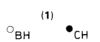
Helen F. Dare, Judith A. K. Howard, Massimino U. Pilotti, F. Gordon A. Stone, and Jürgen Szameitat Department of Inorganic Chemistry, The University of Bristol, Bristol BS8 1TS, U.K.

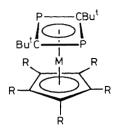
Tetrahydrofuran solutions of K[Rh(PPh₃)₂(η^5 -C₂B₉H₁₁)] react with Bu^tC \equiv P and NEt₄Cl to afford the salt [NEt₄][Rh(η^4 -Bu^t₂C₂P₂)(η^5 -C₂B₉H₁₁)], which with [AuCl(PPh₃)] and [Co(CO)₂(NCMe)(η^4 -C₄Me₄)][PF₆] yields the compounds [Rh(η^4 -Bu^t₂C₂P₂ML_n)(η^5 -C₂B₉H₁₁)] [ML_n = Au(PPh₃) or Co(CO)₂(η^4 -C₄Me₄)]; all structurally identified by X-ray diffraction.

The cyclodimerisation of alkynes at transition metal centres to yield cyclobutadiene complexes has long been known, 1 and recent work has shown that phospha-alkynes can behave similarly forming η^4 -1,3-diphosphacyclobutadiene compounds. Related cyclodimerisation reactions of alkynes or phospha-alkynes involving carbametallaborane species are, as far as we are aware, unknown. We now report the cyclodimerisation of Bu¹C \equiv P at a rhodium centre ligated by the η^5 -C $_2$ B $_9$ H $_{11}$ group. The product obtained provides a bridge between phospha-alkyne and carbametallaborane chemistry.

Treatment of K[Rh(PPh₃)₂(η^5 -C₂B₉H₁₁)]³ in THF (tetrahydrofuran) at room temperature with Bu¹C=P, followed by addition of NEt₄Cl, gives in essentially quantitative yield the dark brown crystalline salt [NEt₄][Rh(η^4 -Bu¹₂C₂P₂)(η^5 -C₂B₉H₁₁)] (1),† the structure of which was established by

† Selected spectroscopic data [the $^{31}P\{^{1}H\}$ shifts are relative to 85% H_3PO_4 (external)]. Compound (1) (brown), ^{1}H n.m.r. (CD₂Cl₂, room temperature), δ 0.97 (s, 18H, Bu¹), 1.32 (t, 12H, NCH₂Me, J_{HH} 7 Hz), 3.22 (q, 8H, NCH₂Me, J_{HH} 7 Hz) and 3.52 [s, br., 2H, CH(C₂B₉H₁₁)]; $^{13}C\{^{1}H\}$ n.m.r. (CD₂Cl₂, room temperature), δ 111.2 (t of d, Bu¹CP, J_{PC} 52 Hz, J_{RhC} 12 Hz), 53.2 (NCH₂Me), 39.9 [br., CH(C₂B₉H₁₁)], 35.2 (t, CMe₃, J_{PC} 6 Hz), 31.4 (CMe₃), and 8.0 (NCH₂Me); $^{31}P\{^{1}H\}$ n.m.r. δ 61.5 (d, J_{RhP} 24 Hz). Compound (3) (yellow), $^{13}C\{^{1}H\}$ n.m.r. (CD₂Cl₂, room temperature), δ 44.0 [br., CH(C₂B₉H₁₁)], 35.8 (CMe₃), and 32.2 (CMe₃); $^{31}P\{^{1}H\}$ n.m.r. (CD₂Cl₂, -60 °C), δ 51.9 (cS, PPh₃), 40.0 (d, PCBu¹, J_{PP} 213 Hz), and -21.3 (d, PCBu¹, J_{PP} 213 Hz). Compound (4) (yellow), v_{CO} (max) 2023vs, 2040w(sh), and 2094w cm⁻¹ (CH₂Cl₂); $^{31}P\{^{1}H\}$ n.m.r. (CD₂Cl₂, -60 °C), isomer (i), δ 69.1 (d, br., J_{PP} 28 Hz) and 42.5 (d, J_{PP} 28 Hz); isomer (ii), δ 92.1 (d, br., J_{PP} 30 Hz) and 37.8 (d, J_{PP} 30 Hz).

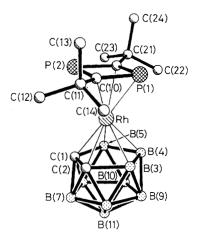

X-ray diffraction.‡ In the anion (Figure 1) the rhodium atom is η^5 -co-ordinated by the $C_2B_9H_{11}$ cage, as expected, but the metal is also ligated by an η^4 -1,3-diphosphacyclobutadiene ring. Since the groups η^5 - $C_2B_9H_{11}$ and η - C_5R_5 (R = H or Me) are isolobal, the anion of (1) is mapped with the recently reported compounds $[M(\eta^4$ -But_2C_2P_2)(\eta- $C_5R_5)]$ ($M = C_0$, Rh

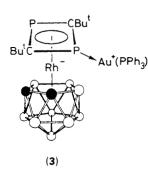

‡ Crystal data for (1); $C_{20}H_{49}B_9NP_2Rh$, M = 865.8, orthorhombic, space group $P2_12_12_1$ (No. 19), a = 10.152(3), b = 12.205(4), c = 10.152(3)23.919(6) Å, U = 2965(1) Å³, Z = 4, $D_c = 1.35$ g cm⁻³, F(000) =1184, $\mu(\text{Mo-}K_{\alpha}) = 6.8 \text{ cm}^{-1}$, R = 0.097 ($R_{\text{w}} = 0.084$) for 2033 absorption corrected intensities (298 K), θ -2 θ scans, $2\theta \le 50^{\circ}$, $F \ge$ $2\sigma(F)$, Mo- K_{α} ($\lambda = 0.71069$ Å). Data were collected on a Nicolet P3m diffractometer and the structure was solved by the usual heavy atom and Fourier methods, with refinement by full matrix least squares. (3); $C_{30}H_{44}AuB_9P_3Rh$, M = 894.9, monoclinic, space group $P2_1/a$ (non-standard, No. 14), a = 18.51(1), b = 10.363(4), c = 19.00(1) Å, $\beta = 96.17(5)^{\circ}$, U = 3623(3) Å³, Z = 4, $D_c = 1.65$ g cm⁻³, F(000) = 1704, $\mu(\text{Mo-}K_{\alpha}) = 46.4$ cm⁻¹, R = 0.043 ($R_w = 0.046$) for 3895 unique absorption corrected intensities, θ -2 θ scans, $2\theta \le 50^{\circ}$, $F \ge 5\sigma(F)$. (4); $C_{22}H_{41}B_9CoO_2P_2Rh$, M = 658.9, monoclinic, space group $P2_1/c$ (No. 14), a = 16.181(8), b = 10.361(5), c = 19.51(1) Å, $\beta = 101.70(5)$ °, U = 3203(3) Å³, Z = 4, $D_c = 1.37$ g cm⁻³, F(000) = 1344, $\mu(\text{Mo-}K_{\alpha}) = 11.4 \text{ cm}^{-1}, R = 0.13 (R_{\text{w}} = 0.11) \text{ for } 1786 \text{ unique}$ absorption corrected intensities, θ -2 θ scans, $2\theta \le 45^{\circ}$, $F \ge 3.5\sigma(F)$. Data collection and structure refinements for (3) and (4) were as for (1). The high R factor for (4) was due to limited and rather weak data obtained from the platelet $(0.05 \times 0.2 \times 0.2 \text{ mm})$. Atomic co-ordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See notice to Authors, Issue No. 1.

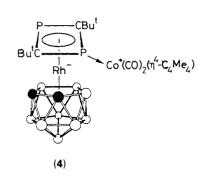
Complex (1) can be used as a precursor to new species in which a phosphorus atom of the phosphacyclobutadiene ring system co-ordinates to another metal centre. Thus (1) with [AuCl(PPh₃)] in the presence of TlBF₄ affords the bimetallic complex [Rh{ η^4 -Bu 1_2 C₂P₂Au(PPh₃)}(η^5 -C₂B₉H₁₁)] (3) (95%). Similarly, (1) with [Co(CO)₂(NCMe)(η^4 -C₄Me₄)][PF₆]⁶ yields [Rh{ η^4 -Bu 1_2 C₂P₂Co(CO)₂(η^4 -C₄Me₄)}(η^5 -C₂B₉H₁₁)] (4) (80%).†

The structures of (3) and (4) were established by X-ray diffraction, and are shown in Figures 2 and 3, respectively.‡ In (3) there is a bond [2.269(3) Å] between the gold atom and a phosphorus atom of the C_2P_2 ring, a structural feature also found in (4) [Co-P 2.22(1) Å]. There are no rhodium-gold or rhodium-cobalt connectivities in these molecules. In (3) and (4), as in (1) the η^4 - C_2P_2 rings are square and the atoms deviate little from planarity [mean deviation: ± 0.023 (1), ± 0.048 (3), and ± 0.039 Å (4)]. In solution two isomers (ca. 4:1) of (4) are present, a feature revealed best by the $^{31}P\{^{1}H\}$

[NEt₄] Rh

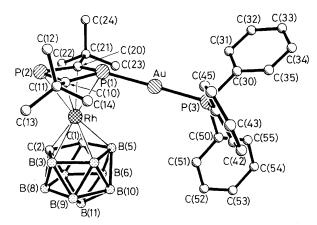



(2a) M = Co, R = H (2b) M = Rh, R = H (2c) M = Co, R = Me (2d) M = Rh, R = Me (2e) M = Ir, R = Me


n.m.r. spectrum.† These isomers may arise through restricted rotation about the Co-P(2) bond, leading to different orientations of the $Co(CO)_2(\eta^4-C_4Me_4)$ fragment.

The molecule (4) is unique in containing both cyclobutadiene and diphosphacyclobutadiene ligands. Interestingly, treatment of (2a) with $[Co(C_2H_4)_2(\eta-C_5H_5)]$ gives successively the bi- and tri-metallic complexes $[Co\{\eta^4-But_2C_2P_2Co-(C_2H_4)(\eta-C_5H_5)\}(\eta-C_5H_5)]$ (5) and $[Co\{\eta^4-But_2C_2P_2Co_2-(C_2H_4)_2(\eta-C_5H_5)_2\}(\eta-C_5H_5)]$ (6). The structure of (5) is akin to that of (4). No trimetallic species related to (6) was observed in our work, and if formed from the reagent $[Co(CO)_2(NCMe)(\eta^4-C_4Me_4)][PF_6]$ would be cationic in nature. Formulation of the species (3) and (4) with ylide type structures allows the rhodium centres in both compounds to

Figure 1. Molecular structure of the anion of [NEt₄][Rh(η⁴-Bu^t₂C₂P₂)(η⁵-C₂B₉H₁₁)] (1). Dimensions: Rh–P(1) 2.334(6), Rh–P(2) 2.374(6), Rh–C(10) 2.21(2), Rh–C(20) 2.20(2), Rh–C(1) 2.17(2), Rh–C(2) 2.19(2), Rh–B(3) 2.21(2), Rh–B(4) 2.24(3), Rh–B(5) 2.23(3), P(1)–C(10) 1.78(2), P(1)–C(20) 1.80(2), P(2)–C(10) 1.77(2), P(2)–C(20) 1.79(2) Å.



$$(\eta - C_5H_5)(C_2H_4)Co$$

$$Bu^{\dagger}C \xrightarrow{I} C Bu^{\dagger}$$

$$Co(C_2H_4)(\eta - C_5H_5)$$

Figure 2. Molecular structure of [Rh{η⁴-Bu¹₂C₂P₂Au(PPh₃)}(η⁵-C₂B₉H₁₁)] (3). Dimensions: Au-P(1) 2.269(3), Au-P(3) 2.281(3), Rh-P(1) 2.326(3), Rh-P(2) 2.368(3), Rh-C(10) 2.17(1), Rh-C(20) 2.21(1), Rh-C(1) 2.21(1), Rh-C(2) 2.17(1), Rh-B(3) 2.19(1), Rh-B(4) 2.21(1), Rh-B(5) 2.21(1), P(1)-C(10) 1.76(1), P(1)-C(20) 1.76(1), P(2)-C(10) 1.78(1), P(2)-C(20) 1.77(1) Å; P(3)-Au-P(1) 174.5(1), Au-P(1)-C(10) 131.0(3), Au-P(1)-C(20) 137.9(3), Au-P(1)-Rh 108.0(1)°.

acquire 18 electron valence shells, and the gold and cobalt atoms to have 14 and 18 electron configurations, respectively.

We thank the S.E.R.C. for support, SHELL for a CASE research studentship (M. U. P.), and the Deutsche Forschungsgemeinschaft for a fellowship (J. S.).

Received, 17th May 1989; Com. 9/02083G

References

1 'Comprehensive Organometallic Chemistry', eds. E. W. Abel, F. G. A. Stone, and G. Wilkinson, vol. 4, sect. 31.3.3; vol. 5, sect. 34.4.4; vol. 6, sect. 38.9, Pergamon, Oxford, 1982, and references cited therein.

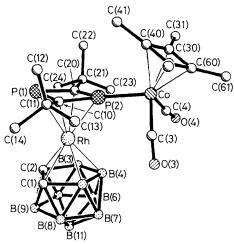


Figure 3. Molecular structure of [Rh{ η^4 -Bu 1_2 C₂P₂Co(CO)₂(η^4 -C₄Me₄)}(η^5 -C₂B₉H₁₁)] (4). Dimensions: Co–P(2) 2.22(1), Rh–P(1) 2.40(1), Rh–P(2) 2.30(1), Rh–C(10) 2.16(3), Rh–C(20) 2.16(3), Rh–C(1) 2.21(3), Rh–C(2) 2.15(4), Rh–B(3) 2.21(4), Rh–B(4) 2.19(4), Rh–B(5) 2.19(4), P(1)–C(10) 1.69(4), P(1)–C(20) 1.77(3), P(2)–C(10) 1.78(4), P(2)–C(20) 1.73(3), Co–C(η^4 -C₄Me₄) (mean) 2.01 Å; Co–P(2)–C(10) 142(1), Co–P(2)–C(20) 139(1), Co–P(2)–Rh 132.1(4)°.

- 2 J. F. Nixon, Chem. Rev., 1988, 88, 1327; M. Regitz and P. Binger, Angew. Chem., Int. Ed. Engl., 1988, 27, 1484.
- 3 J. A. Walker, C. B. Knobler, and M. F. Hawthorne, *Inorg. Chem.*, 1985, **24**, 2688.
- 4 P. B. Hitchcock, M. J. Maah, and J. F. Nixon, J. Chem. Soc., Chem. Commun., 1986, 737.
- 5 P. Binger, R. Milczarek, R. Mynott, M. Regitz, and W. Rösch, Angew. Chem., Int. Ed. Engl., 1986, 25, 644; P. Binger, R. Milczarek, R. Mynott, C. Kruger, Y. H. Tsay, E. Raabe, and M. Regitz, Chem. Ber., 1988, 121, 637.
- 6 M. R. Cook, P. Härter, P. L. Pauson, and J. Šraga, J. Chem. Soc., Dalton Trans., 1987, 2757.