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Pyrrole Derivatives**
Akio Mizuno, Hiroyuki Kusama, and Nobuharu Iwasawa*

Vinylidene complexes have attracted much attention for
being unique reactive intermediate and synthetically useful,
and characteristic reactions have been developed using
various kinds of transition-metal complexes.[1] One of the
main reactions involves the addition of heteroatom nucleo-
philes such as alcohols, carboxylates, and carbamates to give
anti-Markovnikov addition products.[1] However, the addition
of the heteroatom of C=X bonds to the vinylidene carbon
atom has rarely been achieved in spite of the high synthetic
potential of the zwitterionic intermediates that are pro-
duced.[2] Herein, we report a rhodium(I)-catalyzed
[4+1] cycloaddition reaction between a,b-unsaturated
imines and terminal alkynes for the preparation of syntheti-
cally useful, substituted pyrrole derivatives through the
addition of the imine nitrogen atom to rhodium vinylidene
intermediates.[3]

When a mixture of b-TMS-substituted a,b-unsaturated
imine 1a and 1-octyne (2 a) was treated with a catalytic
amount of [{RhCl(coe)2}2] and PCy3 in toluene at 110 8C for
nine hours, pyrrole 3a (a formal [4+1] cycloaddition prod-
uct)[4] was obtained in good yield (Scheme 1). In this reaction
[{RhCl(coe)2}2], as well as other phosphine ligands such as
PPh3, P(iPr)3, 1,4-bis(diphenylphosphanyl)butane (dppb), and
1,1’-bis(diphenylphosphanyl)ferrocene (dppf) showed almost
no activity. Also, [{RhOH(cod)}2] (cod = 1,5-cyclooctadiene),
[Rh(cod)2]BF4, and [{IrCl(coe)2}2] in the presence of PCy3 did
not show any activity either. Meanwhile, [{RhCl(cod)2}2]/PCy3

showed somewhat lower activity compared to [{RhCl-
(coe)2}2]/PCy3.

The reaction is thought to proceed by the nucleophilic
addition of the nitrogen atom of the imine 1a to the carbene
carbon atom of the rhodium vinylidene complex A,[5] which is
generated in situ from the terminal alkyne, to afford a
zwitterionic intermediate B (Scheme 2). This intermediate

further undergoes intramolecular cyclization to generate
metalacyclic intermediate C. Finally, reductive elimination
proceeds to give the pyrrole 3a via enamine D through olefin
isomerization and desilylation[6] with regeneration of the
catalyst. The reaction of imine 1a with 1-deuterio-1-octyne
([D1]-2a) gave pyrrole [D1]-3a wherein deuterium (90%
incorporation) was introduced onto the carbon atom adjacent
to the pyrrole ring (Scheme 3). Furthermore, the isolated
vinylidene complex [RhCl(=C=C(H)nHex)(PCy3)2]

[7] also
catalyzed the reaction under similar reaction conditions
(Scheme 4). These results are consistent with the proposed
mechanism shown in Scheme 2. Thus, by utilizing the rhodium
vinylidene complex, a novel [4+1] cycloaddition was realized
where the a,b-unsaturated imine and terminal alkyne carbon
atom constitute the pyrrole ring through a zwitterionic
intermediate.

Recently, Colby, Bergman, and Ellman reported an
apparently similar combination of reactants and reagents to

Scheme 1. Rhodium(I)-catalyzed [4+1] cycloaddition reaction between
a,b-unsaturated imine 1a and terminal alkyne 2a. Bn= benzyl, coe=
cyclooctene, Cy = cyclohexyl, TMS= trimethylsilyl.

Scheme 2. Proposed reaction mechanism.

Scheme 3. [4+1] Cycloaddition reaction using 1-deuterio-1-octyne ([D1]-
2a).
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give dihydropyridines instead of pyrroles.[8] In their reaction,
C�H bond activation took place at the b position to the imine
moiety, and subsequent alkyne insertion gave 1,3,5-azatrienes,
which underwent thermal electrocyclization and gave dihy-
dropyridines.[8]

To evaluate the importance of the TMS group, a compar-
ison of the reactions using b-nonsubstituted derivative 4a and
b-silyl-substituted a,b-unsaturated imine 4b was carried out.
When nonsubstituted imine 4a was treated with [{RhCl-
(coe)2}2] and PCy3 in toluene at 110 8C, the corresponding
pyrrole 5a was obtained in only 12% yield and pyridines 6
were obtained as the major products (Scheme 5). In contrast,

imine 4 b, which has a TMS group at the b position, gave
pyrrole 5a as the only isolable product, albeit in low yield.
The TMS group is assumed to inhibit the C�H activation
reaction at the b position to the imine moiety.[9, 10]

The reaction of imine 1 a with several terminal alkyne
derivatives was examined under the optimized reaction
conditions (Table 1). The reaction proceeded smoothly with
alkynes possessing a functional group such as silyl ether or
methoxycarbonyl group to give 2-subustituted pyrroles in
good yield (Table 1, entries 2 and 3). Notably, alkynes with a
more sensitive functional group such as nitrile, chloro, or
amino groups also reacted with 1a to give the corresponding
functionalized pyrroles in good yield (Table 1, entries 4–6).[6]

Next, we carried out the reaction using several imine
derivatives which have a Me substituent on the nitrogen atom
instead of a Bn group:[11] to do this we employed 1-octyne as
the alkyne counterpart (Table 2). In these cases, the yield of
pyrrole derivatives was somewhat improved by carrying out
the reaction in the presence of three equivalents each of NBu3

and H2O to suppress side reactions. Imine 7a, which is derived
from phenyl ketone, gave pyrrole 8a in good yield (Table 2,
entry 1). Ketimines 7b–7e with alkenyl, alkynyl, or heteroaryl
substituents were also employed and gave the corresponding
2,5-disubstituted pyrroles in reasonable yield (Table 2,

entries 2–5).[12] Furthermore, even trisubstituted pyrrole 8 f
could be obtained by using ketimine 7 f (Table 2, entry 6). The
preparation of substituted pyrroles is important because of
their high utility as medicinal agents[13] and functional
materials[14] etc., and this approach would be a concise
method for the preparation of such pyrroles in a catalytic
manner.[15]

In summary, we have developed a novel rhodium(I)-
catalyzed intermolecular [4+1] cycloaddition reaction of a,b-
unsaturated imines with terminal alkynes by utilizing the
addition of the imine nitrogen atom to the rhodium vinylidene
complex. This reaction demonstrates another utility of the
rhodium vinylidene complex as a reactive species. Also, the
reaction could be a useful method for the preparation of
substituted pyrroles with high tolerance of functional groups.
Efforts are currently underway to expand the scope of this
reaction and to clarify the mechanism more explicitly.

Experimental Section
General procedure: A degassed solution of a,b-unsaturated imine
(0.2 mmol) and terminal alkyne (0.40 mmol) in toluene (0.5 mL,

Scheme 4. [4+1] Cycloaddition reaction using the isolated rhodium
vinylidene complex.

Scheme 5. [4+1] or [4 +2] Cycloaddition reaction of imine 4a and 4b.

Table 1: [4+1] Cycloaddition reactions of imine 1a with several alkynes.

Entry 2 Alkyne Yield of 3 [%][a]

1 2b 56 (3b)

2 2c 71[b] (3c)

3 2d 73[c] (3d)

4 2e 70 (3e)

5 2 f 75 (3 f)

6 2g 66[d] (3g)

[a] Yield of isolated product. [b] 15% of 1a was recovered. [c] 13 % of 1a
was recovered. [d] 24% yield of 3g and 42% yield of its 3-TMS derivative
were obtained. TBS= tert-butyldimethylsilyl.

Table 2: [4+1] Cycloaddition reactions of several imines with 1-octyne.

Entry 7 (E/Z) R1 R2 Yield of 8 [%][a]

1 7a (1:3) Ph H 72 (8a)
2[b] 7b[e] C=C(Me)2 H 64 (8b)
3 7c[f ] propynyl H 50 (8c)
4[b] 7d (1:1) 2-furyl H 53 (8d)
5[b] 7e (1:4) 2-thienyl H 62 (8e)
6[c,d] 7 f (1:2.5) Ph Me 56 (8 f)

[a] Yield of isolated product. [b] 3 equivalents of 1-octyne were used.
[c] The reaction was carried out without NBu3 at 1.0m. [d] 17% of imine
7 f was recovered. [e] Geometry of imine 7b was mostly E. [f ] Geometry
of imine 7c could not be determined (but was mostly one isomer).
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0.4m) was added to [{RhCl(coe)2}2] (0.01 mmol, 10 mol% at Rh
atom) and PCy3 (0,04 mmol, 20 mol %). The reaction mixture was
kept in a closed system and was stirred for 9–24 h at 110 8C before the
solvent was removed under reduced pressure to give the crude
product, which was purified by column chromatography on silica gel
to give the corresponding pyrrole derivative.
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