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ABSTRACT: Phenethyltriflamides react with 1,3-dienes upon z z
treatment with a catalytic amount of Pd(OAc), and Cu(OAc),/ Y Pd cat. B Tt
O, as oxidant to afford chemo-, regio- and diastereoselectively || P HNTE  + g CuOA 10 &7
2,3,4,5-tetrahydro-1H-benzo[d]azepines (3-benzazepine deriva- &~ T -

tives) in good to excellent yields. A DFT study of the [S + 2]
heteroannulation suggests a mechanistic pathway starting with formation of the six-membered palladacycle cis-PdX,L, via a CMD

process followed by 7* coordination and insertion of the 1,3-diene unit in a diastereoselective manner.

3-Benzazepines, benzo-fused seven-membered azaheterocycles,
are privileged structures present in a large variety of natural
products and important pharmaceuticals." These compounds
are among the most reliable structures in terms of affinity and
selectivity for dopamine D, receptors” that regulate neuronal
growth and development and mediate/modulate other
behavioral events. As CNS drugs, dopaminergic 3-benzaze-
pines possess selective D, agonist or antagonist properties that
led to useful pharmaceuticals against Parkinson’s disease,”
leukemia,” cocaine addiction,” or obesity6 (Figure 1).
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Figure 1. Biologically active 3-benzazepines.

The remarkable biological activity of the 3-benzazepines has
stimulated a great variety of synthetic approaches throughout
the years. The standard strategies to access to these seven-
membered azaheterocycles are based on intramolecular
processes such as polar cyclizations,” Friedel—Crafts cycliza-
tions,® oxidative C—H functionalization-ring expansions,9
metal-catalyzed Heck cyclizations,'’ or intramolecular
hydroamin(d)ations."" Although each one could be considered
relatively useful; indeed, they are very strongly substrate
dependent requiring a multistep synthesis of starting materials,
which somehow limits the scope of the reactions. On the other
hand, an elegant intermolecular approach based on Rh-
catalyzed cascade reactions of N-bridged yne-enoates has
been recently developed.'?

Intermolecular processes like oxidative cycloadditions based
on metal-catalyzed C—H activations have recently emerged as
a key step to build-u? medium-sized heterocycles in a more
sustainable manner.”® In the case of [S + 2] oxidative
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cycloadditions of phenethylamin(d)es to give 3-benzazepine
derivatives, the nature of the directing group and the rigidity of
the structure play an important role in order to achieve high
selectivity during the C—H activation (Scheme 1). In fact, only
examples with substrates bearing all carbon Csp® in its
phenethylamin(d)e moiety or with an embedded nitrogen to
facilitate a certain Thorpe—Ingold effect have been de-
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scribed.

Scheme 1. Metal-Catalyzed [S + 2] Oxidative
Cycloadditions to 3-Benzazepine Cores
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Pd(II) complexes are well-known to form palladacycle
derivatives by Csp*—H activation reactions in phenethylamine
derivatives."> In 2015, Luan'® and Sun'” reported the first Pd-
catalyzed [S + 2] oxidative cycloadditions of arylanilines and
indolo-anilines with alkynes to benzazepines (Scheme 1, eq
a)."® In both cases, the directing group is an aniline, a L-type
ligand, that possess the correct rigidity (biaryl-type) to
facilitate the C—H bond activation, the insertion of the alkyne
into the corresponding metallacycle, and also the final
reductive elimination step via removal of HX."” In the case
of X-type anilide ligands as directing groups, Luan®® and
Mascarefias>* reported the Pd-catalyzed [S + 2] oxidative
cycloaddition with 1,3-dienes and allenes, respectively
(Scheme 1, eq b). In both cases, the nature of the directing
group and, therefore, the rigidity of the corresponding
metallacycle did not allow the insertion of alkynes; however,
1,3-dienes’” or allenes'* could be inserted to form more stable
allylic intermediates. We herein report that phenethyltrifla-
mides (X-type ligands), with a nonrigid Csp® tether between
the two reacting centers efficiently undergo chemo-, regio- and
diastereoselective Pd-catalyzed [S + 2] heteroannulations with
1,3-dienes to afford bioactive 2-alkenyl-3-benzazepines
(Scheme 1, eq c) in good to excellent yields."*” The best
conditions found for the catalytic cycle involve the
combination of Cu(OAc), and O, as oxidant system.

Initially, we began our investigation by examining the
intermolecular Pd-catalyzed [S + 2] cycloaddition between
phenethyl N-triflamide 1a and (E)-buta-1,3-dien-1-ylbenzene
(2a) as model partners (Table 1). Under classical palladium/

Table 1. Optimization of Reaction Conditions”

H Pd(OAc), (10 mol %)

N. = ___condiions N-Tf
105°C, 24 h —
sealed tube Ph

1a 2a (2 equiv) 3aa
yield”
entry” conditions (%)
1 BQ (2 equiv), Et;N (2 equiv)
2 Cu(OAc),'H,0 (2 equiv), Et;N (2 equiv) 35
3 Cu(OAc),'H,0 (2 equiv), Et;N (2 equiv), DMF 50
(10 equiv)
4° Cu(OAc),'H,0 (0.5 equiv), Et;N (0.1 equiv), DMF (10 40
equiv), air
57 Cu(OAc),H,0 (0.5 equiv), E;N (0.1 equiv), DMF (10 95
equiv), O,

“Typical conditions: 1a (0.2 mmol, 1 equiv), 2a (0.4 mmol, 2 equiv),
0.5 mL of MeCN. “Internal standard 3,5-dinitromethylbenzoate. “The
solution was bubbled with an air balloon for 10 min. “The solution
was bubbled with an O, balloon for 10 min.

benzoquinone oxidative combinations or using other oxidants
such as PIFA or PIDA the cycloaddition failed (entry 1 and
Supporting Information).” Pleasingly, the use of 2 equiv of
Cu(OAc),-H,0 as oxidant allowed the isolation of 3-
benzazepine 3aa albeit in low yield (entry 2).”' It could be
increased up to 50% using the same oxidant in the presence of
10 equiv of strong coordinating solvents such as DMF or
DMSO (entry 3). These solvents might help to reoxidize
Pd(0) to Pd(II) and, therefore, restart the catalytic cycle
avoiding the polymerization of Pd(0) to ineffective dark
palladium.”* Interestingly, the amount of base and oxidant
could be reduced when the solution was saturated in air
keeping a moderate 40% yield (entry 4) and, to our delight,

with only 0.5 equiv of Cu(OAc),-H,0 and 0.1 equiv of Et;N in
CH,CN saturated with O, (to facilitate a better reoxidation
system) gave an excellent yield of 3aa (entry 5).”

Having established optimal conditions, we next investigated
the scope of the two reaction partners. Using phenethyltri-
flamide 1a as a standard substrate, the scope of 1-aryl-1,3-
dienes 2 was explored and found to be very broad,
encompassing a wide range of electron-rich, electron-poor,
and heteroaroamatic 1,3-dienes in any position. In the case of
electron-poor aryl dienes, o-bromo (2b), o-nitro (2d), and p-
trifluoromethyl (2f) substituents worked very well. In the case
of electron-rich aryl dienes, o-methyl (2c), m-methoxy (2e),
and heteroaromatic p-thiophene-yl (2i) substituents worked
relatively well, but a p-dimethylamino-substituted aryl diene
(2g) failed to react due to extensive polymerization. Electron-
rich meta- and para-disubstituted aryl diene 2h gave also fairly
good yields. Either simple nonsubstituted 1,3-butadiene 2j or
alkyl-substituted penta-1,3-diene 2k (as a 1:1 mixture of
isomers) worked in relatively good yields. The 3-benzazepine
3ak was obtained as a 9:1 mixture of E/Z isomers, which
confirms the regio- and chemoselectivity of the reaction giving
the more stable alkenyl-substituted product as the major one.
Interestingly, functionalized dienamide 2I gave the correspond-
ing 3-benzazepine 3al in a fairly good yield that foresees
interesting derivatization of the installed Weinreb amide.
Unfortunately, 2-susbtituted 1,3-dienes (e.g, isoprene) and
1,2- or 1,4-disubstituted dienes failed to react as other
cycloadditions.****

Electronic effects of the ring substituents in phenethyltri-
flamide 1 were then analyzed in the reaction with diene 2a and
were found to be similarly broad in terms of electron-
withdrawing and electron-donating capability in any position
(3ba—3fa) (Scheme 2). When p-OMe phenethyltriflamide 1e
was used, a 1:1 mixture of 3-benzazepines 3ea and 3ea’ was
obtained. The strongly polarized p-NO, substituent is poorly
tolerated in the reaction giving rise to the corresponding 3-
benzazepine 3fa in a low 30% yield. Substitution on the tether
alkyl chain was then pursued, which allowed us to analyze the
diastereoselectivity of the reaction. Thus, the S-substituted
phenethyltriflamide 1g gave rise to 3ga in a good 80% yield as
a 3:1 mixture of diastereomers. To our delight, the a-
substituted L-phenylalaninate 1h, with a substituent closer to
the coordinating nitrogen atom, reacted smoothly with the
diene 2a to afford 3ha (50% yield) as a single diastereoisomer
without racemization as confirmed by NMR experiments and
X-ray crystallography. Interestingly, both substitutions in the
alkyl chain and the aromatic ring are well-tolerated, giving 3ia
(80%) and 3ja (70%) as single diastereoisomers.

In an effort to gain an insight into the reaction mechanism,
several stoichiometric experiments to form the cyclometalated
palladium cis-PdX,L, complexes were conducted.”” The six-
membered cyclometalated Pd(II) complex 4a was formed by
heating 1a with 1 equiv of Pd(OAc), in MeCN for 12 h that
could be characterized by 'H NMR (Scheme 3, eq 1).
Gratifyingly, X-ray structural characterization was possible
when complex 4a was stirred in the presence of 2,2'-bipy
ligand to give 4a’ as off-white crystals. Furthermore, 4a reacts
with 1 equiv of 2a to give 3-benzazepine 3aa in quantitative
yield after heating at 30 °C for 2 h (Scheme 3, eq 2).”* To gain
further information about the diastereoselectivity, the pallada-
cycle 4h’ was also isolated and crystallized as off-white crystals
(Scheme 3, eq 3).
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Scheme 2. Scope of the Reaction”
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“Reaction conditions: 1 (0.2 mmol, 1 equiv), 2 (0.4 mmol, 2 equiv),
0.5 mL MeCN/DMF (4:1). The ORTEP drawing of 3ha shows
ellipsoids at the 30% contour probability level.

Diastereoselectivity of the reaction was then analyzed by
DFT calculations starting from complex 4h (Scheme 4).7
Four possible perpendicular 7>-coordination modes of the less
substituted olefin of the 1,3-diene to the palladacycle plane
could be considered (substituent left/right and up/down).” It
was only possible to find the transition states for the 1,2-
mlgratory insertion of the two shown, I (left-down)”" and I’
(left-up). > Even though I’ is more stable than I (AG® = 2.6
kcal mol™"), 1,2-migratory insertion of the coordinated double
bond of the diene into the C—Pd bond from I to afford the

seven-membered palladacycle II resulted kinetically more

Scheme 3. Isolation of Palladacycles and Mechanistic
Experiments®

H
N._, Pd(OAc), (1 equiv) 2,2-Bipy

T R U D N
MeCN, 70 °C Pl T MeCN

1a overnight MeCN MeCN  50% (2 steps)

4a

_ MeCN N-Tf
N. o AP T
COTE 2h,30°C =

Pd
AN quantitative Ph
MeCN MeCN

4a 2a 3aa

COMe
(OAG), (1 equiv) @(\r © 22Bipy
N

COMe  Pd
mﬂ MeCN, 70 °C pd T e
! %
overnight MeCN MeCN  50% (2 steps) Q—Q

1h 4h
“The ORTEP drawing of 4h’ shows ellipsoids at the 30% contour
probability level.

Scheme 4. Proposed Catalytic Cycle and DFT Calculations
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favorable than the same elemental step to afford II" from I’
(AAG* = 1.6 kcal mol™). Note that a direct route involving a
conformational change from II to the more stable s-allyl
complex III followed by reductive elimination affords the trans-
3-benzazepine trans-3ha through a high energetic barrier AG*
= 282 kcal mol™ (this diastereomer was not observed
experimentally). However, decoordination of the nitrogen
from III to a zwitterionic species IV followed by a favorable
Sn2-type reaction affords the observed cis-3-benzazepine cis-
3ha with a relatively low barrier (AG* = 8.7 kecal mol™).*
Final Pd reoxidation of Pd(0) to Pd(II) would regenerate the
catalytic species.

In conclusion, an efficient chemo-, regio-, and diastereose-
lective Pd-catalyzed reaction has been developed to obtain
highly valuable 2,3,4,5-tetrahydro-1H-benzo[d]azepines. The
use of O, as co-oxidant allowed to decrease the amount of
oxidant, leading to [S + 2] oxidative cycloadditions in good to
excellent yields. Stoichiometric experiments allowed the
isolation of cis-PdX,L, complexes as key intermediates. DFT
calculations support both the proposed reaction mechanism
and the diastereoselectivity.
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