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Ni-catalyzed Umpolung Arylation of Ambiphilic a-Bromo Boronic 
Esters 
Shang-Zheng Sun and Ruben Martin* 
Abstract: A Ni-catalyzed reductive arylation of ambiphilic a-bromo 
boronic esters with aryl halides is described. This platform provides 
an unrecognized opportunity to promote catalytic umpolung reactivity 
of ambiphilic reagents with aryl halides, thus unlocking a new cross-
coupling strategy that complements existing technologies for the 
preparation of densely functionalized alkyl organometallic reagents 
from simple and accessible precursors. 

The dual role of ambiphilic reagents as nucleophiles and 
electrophiles has attracted considerable attention, holding 
promise to provide new knowledge in synthetic design (Scheme 
1).[1] Despite the synthetic potential of ambiphilic a-halogenated 
organometallics (I),[2],[3] their use remains confined to their innate 
reactivity profile; while nucleophiles react at the electrophilic C–
X site (Scheme 2, path a), functionalization at the nucleophilic 
C–M terminus occurs with electrophilic species (Scheme 2, path 
b). These observations contribute to the perception that I cannot 
be used in cross-electrophile coupling reactions,[4] one of the 
most rapidly growing disciplines of catalysis research with 
improved practicality and versatility when compared to 
conventional nucleophilic/electrophilic regimes. Such a void 
terrain, however, might provide an unrecognized opportunity to 
alter the innate reactivity of ambiphilic reagents I in the presence 
of easy-to-handle electrophiles via catalytic reversal of polarity.[5] 
If successful, such a platform might offer a counterintuitive new 
approach for preparing densely functionalized  organometallic 
reagents,[6] key carbon synthons of paramount synthetic 
importance for building up molecular complexity.  

 

 

Scheme 1. Ambiphilic Reagents 

As part of our interest in Ni-catalyzed reductive coupling 
reactions,[7] we questioned whether a generic umpolung strategy 
could be designed for the direct arylation of readily-accessible a-
bromo alkylboronic esters with aryl halides (Scheme 2, 
bottom).[8],[9] Our design principle is based on the intermediacy of 

transient radical intermediates II that might be stabilized by the 
adjacent a-boron atom,[10],[11] setting the basis for a 
recombination with III prior to C–C reductive elimination (RE), 
and a final single-electron transfer (SET). We anticipated that 
such umpolung route would result in a pathway that might be 
complementary to existing protocols for the preparation of alkyl 
boronic esters,[12],[13] including the use of I with well-defined alkyl 
organozinc reagents via nucleophilic/electrophilic regimes 
(Scheme 2, path a).[14] Herein, we describe the successful 
realization of this goal. This protocol is characterized by its mild 
conditions and excellent chemoselectivity profile while obviating 
the need for carbogenic nucleophilic organometallic species 
without compromising its application profile. 

  

Scheme 2. Catalytic Umpolung Reactivity with Ambiphilic Reagents. 

Our study began by evaluating the reductive arylation of 
easily-accessible 1a with 2a (Scheme 3). After careful 
optimization of all reaction parameters,[15] a cocktail consisting of 
Ni(COD)2 (5 mol%) and 4,4'-dimethoxy-2,2'-bipyridine (L3, 5 
mol%) in THF/DMPU at 30 ºC with Zn as reducing agent 
afforded 3a in 80% isolated yield. As shown in entries 2 and 3, 
the use of nickel(II) precatalysts resulted in a significant lower 
yield.[16] Likewise, the use of structurally-related 1,10-
phenanthroline (L5) or 2,2’-bipyridines other than L3 resulted in 
markedly lower yields of 3a (entries 4-7). A significant erosion in 
yield was observed in THF or DMPU, tacitly indicating that the 
combination of THF/DMPU was critical for obtaining good yields 
of 3a (entries 8-9). Notably, modest results were observed with 
Mn or even TDAE as reducing agent (entries 10-11). The latter 
finding is particularly noteworthy,[17] leaving a reasonable doubt 
that an in situ generated organozinc species comes into play.[18] 
As anticipated, rigorous control experiments revealed that all of 
the reaction parameters were critical for the catalytic umpolung 
arylation to occur (entry 12).[15],[19] 
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Scheme 3. Optimization of the reaction conditions. 1a (0.20 mmol), 2a (0.22 
mmol), Ni(COD)2 (5 mol%), L3 (5 mol%), Zn (0.40 mmol), THF/DMPU (20:1, 
0.20 M) at 30 ºC. [a] Yields determined by NMR spectroscopy using CH2Br2 as 
internal standard. [b] Isolated yields. [c] Ni(COD)2 (1 mol%), 12 h. [d] Ni(COD)2 
(10 mol%). DMPU = 1,3-dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinone. 

As shown in Scheme 4, a host of electron-rich and electron-
poor aryl halides reacted with good to excellent yields with the 
Ni/L3 couple, independent of whether they were sterically biased 
or not.[19] Heteroaryl halides could also be employed as 
substrates, albeit giving slightly lower yields (3u, 3v). Particularly 
noteworthy is the chemoselectivity profile of this method, as 
esters (3a, 3j, 3l, 3t, 3w), nitriles (3e, 3q, 3s), alkenes (3j, 3w) 
amides (3h), free hydroxyl groups (3n), ketones (3k, 3m) and 
acetals (3p) were all well-accommodated, thus constituting a 
useful supplement to existing catalytic methods for preparing 
alkyl organometallic reagents.[6] Equally interesting was the 
ability to tolerate aryl boron reagents (3i) and a diverse set of 
aryl halides (3b, 3c, 3r), leaving ample room for subsequent 
manipulation. Notably, this reaction could be executed on a 
gram scale, affording 3c in 75% yield. Encouraged by these 
initial findings, we turned our attention to exploring the 
substitution pattern on the a-bromo alkylboronic ester backbone. 
As shown, a variety of differently-substituted side-chains, 
including those containing ethers (6), nitriles (7), alkyl halides (8) 
or alkenes (9), could be well-tolerated. Likewise, the reaction 
could be applied for unsubstituted side-chains (4) or for b-
substituted branched products (10, 11). Unfortunately, however, 
a-bromo alkylated boronic esters bearing a quaternary carbon 
could not participate in the targeted arylation event. with 
substantial amounts of the starting material being recovered 
unaltered. Taken together, these results serve as a testament to 
the prospective impact of our method, representing an 
alternative catalytic platform for preparing functionalized alkyl 
organometallic reagents.[6],[12-14] 

 

Scheme 4. Generality of the nickel-catalyzed cross-electrophile coupling of 
ambiphilic a-bromo boronic esters: As scheme 3 (entry 1); yields of isolated 
product, average of at least two independent runs. [a] X = Br. [b] X = I. [c] 4 
mmol 1a were utilized. [d] Ni(COD)2 (10 mol%), 12 h. [e] dr = 1:1.  

The utility of this method is further illustrated in Scheme 5. As 
expected, 3c could participate in conventional oxidations with 
NaBO3 (17)[20] or carbon homologations for incorporating alkene 
functions at the C–B terminus with Grignard reagents (12)[21] or 
bromoethylene (13).[22]  The introduction of (hetero)aryl or 
carbonyl motifs was within reach by treatment with organolithium 
reagents (14, 16)[23] or Suzuki-Miyaura protocols (15).[24] If 
boron-stabilized radical intermediates II intervene (Scheme 2), 
we anticipated that enantioconvergent reductive arylations could 
be developed when using racemic precursors and appropriate 
chiral ligands.[25] As shown in Scheme 5 (bottom), 18 could be 
preliminary obtained with modest enantioselectivities under a 
Ni/L6 regime. However, it is worth noting that the current 
catalytic enantioconvergent cross-electrophile portfolio remain 
predominantly confined to the use of benzyl electrophiles.[26],[27]  
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Scheme 5. Synthetic Application Profile. 

 

Scheme 6. Preliminary Mechanistic Experiments 

Next, we decided to gather indirect evidence about the 
mechanism by studying the reactivity of the oxidative addition 
species (Scheme 6). Although we were unable to identify the 
oxidative addition of 1a to Ni/L3, exposure of 2d to Ni(COD)2 
and L3 cleanly delivered Ni-1 as a crystalline solid, the structure 
of which was characterized by X-ray crystallography.[15],[28] Ni-1 
was shown to be catalytically competent, as 3d was obtained in 
75% yield. More importantly, Ni-1 was found to react in a 
stoichiometric fashion with 1a regardless of whether Zn was 
present or not. The non-negligible yield of 3d in the absence of 
Zn is particularly noteworthy, suggesting an initiation consisting 
of SET from Ni-1 to 1a, leading to a boron-stabilized radical 
intermediate II (Scheme 2, bottom).[29] The intermediacy of II 
was further corroborated in radical-trap experiments with 19 as 

substrate, resulting in a 1:2 mixture of direct arylation product 20 
to ring-closed 5-exo-trig cyclization 21 (Scheme 6, bottom).[30] 
Taken together, these results can be tentatively be ascribed to a 
mechanism consisting of an oxidative addition of 2 to Ni(0)/L3 
followed by recombination with II. Reductive elimination from IV 
delivers the product and Ni(I)/L3 that triggers a SET to 1a, 
leading to Ni(II)/L3 that ultimately recovers the propagating 
Ni(0)/L3 with Zn.[31],[32] 

 
In summary, we have designed a Ni-catalyzed protocol that 

unlocks an opportunity to promote a reversal of polarity in 
ambiphilic a-bromo boronic esters within the cross-electrophile 
coupling arena. The mild conditions, excellent chemoselectivity 
profile and ready availability of its easy-to-handle precursors 
constitute a straightforward alternative to existing technologies 
en route to densely functionalized alkyl organometallics. Further 
investigations into related processes, and the identification of the 
mechanistic intricacies, are currently ongoing in our laboratories. 
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COMMUNICATION 

A nickel-catalyzed reductive arylation of ambiphilic a-bromo boronic esters with aryl 
halides has been developed. This mild and exceedingly tolerant methodology 
unlocks an opportunity to promote a catalytic cross-electrophile coupling of 
ambiphilic reagents with aryl halides via formal reversal of polarity, representing a 
straightforward alternative for preparing densely functionalized organometallics. 
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