs.9b10871
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX

D

http://dx.doi.org/10.1021/jacs.9b10871


none are widely commercially available and can easily provide
bench-stable α-trifluoromethyl oxime derivatives suitable for
generation of products 5p−5r. We believe this methodology
represents a uniquely rapid method of synthesizing α-
trifluoromethyl primary amines, substructures of high interest
to medicinal chemists as a result of their improved resistance
toward oxidative metabolic degradation and improved
membrane permeability arising from the increase in lip-
ophilicity imparted by the incorporation of fluorine atoms.22

To complement oxime reactivity (Method A), we explored
the coupling reaction of iminium chlorides (Method B). When
using electronically varied iminium salts (6a−6f), the yield is
clearly affected, in contrast to reactions with the analogous
oximes (3a−3f). Iminium salts containing electron-donating
substituents afford higher yields in the coupling reaction.
Specifically, reaction efficiency correlates directly with the
electron-rich nature of the aromatic ring, with electron-
donating p-methoxy compound 6f yielding primary amine
product 5f in 94% yield. The strongly electron-deficient
trifluoromethyl group significantly diminishes product for-
mation, resulting in a yield of 14% for compound 5b. In
contrast, the corresponding oxime chemistry is less sensitive

toward the impact of electronic substituents, converting p-
trifluoromethyl oxime (3b) into 5b in 91% yield (vide supra).
Ortho-methyl substitution improves the coupling reaction

when using iminium salts, delivering primary amine 5g in
excellent yield. In contrast, oximes with an ortho-methyl
substituent do not efficiently convert into the desired product
5g, requiring 16 h to consume the starting oxime. In both
cases, ortho-methyl substitution causes the arene ring to rotate
out of the plane of either the iminium or oxime, resulting in a
decrease in the extent of conjugation between the π-system of
the phenyl ring and the imine CN group. In the case of the
iminium substrate, the energy of the LUMO is raised,
analogous to the placement of an electron-donating group at
the para-position. Additionally, the resulting benzylic α-amino
radical is postulated to be more reactive due to decreased
resonance delocalization. In the case of the oxime substrate,
additional effects are present, related to the energy of its triplet
excited state, that may lead to decreased reactivity (vide inf ra).
Further, Method B produces amines with sterically demanding
groups (e.g., t-Bu) adjacent to the new C−C bond (5m) in
good yield.
Photochemical reactions are sometimes limited in their

scalability due to light penetration. To test this, we increased

Table 4. Cyanoarene Scope for Primary Amine Synthesisa,b,c

aMethod A: 0.3 mmol of oxime 3 at 0.1 M in DMSO containing 4-cyanopyridine (2.2 equiv), i-Pr2NH (3.6 equiv), benzoic acid (1.0 equiv), PC1
(2 mol%) illuminated by blue LEDs (455 nm, 5 W per reaction) at 40 °C for 2.5 h. bMethod B: 4-cyanopyridine (0.22 mmol) at 0.1 M in DMSO
containing iminium salt (2.2 equiv), i-Pr2NH (3.6 equiv), PC1 (2 mol%) illuminated by blue LEDs (455 nm, 5 W per reaction) at 40 °C for 2.5 h.
cYields from Method A and Method B are denoted by values next to the letters A and B and unless noted otherwise are assay yields determined by
a UPLC calibrated to an authentic sample of purified product.
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the scale of our reaction of 3a and 4a by 12-fold. To
accommodate the larger reaction vessel volume, we utilized a
PennOC m1 photoreactor which can accommodate a 40 mL
glass vial.23 Gratifyingly, on this scale, 3.6 mmol of 3a gives
product 5a in 80% yield. At temperatures slightly above room
temperature, ca. 35−40 °C, we observed the reaction to be
homogeneous at a concentration of 0.1 M in oxime 3a,
allowing for greater light penetration.
Next, the cyanoarene coupling partner scope was tested with

both oxime 3j and iminium salt 6j. Heterocycles are tolerated
in the cyanoarene substrate scope in the form of 2-biaryl-4-
cyanopyridines (5s−5x) (Table 4). More electron-rich hetero-
cycles couple more efficiently with oxime (3j) coupling
partners. As a comparison, product 5y is formed in 89%
yield when the pyridine contains a 2-phenyl substituent, 5z is
produced in 97% yield with 4-methoxyphenyl, and 5aa is
generated in only 25% yield when the pyridine contains a 2-
carbomethoxyphenyl. For the analogous iminium salt (6j),
product formation follows a trend similar to that of the
respective oxime reaction (5s−5aa).
Functional groups in the 2-position of the cyanopyridine

coupling partner have a strong influence on reactivity with
both oxime (3j) and iminium (6j) coupling partners. For
reactions with 3j, products containing electron-donating
substituents (5ac−5ah) increased the efficiency of the
coupling reaction. Coupling of 3j with the respective
cyanoarene produced no product for compounds (5ai−5ak).
Coupling of iminium salt 6j with electron-rich cyanoarenes
produced results similar to those obtained for the reaction with
oxime 3j. Notably, iminium 6j couples effectively with
cyanoarenes containing electron-withdrawing groups at the 2-
position (5ai, 5aj). This complementary reactivity between
oximes and iminiums allows this catalytic manifold to access a
greater substrate scope than the oxime reaction alone.
Substituents at the 3-position are also tolerated, as witnessed
with 5am and 5ap.
Coupling of oximes and iminium salts with 2-cyanopyridine

derivatives occurs with similar reactivity to their 4-cyano-
pyridine analogs (5aq, 5ar). The reaction does not occur with
non-heterocyclic cyanoarenes (5at, 5au). The reaction was
also tested with other heterocyclic cyanoarenes, where both 3j
and 6j couple to form azaindole 5av. More electron-poor
heterocycles can be synthesized using iminium salt 6j to afford
products 5aw and 5ax.
Initially, we hypothesized that O-benzoyl oximes could be

reductively deprotected in situ to generate low concentrations
of the corresponding N−H imine in solution. Previously, Zard
and co-workers described single-electron reductive methods
for iminyl radical generation from O-benzoyl oximes.24 They
proposed, using SmI2, single-electron reduction of the benzoyl
moiety, which then undergoes beta-scission to release an
iminyl radical and benzoate. While our HTE screen revealed
reaction conditions which promoted the desired reductive
coupling, our data did not support direct reduction of the O-
benzoyl oxime. Specifically, the data reveals that the magnitude
of the reduction potential of a catalyst does not correlate with
oxime consumption (cf. Table 1). Interestingly, iridium-based
photocatalysts catalyzed decomposition of the oxime across a
wide range of catalyst reduction potentials. Ruthenium-based
and organic photoredox catalysts which possess reduction
potentials similar to those of the successful iridium-based
photocatalysts do not catalyze oxime consumption.

Interestingly, PC4, the most reducing iridium-based photo-
catalyst (IrII, Ered = 2.20 V vs SCE), is not the most efficient
catalyst for oxime consumption.11 PC1 has a maximum
reduction potential in the reduced state (IrII) of −1.43 V vs
SCE.25 We utilized DFT calculations to determine the single-
electron reduction potential of O-benzoyl oximes and found
that the model compound 3a has a reduction potential of
−2.03 V vs SCE (Table 5). This reduction potential indicates
that reduction of the oxime by PC1 would be a significantly
endergonic process (13.8 kcal mol−1), thus making direct
reduction unlikely.

Based on these results, we considered that N−O bond
cleavage could occur via an alternative, nonreductive path-
way.24,26−28 To test this, we revisited our control reaction
where the terminal reductant DIPA was excluded (Table 5).
The reaction was irradiated in a temperature-controlled (40
°C) TAK 120 photoreactor with 455 nm light at a power of 5
W per vial at a reaction scale of 0.3 mmol. Under these
conditions, PC1 caused decomposition of 100% of the starting
oxime 3a and the formation of a new byproduct which was
identified as azine dimer 7 (Scheme 3). We envisioned that 7
could form via the dimerization of two iminyl radicals
generated from N−O bond scission. However, it appears
unlikely that the catalyst would reduce the oxime with high
efficiency under these conditions, because no stoichiometric
reductant is available to reduce the photocatalyst to turn over
the catalyst and complete the catalytic cycle. Furthermore, we
observe no consumption of the 4-cyanopyridine coupling
partner in reactions where DIPA is excluded. The reduction
potential of the heterocycle is dramatically more electro-

Table 5. Triplet Energy Sensitization of O-Benzoyl Oximes
by Photoredox Catalysts

entry photocatalyst
E(T1−S0)

[kcal·mol−1]b
Ered (V)
vs SCE

E*ox (V)
vs SCE

oxime
remaining
(%)c

1 PC1 55.8 −1.42 0.97 0
2 PC3 61.8 −1.37 1.21 51
3 PC4 58.1 −2.20 0.31 0
4 PC6 46 −1.33 0.77 98
5 PC7 43.6 −1.06 0.83 98

aTriplet−singlet energy gap (E[T1−S0]) refers to triplet (T1) to
singlet (S0) energy gap calculated using M06-2X/6-31+G(d,p)
SMD=DMSO. bCatalyst triplet-state energy values are experimental
values.25,30,34a c3a (0.3 mmol), 4a (2.2 equiv), benzoic acid (1.0
equiv), PC1 (2.0 mol%), DMSO (0.1 M), blue LEDs (455 nm, 5 W
per reaction), 40 °C. No stoichiometric reductant included.
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positive than the reduction potential of the oxime. Therefore, it
is unlikely that the O-benzoyl oxime would be preferentially
reduced in comparison to the 4-cyanopyridine. The presence
of an iminyl radical intermediate is further supported by the
observation of off-pathway byproducts in the syntheses of
general compound 5 that are unique to Method A (e.g., Table
3).29

Photoredox catalysts can also act as triplet sensitizers as an
alternative to engaging in redox chemistry.31 It has been
observed previously that oximes which are promoted into the
triplet state can undergo N−O bond homolysis to generate an
N-centered radical.14,32,33 Triplet energy sensitization has been
invoked in multiple reactions which utilize photoredox
catalysts to induce excited-state reactivity in an electron-
neutral process.
We next tested this hypothesis by repeating the experiment

with multiple photocatalysts, where the oxime starting material,
4-cyanopyridine, and benzoic acid were mixed in DMSO in the
absence of DIPA. We chose to screen five catalysts which differ
in both triplet energies and reduction potentials.25,34 We then
compared the amount of O-benzoyl oxime consumption in
each reaction (0.3 mmol scale) and found again that only
iridium-based photocatalysts catalyze the decomposition of
oxime 3a (Table 5). The reduction potential of Ru(bpy)3PF6,
PC6, in the reduced state (RuI) is −1.33 V vs SCE, similar to
the reduced state iridium-based (IrII) PC1 and PC3. However,
PC6 does not catalyze oxime decomposition, while both PC1
and PC3 do under these reaction conditions. If an active redox
cycle is occurring at the catalyst, some 4-cyanopyridine (−1.60
V vs SCE) or 4-cyanopyridinium (−0.69 V vs SCE) should
have been reduced in an off-pathway reaction.35 In all cases,
minimal consumption of 4-cyanopyridine starting material is
observed. For each of the five photocatalysts screened on scale,
a triplet (T1)-to-singlet (S0) energy gap [E(T1−S0)],
commonly referred to as triplet energies, has been reported
in the literature. We next utilized DFT to calculate the triplet-
to-singlet energy gap36 for our model O-benzoyl oxime
substrate (3a). Oximes Z-3a and E-3a have a predicted
triplet−singlet energy gap of 52.7 and 54.2 kcal/mol,
respectively (Table 6). Iridium-based photocatalysts PC1,
PC3, and PC4 all possess a triplet-singlet energy gap >55 kcal/
mol, and all these photocatalysts can consume oxime 3 in the
absence of a reductant. In contrast, both PC6 and PC7 have
triplet-to-singlet energy gaps below 50 kcal/mol (46.0 and 43.6
kcal/mol, respectively) and are unable to consume oxime 3a in
the absence of a reductant. Based on the dichotomy related to
triplet-to-singlet energies and oxime consumption in these

experiments, we infer that triplet sensitization is responsible for
the decomposition of the N−O bond in O-benzoyl oximes.
A Stern−Volmer analysis of the emission of PC1* (0.01 M

in DMSO) using various concentrations of oxime 3a (0−15
mM) reveals 3a can quench the excited state of PC1 (see
Supporting Information for details), consistent with the
proposed mechanism. While the Stern−Volmer relationship
supports quenching of the excited state of PC1, it cannot be
used alone to determine if this proceeds via an energy-transfer
or electron-transfer mechanism. To discern between the two
potential mechanisms, we photolyzed (450 nm) solutions of
oxime 3a in the presence of various photocatalysts (2 mol%) in
the absence of a terminal reductant (DIPA). If oxime
consumption is observed in quantities significantly greater
than the amount of photocatalyst present, this would rule out
an electron-transfer process and support an energy-transfer
mechanism. Indeed, photocatalysts PC1−PC3 successfully
consumed oxime (see Table 5) well beyond the amount of
catalyst present in solution. This data supports an energy-
transfer process to convert oxime via N−O bond scission. Due
to the lack of spectral overlap between the UV−vis emission
spectrum of photocatalyst PC1 and the UV−vis absorption
spectrum of oxime 3a (see Supporting Information for details),
we rule out a Förster energy-transfer process in favor of a
Dexter energy-transfer process.
In most photoredox reactions, the concentration of radicals

is often estimated to be approximately the concentration of
photocatalyst. While reductive couplings are commonly
achieved with stoichiometric metal reductants, intermediates
which require single-electron reduction are in much lower
concentrations relative to the species responsible for the single-

Scheme 3. Evidence of Iminyl Radical Formation Table 6. DFT Calculated Triplet Energy Values and
Reduction Potentials

R
oxime

geometry
GZ relative to GE
[kcal·mol−1]

E(T1−S0)
[kcal·mol−1]

E°redvs
SCE [V]

4-CF3 Z +1.6 51.9 −1.74
E 53.5 −1.75

4-Cl Z +1.8 52.2 −2.01
E 54.0 −2.10

4-F Z +6.6 52.0 −1.81
E 54.6 −1.99

4-H Z +2.3 52.7 −2.03
E 54.2 −2.04

4-Me Z +1.7 57.8 −2.03
E 54.5 −2.00

2-Me Z −0.2 75.8 −2.03
E 57.9 −2.02

4-MeO Z +1.6 57.2 −2.04
E 54.6 −2.01

aE(T1−S0) refers to triplet (T1) to singlet (S0) energy gap calculated
using M06-2X/6-31+G(d,p) SMD=DMSO.
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electron reduction. The relatively low concentration of reduced
photocatalyst present in the reaction makes the successive
reduction of radical intermediates to anions increasingly
unlikely, thus strengthening the alternate pathway involving
triplet sensitization.
We hypothesize that this reductive coupling proceeds

through a catalytic mechanism (Scheme 4) where the iridium
engages in concurrent tandem catalysis,37 acting simulta-
neously as both a photoredox catalyst and a triplet sensitizer.38

First, photocatalyst I absorbs a photon to generate its
corresponding excited singlet state (II), and subsequent
intersystem crossing provides excited-state triplet III. This
excited state III can be quenched reductively to generate a
ground state IrII (IV). IV can then reduce 4-cyanopyridine via
a proton-coupled electron-transfer (PCET) mechanism14 to
generate persistent radical V and a ground state I.35 Excitation
of I can again generate excited state III via photon absorption
and intersystem crossing, where relaxation occurs via Dexter
energy transfer39 between III and O-benzoyl oxime 3a. Triplet-
state oxime VI can undergo N−O bond homolysis, resulting in
iminyl radical VII. DFT calculations reveal that a hydrogen
atom transfer event between iminyl radical VII and DIPA is
exothermic (Scheme 4, inset), making this a likely pathway for
the formation of imine IX. Alternatively, iminyl radical VII
could be reduced by IV; however, due to the large disparity in

concentration in IV when compared to DIPA, this pathway is
unlikely. The resultant imine IX possesses a high reduction
potential (ca. −2.4 V vs SCE). However, protonation occurs to
generate iminium salt X, which is much more easily reduced
(ca. −0.8 V vs SCE).35

Iminium X can be reduced via two likely reaction
intermediates, illustrated in Scheme 4. In path A, iminium X
can be reduced via the α-amino radical of DIPA, VIII.40

Radical VIII is generated either by the reductive quenching of
excited state photocatalyst III, followed by deprotonation, or
via hydrogen atom abstraction by iminyl radical VII on DIPA.
DFT calculations reveal that electron transfer between α-
amino radical of DIPA (VIII) and iminium X is substantially
exothermic, with a ΔGrxn of −7.4 kcal/mol (Scheme 4, inset),
generating α-amino radical XII and hindered iminium XI. In
path B (Scheme 4) iminium X is reduced by the reduced-state
photocatalyst IV, regenerating catalyst I and forming radical
XII.
Penultimate intermediate XIII can be formed via a

heterocoupling between persistent radical V and radical XII.
Intermediate XIII can formally lose both a proton and a
cyanide to give the reaction product 5a.
We hypothesize that the analogous photocatalyzed reaction

from iminium salts (e.g., 6) occurs via a similar mechanistic
pathway to that of the oximes, including the reduction of 4a via

Scheme 4. Mechanistic Insight into the Synthesis of Sterically Hindered Primary Amines: (A) Proposed Mechanism for the
Coupling of O-benzoyl Oximes and 4-Cyanopyridine (Method A); (B) Proposed Mechanism for the Coupling of Iminium
Chloride Salts and 4-Cyanopyridine
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PCET from the photoexcited catalyst (vide supra). The
iminium reaction differs from the oxime reaction by removing
the requirement to generate the iminium in situ. Excited-state
photocatalyst III can oxidize DIPA, generating an ammonium
radical cation. The α-C−H bonds of an ammonium radical
cation become markedly more acidic than those in the parent
amine.3a A second unit of DIPA or 4a could deprotonate the
ammonium radical cation, resulting in radical VIII. The
iminium 6a can be reduced by both pathways considered for
the oxime reaction, where either reduced photocatalyst IV or
radical VIII can donate an electron to 6a, leading to α-amino
radical XII. Subsequent heteroradical coupling of XII and V
and formal loss of both a proton and cyanide would afford
product 5a.

■ CONCLUSION
In summary, we have developed photoredox-catalyzed
methodology for the direct synthesis of primary amines
without the use of harsh organometallic reagents. We have
demonstrated that two separate bench-stable starting materials,
benzylic O-benzoyl ketoximes and benzylic iminium chloride
salts, can be coupled efficiently with 4-cyano-heteroarenes and
tolerate a great diversity of functional groups. Further, we have
identified a reaction where the photoredox catalyst is able to
efficiently catalyze a net reductive coupling by acting as both a
reductant and a triplet sensitizer, resulting in a reaction which
is facilitated by concurrent tandem catalysis. This method
enables scientists to synthesize libraries of hindered primary
amines via parallel photoredox, including potential high-
throughput experimentation for medicinal chemists.41,42
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