

CHEM5USCHEM

ENERGY & MATERIALS

Accepted Article

Title: Oxidative Methane Conversion to Ethane on Highly Oxidized Pd/ CeO2 Catalysts Below 400 °C

Authors: Gihun Kwon, Dongjae Shin, Hojin Jeong, Suman Kalyan Sahoo, Jaeha Lee, Gunjoo Kim, Juhyuk Choi, Do Heui Kim, Jeong Woo Han, and Hyunjoo Lee

This manuscript has been accepted after peer review and appears as an Accepted Article online prior to editing, proofing, and formal publication of the final Version of Record (VoR). This work is currently citable by using the Digital Object Identifier (DOI) given below. The VoR will be published online in Early View as soon as possible and may be different to this Accepted Article as a result of editing. Readers should obtain the VoR from the journal website shown below when it is published to ensure accuracy of information. The authors are responsible for the content of this Accepted Article.

To be cited as: ChemSusChem 10.1002/cssc.201903311

Link to VoR: http://dx.doi.org/10.1002/cssc.201903311

WILEY-VCH

www.chemsuschem.org

Manuscr

Dted

COMMUNICATION

Oxidative Methane Conversion to Ethane on Highly Oxidized Pd/CeO₂ Catalysts Below 400 °C

Gihun Kwon^{†[a]}, Dongjae Shin^{†[b]}, Hojin Jeong^[a], Suman Kalyan Sahoo^[b], Jaeha Lee^[c], Gunjoo Kim^[a], Juhyuk Choi^[a], Do Heui Kim^[c], Jeong Woo Han^{*[b]} and Hyunjoo Lee^{*[a]}

Abstract: Methane upgrading into more valuable chemicals has received much attention. Herein, we report oxidative methane conversion to ethane using gaseous O_2 at low temperatures (< 400 ° C) and atmospheric pressure in a continuous reactor. A highly oxidized Pd deposited on ceria could produce ethane with the productivity as high as 0.84 mmol g_{cat} ⁻¹ h⁻¹. The Pd-O-Pd sites, not Pd-O-Ce, were the active sites for the selective ethane production at low temperatures. Density functional theory calculations confirmed that Pd-O-Pd site is energetically more advantageous for C-C coupling whereas Pd-O-Ce prefers CH₄ dehydrogenation. The ceria helped Pd maintain highly oxidic state despite reductive CH₄ flow. This work can provide new insight for methane upgrading into C2 species.

Direct conversion of methane to value-added chemicals such as olefins, aromatics, and methanol has recently received much attention due to the depletion of crude oil and the large reserves of shale gas.^[1] The methane is often emitted from shale gas mines into air, causing a severe greenhouse effect. The majority of methane is burned, also producing a significant amount of carbon dioxide. Converting the methane into more valuable chemicals would be beneficial for not only producing more benefits but also for protecting environment. However, direct conversion is very difficult because the first C-H bond activation requires high energy (439 kJ/mol).^[2] The inertness of methane hinders the selective production of valuable chemicals and instead the methane conversion often results in over-oxidation to CO₂ or severe coke formation.^[3]

Despite the difficulties, oxidative or non-oxidative methane conversion has been reported. The oxidative conversion uses oxidants such as H_2O_2 or O_2 , typically allowing milder reaction conditions.^[4] Methanol could be directly produced from methane using H_2O_2 as an oxidant, however, a batch reactor was typically used and H_2O_2 is more expensive than methanol, making its practical application improbable. Ethylene could be produced

+	These authors equally contributed
[a]	Gihun Kwon, Hojin Jeong, Gunjoo Kim, Juhyuk Choi, Hyunjoo Lee
	Department of Chemical and Biomolecular Engineering
	Korea Advanced Institute of Science and Technology
	Daejeon 34141, South Korea
	E-mail: azhyun@kaist.ac.kr
[b]	Dongjae Shin, Suman Kalyan Sahoo, Jeong Woo Han
	Department of Chemical Engineering
	Pohang University of Science and Technology, Pohang
	Gyeongbuk 37673, South Korea
	E-mail: jwhan@postech.ac.kr

Jaeha Lee, Do Heui Kim
 School of Chemical and Biological Engineering
 Institute of Chemical Processes, Seoul National University
 Seoul, 08826, South Korea

Supporting information for this article is given via a link at the end of the document.

using O_2 in a continuous reactor, but the reaction temperature is typically higher than 700 °C, and various side-products were formed together due to its radical-derived chemistry,^[5] causing higher cost for separation.^[6] Methanol was produced from a continuous flow reactor using O_2 , but the productivity was very low as 0.02 mmol g_{cat} ⁻¹ h^{-1,[4a, 4c]} The non-oxidative conversion uses methane only, but it typically require very high temperature (> 1000 °C). Selective production of olefin or benzene have been reported,^[7] but these results were not easily reproduced.

Using a continuous flow reactor is preferred for the direct methane conversion. O_2 as an oxidant, instead of H_2O_2 or N_2O , is preferred for the oxidative methane conversion.^[1b, 2, 8] Because conventional oxidative coupling of methane generates radicals at high temperatures of >700 °C resulting in various side-products, the catalysts enabling surface reaction at much lower temperatures are desired.

We show here that highly oxidized Pd/CeO₂ catalysts can catalyze oxidative methane upgrading into ethane at low temperatures using gaseous O₂. The studies on methane coupling at low temperatures below 400 °C are rare. Pt/SiO₂ or Pd/Al₂O₃ have been used for methane coupling below 400 °C but they could not complete a catalytic cycle; after flowing methane, hydrogen gas was required to extract the adsorbed products from the catalyst surface.^[9] (\equiv SiO)₂Ta-H could have a closed catalytic cycle producing ethane continuously, but methane pressure was as high as 50 bar, and the ethane productivity was very low as 0.01 mmol g_{cat}⁻¹ h⁻¹ at 300 °C.^[10] The detailed comparison for the catalysts producing ethane from methane at < 400 °C is provided in Table S1.

Pd/CeO₂ catalysts, on which Pd nanoparticles are dispersed on ceria surface, have been widely used for oxidations, such as CO oxidation, benzyl alcohol oxidation, and methane combustion.^[11] The Pd surface can be easily oxidized and the formed PdO can behave as an oxidation catalyst.^[12] The interface between Pd and ceria often behaves as efficient active sites for oxidation at lower temperatures.^[3b, 13] Particularly, it was reported that Pd can be highly oxidized on ceria with a ratio of Pd to O smaller than 1.^[14] Methane activation was also studied on Pd; the energy barrier was lower in PdO than metallic Pd.^[15] Various Pd catalysts such as Pd@CeO₂/Al₂O₃ or Pd/ZSM-5 have been reported to be efficient for methane combustion.^[3b, 16]

In this study, highly oxidized Pd/CeO_2 catalysts can catalyze the oxidative methane conversion producing ethane at low temperatures. The reaction kinetics were investigated by varying methane or O_2 partial pressure. Catalysts with different ratios of Pd-O-Pd and Pd-O-Ce sites were prepared and tested for ethane production. Density functional theory (DFT) calculations were performed to investigate the reaction mechanism on Pd-O-Pd and Pd-O-Ce sites.

WILEY-VCH

COMMUNICATION

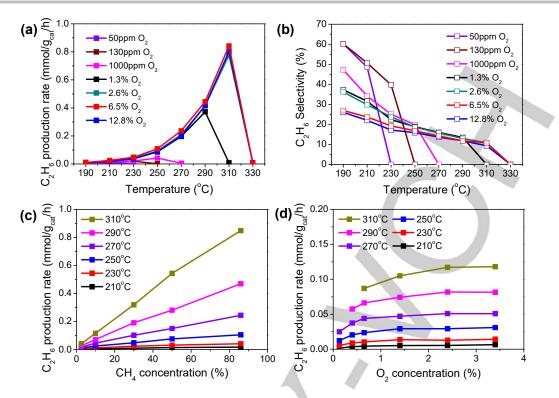
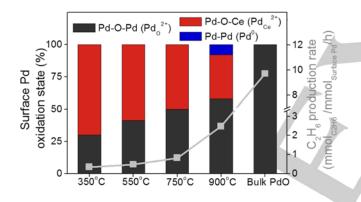


Figure 1. Effect of the temperature on the ethane (a) productivity and (b) selectivity with various O_2 contents. The CH₄ content was 86% with balance N_2 in (a) and (b). In the case of 12.8% O_2 , 78% of CH₄ was used instead. Effect of the (c) CH₄ and (d) O_2 content. The O_2 content was 5% in (c), and the CH₄ content was 8.6% with balance N_2 in (d).

The highly oxidized Pd/CeO₂ catalyst was prepared by treating Pd/CeO₂, which was synthesized with a conventional depositionprecipitation, at 750 °C for 25 h under air. When a high concentration of CH_4 (86%) was flowed with gaseous O_2 (50 ppm) ~ 6.5%) at elevated temperatures, C_2H_6 was produced with a productivity of 0.84 mmol g_{cat} ⁻¹ h⁻¹ at 310 °C as shown in Figure 1a. The C₂H₆ selectivity was 11% at 310 °C with balance CO₂, and a trace amount of C₂H₄ was also detected with a productivity of 5 μ mol g_{cat}⁻¹ h⁻¹. When the temperature was 330 °C, the C₂H₆ production suddenly stopped. X-ray photoelectron spectroscopy (XPS) results showed that the Pd surface was reduced and extended X-ray absorption fine structure (EXAFS) result also showed that a strong Pd-Pd peak appeared after the reaction at 330 °C (Figure S1). This indicates that metallic Pd was not the active phase for methane coupling to produce ethane. The Pd catalyst after the reaction at 310 °C showed the same oxidic surface state as the fresh Pd catalyst. The C_2H_6 could be produced at 310 °C stably for 100 h (Figure S2).

As the O₂ content decreased, the highly oxidized Pd/CeO₂ catalyst was reduced at lower temperature, and then the ethane productivity dropped to nearly zero. Instead, the ethane selectivity was high; 60% of the ethane selectivity was observed at 190 °C and 50 ppm O₂ as shown in Figure 1b. When C₂H₆ was flowed with O₂, only 4.7 % of the C₂H₆ was converted to CO₂ at 310 °C (Figure S3). Only a small fraction of the produced C₂H₆ seems to be converted into CO₂. Various kinds of metals or metal oxide supports were tested. The C₂H₆ production was observed on Pd and Pt among Pd, Rh, Ru, Ir and Pt (Figure S4). The Pd had a much higher C₂H₆ productivity at lower temperatures than that of the Pt. When the Pd was deposited on ZrO₂, CeO₂, TiO₂ and SiO₂,


the C_2H_6 production was observed in all cases, and the CeO₂ had the highest productivity and selectivity (Figure S5).

The effect of CH₄ and O₂ content was also examined. The C₂H₆ productivity increased linearly as CH₄ content increased as shown in Figure 1c. This trend was observed in a wide range of CH₄ content (2.5% ~ 86%) at various temperatures (210 ~ 310 C), indicating that CH₄ activation can occur easily on the Pd/CeO₂ catalyst. On the other hand, the C_2H_6 productivity became saturated as O₂ content increased as shown in Figure 1d. The O₂ content at which the ethane productivity reached saturation increased at higher temperature; 1.4% at 210 °C to 2.4% at 310 °C. O₂ activation occurs more at higher temperature, resulting in higher C₂H₆ productivity. These results indicate that O₂ activation is more difficult. When O₂ content was low below 1%, the Pd/CeO₂ was reduced more easily, terminating the C₂H₆ production at lower temperatures. Facilitating O₂ activation while preventing the catalyst reduction is important to maximize the C_2H_6 production.

Whether the active site is Pd-O-Pd or Pd-O-Ce was investigated. Pd-O-Pd is the main bonding of PdO particles, and Pd-O-Ce is the site at the interface between Pd and CeO₂. The Pd-O-Ce is known to be efficient for methane combustion at lower temperatures.^[3b, 13] The ratio of the surface Pd-O-Pd to Pd-O-Ce was varied by changing calcination temperatures. The 4 wt% Pd/CeO₂ was calcined at various temperatures to prepare the oxidic Pd catalysts with different degrees. XRD patterns and TEM images were shown in Figure S6 and S7. The Pd/CeO₂ calcined at 350, 550, 750 °C showed the XRD peak for CeO₂ only, while the Pd/CeO₂ calcined at 900 °C also showed the metallic Pd peaks. EDS mapping images show that Pd was well distributed on the CeO₂. The Pd domain size was 2.0, 2.3, 2.9, and 12.7 nm

COMMUNICATION

for the Pd/CeO₂ catalysts calcined at 350, 550, 750, and 900 °C, respectively, when measured by CO chemisorption (Table S2). These catalysts were compared to commercial PdO with a Pd domain size of 17.8 nm. The oxidation state of surface Pd was estimated by XPS (Figure S8). In the Pd/CeO₂ catalysts, the oxidic Pd 3d_{5/2} peak appears at two different positions of 336.5 eV for Pd-O-Pd and 337.6 eV for Pd-O-Ce, while the metallic Pd 3d_{5/2} peak appears at 335.5 eV.[17] The oxidic XPS peaks were deconvoluted and the percentages of Pd-O-Pd or Pd-O-Ce at the surface were estimated from the peak area ratio in Figure S8. The surface of Pd/CeO2 calcined at 900 °C was reduced after the calcination. As shown in Figure 2, the fraction of Pd-O-Pd sites increased from 30% to 41%, 50%, 58%, and 100% for the Pd/CeO₂ catalysts calcined at 350, 550, 750, 900 °C, and bulk PdO, respectively. EXAFS data in Figure S9 also confirmed that the peak for Pd-O-Pd increased while the peak for Pd-O-Ce decreased as the calcination temperature increased. Table S3 shows the fitting results of the EXAFS data. The coordination number for Pd-O-Pd increased from 2.3 to 3.3, 4.3, 5.3, and 8.0 in the Pd/CeO₂ calcined at 350, 550, 750, 900 °C, and bulk PdO, respectively. When C₂H₆ productivity was estimated per surface Pd atom, the turnover frequency becomes higher as the fraction of the Pd-O-Pd sites increase. Clearly, the Pd-O-Pd sites, not Pd-O-Ce, are the active sites for the methane coupling.

Figure 2. The ratios of the Pd-O-Pd and Pd-O-Ce estimated from XPS Pd 3d spectra (left axis) and turnover frequency for C_2H_6 production at 250°C (right axis) on the Pd/CeO₂ catalysts calcined at 350, 550, 750, 900 °C, and bulk PdO. The number of surface Pd atom was estimated from CO uptakes.

DFT calculations were carried out to elucidate how Pd-O-Ce and Pd-O-Pd sites affect the oxidative methane coupling. Two models with Pd-O-Ce or Pd-O-Pd sites were constructed to understand the fundamental effects of these sites on the methane conversion. The partially embedded $Pd_7O_7/Ce_{33}O_{66}(111)$ surface (Figure S10c) was used as the Pd-O-Ce model; all the oxygens exposed on the PdO particle are Pd-O-Ce sites because all the oxygens (O1-O8) are neighbored by both Pd and Ce. The PdO(101) facet was used as the Pd-O-Pd model (Figure S10d); all the oxygens (O1-O2) are neighbored by Pd with Pd-O-Pd sites only. The computational details of constructing the models can be found in supporting information. The mechanistic steps of oxidative methane conversion considered in the DFT calculations are as follows:

- (2) Dissociation of the adsorbed CH₄ (*CH₄) into *CH₃ and *H (E1→E2)
- (3) Approach of two *CH₃ and two *H (E2→E3) or dissociation of *CH₃ into *CH₂ and *H (E2→E3-1)
- (4) Coupling of two $*CH_3$ into $*C_2H_6$ (E3 \rightarrow E4)
- (5) Formation of *H₂O with an O vacancy left on the surface $(E4\rightarrow E5)$
- (6) Desorption of ${}^{*}H_2O$ from the surface (E5 \rightarrow E6)
- (7) Healing of O vacancy by gas-phase O_2 and desorption of ${}^*C_2H_6\,(E6{\rightarrow}FS)$

The asterisk mark (*) denotes the chemical species adsorbed on the surface. Figure 3 shows the relative potential energies of each elementary step, and Figure S11 shows the optimized structures of each step and transition states. Table S4 shows the specific energy difference at each step. In the Pd-O-Ce model, the largest energy is required when the *H₂O is desorbed from the surface with the energy difference of 1.79 eV (step 6). In the Pd-O-Pd model, the largest energy is required when the *H₂O and oxygen vacancy are formed with the energy barrier of 1.40 eV (step 5). Since the barrier for rate-determining step (RDS) is smaller in the Pd-O-Pd model than that in the Pd-O-Ce model, the activity for the methane coupling would be higher in the Pd-O-Pd than that in the Pd-O-Ce, leading to the higher C_2H_6 productivity.

After *(CH₃+H) is formed from the dissociation of *CH₄ (step 2), the *CH₃ might be further dissociated into *(CH₂+H) (step 3-1). The reaction barrier of *CH₃ dissociation into *(CH₂+H) were compared. The barrier for the *CH₃ dissociation was 1.58 eV on the Pd-O-Pd model, while it was 1.07 eV on the Pd-O-Ce model. Especially, the *CH₃ dissociation (step 3-1) was energetically preferred to the pathway towards the coupling of two *CH₃ into *C₂H₆ (step 3) by 2.26 eV on the Pd-O-Ce model. However, the pathway to *C₂H₆ (step 3) was favored than the pathway to *CH₃ dissociation (step 3-1) by 0.29 eV on the Pd-O-Ce would rather promote further dehydrogenation leading to the formation of CO₂.^[18] The DFT results indicate that Pd-O-Pd sites can be the active sites producing C₂H₆ from methane, whereas Pd-O-Ce site would combust the methane.^[3b, 13]

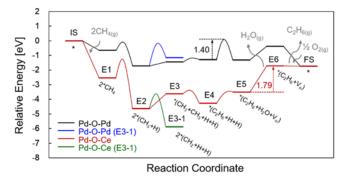


Figure 3. Reaction profiles of the oxidative methane conversion on Pd-O-Ce and Pd-O-Pd sites; the rate-determining steps were denoted using dashed arrows. The blue and green lines indicate the paths (E3-1) leading to CO_2 formation on Pd-O-Pd and Pd-O-Ce, respectively.

Although Pd-O-Pd are the active sites for the methane coupling, bulk PdO presented lower maximum C_2H_6 productivity and selectivity than the Pd/CeO₂ catalyst calcined at 750 °C

⁽¹⁾ Adsorption of gas-phase CH_4 molecule (IS \rightarrow E1)

COMMUNICATION

(Figure S12). H₂ temperature-programmed reduction (H₂-TPR) data showed that the bulk PdO was reduced at -17 °C whereas smaller Pd nanoparticles supported on CeO2 was reduced at higher temperatures above 5 °C (Figure S13). The bulk PdO is reduced too easily while the Pd/CeO₂ can maintain the oxidic Pd state better in a high concentration of CH₄ flow. The oxidic Pd sites are the active sites for the methane coupling, and the ethane would not be produced in the presence of metallic Pd. The ceria support helped the Pd domain maintain the highly oxidized state in the reductive condition. The Pd/CeO2 calcined at 350 °C or 550 °C showed a larger reduction peak than the other samples, indicating that more H₂ was consumed to reduce the surface with more Pd-O-Ce bonds.^[19] O₂ temperature-programmed desorption (O2-TPD) results also show that O2 was desorbed more in the bulk PdO, causing more over-oxidation (Figure S14). The surface oxygen of the Pd/CeO₂ calcined at 750 °C started to be desorbed at the highest temperature, indicating that removing the oxygen from the catalyst surface is the most difficult. CH₄-TPR was also performed and the produced H₂O was detected using a mass spectrometer (Figure S15). The H₂O was detached from the Pd/CeO₂ calcined at 750 °C at the temperature similar to the bulk PdO, but the peak intensity was lower than that of bulk PdO. The H₂O was detached at higher temperatures from the Pd/CeO₂ calcined at 550 °C or 350 °C. In DFT calculations, the H₂O formation or desorption was identified as the most difficult step for methane coupling reaction on Pd-O-Pd or Pd-O-Ce model. H₂O could be detached at lower temperatures from the catalysts with more Pd-O-Pd sites, whereas H₂O was detached at higher temperatures from the catalysts with more Pd-O-Ce sites.

In summary, a highly oxidized Pd/CeO₂ catalyst could oxidize methane directly to ethane in a stable manner using gaseous O₂ below 400 °C. The Pd-O-Pd sites, not Pd-O-Ce, enabled the oxidative methane coupling. But the ceria helped Pd domain to maintain a highly oxidized state even under a high concentration of methane flow with higher C₂H₆ selectivity. DFT study confirmed that the C-C coupling can occur more on Pd-O-Pd site whereas Pd-O-Ce site would promote dehydrogenation into CO₂. This work opens up a new avenue to design heterogeneous catalysts for oxidative methane conversion into value-added chemicals at milder conditions.

Experimental Section

CeO₂ support was synthesized using a co-precipitation method. Ce(NO₃)₃·6H₂O (99.99%, Kanto chemical) 1.0 g was dissolved in 23.5 mL of deionized water under mild stirring. Aqueous ammonia (25~30% NH₄OH, Duksan) was injected dropwise until pH of the solution reached ~8.5. The resulting yellow slurry was filtered, and the obtained precipitate was dried and calcined at 500°C for 5 h in air. Pd/CeO2 was synthesized using a deposition-precipitation method. The CeO₂ powder 0.38 g was added in 5 mL deionized water. H₂PdCl₄ solution was prepared with 1: 2 molar ratio of PdCl₂ (99%, Sigma-Aldrich) to HCl (35~37%, Samchun) in deionized water. Na₂CO₃ solution was prepared by dissolving 0.53 g of Na₂CO₃ (99.999%, Sigma-Aldrich) in 10 mL of deionized water. The H₂PdCl₄ solution (~1 mL) containing 0.016 g Pd was added dropwise into the CeO₂ solution under rigorous stirring to prepare 4 wt% Pd/CeO₂ catalysts. The Na₂CO₃ solution was added together to control pH of the solution as ~9. The final solution was stirred for 2 h and aged for 2 h without stirring at room temperature. The solution was filtered and dried in an oven at 80°C for 5 h. The prepared Pd/CeO2 catalysts was calcined with air at 350, 550, 750, and 900 $^\circ\text{C}$ for 25 h, respectively. Bulk PdO was purchased from Sigma-Aldrich (99.97%). Similarly, various precious metals of Rh, Ru, Ir, and Pt were deposited on the CeO₂. Metal chloride precursors of RhCl₃·xH₂O (99.98%, Sigma-Aldrich), IrCl₃·xH₂O ($\leq 100\%$, Sigma-Aldrich), H₂PtCl₆·6H₂O ($\leq 100\%$, Sigma-Aldrich), and RuCl₃ ($\leq 100\%$, Sigma-Aldrich) were used. Other metal oxide supports of TiO₂ (P25, Degussa), ZrO₂ (Sigma-Aldrich), and SiO₂ (Sigma-Aldrich) were also used instead of CeO₂ at otherwise the same synthesis conditions. Reaction, characterizations, and computational details can be found in supporting information.

Acknowledgements

This research was supported by the National Research Foundation of Korea (NRF-2016M3D3A1A01913255 and 2018R1A2A2A05018849). The experiments at PLS were supported in part by MSIP and POSTECH.

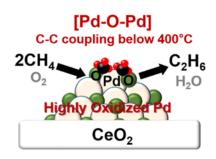
Keywords: methane, ethane, PdO, heterogeneous catalysis, oxidation

a) P. Schwach, X. L. Pan, X. H. Bao, *Chem. Rev.* 2017, *117*, 8497-8520;
 b) E. V. Kondratenko, T. Peppel, D. Seeburg, V. A. Kondratenko, N. Kalevaru, A. Martin, S. Wohlrab, *Catal. Sci. Technol.* 2017, *7*, 366-381.
 P. Tomkins, M. Ranocchiari, J. A. van Bokhoven, *Acc. Chem. Res.* 2017,

- 50, 418-425.
 a) A. A. Latimer, A. R. Kulkarni, H. Aljama, J. H. Montoya, J. S. Yoo, C. Tsai, F. Abild-Pedersen, F. Studt, J. K. Norskov, *Nat. Mater.* 2017, *16*, 225-229; b) M. Cargnello, J. J. D. Jaen, J. C. H. Garrido, K. Bakhmutsky, T. Montini, J. J. C. Gamez, R. J. Gorte, P. Fornasiero, *Science* 2012, 337, 713-717; c) Y. Lai, G. Veser, *Catal. Sci. Technol.* 2016, *6*, 5440-5452; d) B. Xing, X. Y. Pang, G. C. Wang, *J. Catal.* 2011, *282*, 74-82.
- [4] a) K. T. Dinh, M. M. Sullivan, K. Narsimhan, P. Serna, R. J. Meyer, M. Dinca, Y. Román-Leshkov, *J. Am. Chem. Soc.* 2019, *141*, 11641-11650;
 b) P. Tomkins, A. Mansouri, S. E. Bozbag, F. Krumeich, M. B. Park, E. M. C. Alayon, M. Ranocchiari, J. A. van Bokhoven, *Angew. Chem. Int. Ed.* 2016, *55*, 5467-5471; c) K. Narsimhan, K. Iyoki, K. Dinh, Y. Román-Leshkov, *ACS Cent. Sci.* 2016, *2*, 424-429; d) C. Hammond, M. M. Forde, M. H. Ab Rahim, A. Thetford, Q. He, R. L. Jenkins, N. Dimitratos, J. A. Lopez-Sanchez, N. F. Dummer, D. M. Murphy, A. F. Carley, S. H. Taylor, D. J. Willock, E. E. Stangland, J. Kang, H. Hagen, C. J. Kiely, G. J. Hutchings, *Angew. Chem. Int. Ed.* 2012, *51*, 5129-5133.
- [5] a) P. W. Wang, G. F. Zhao, Y. Wang, Y. Lu, *Sci. Adv.* 2017, *3*; b) P. W. Wang, G. F. Zhao, Y. Liu, Y. Lu, *Appl. Catal. A* 2017, *544*, 77-83.
- [6] K. J. Chen, D. G. Madden, S. Mukherjee, T. Pham, K. A. Forrest, A. Kumar, B. Space, J. Kong, Q. Y. Zhang, M. J. Zaworotko, *Science* 2019, 366, 241-246.
- X. G. Guo, G. Z. Fang, G. Li, H. Ma, H. J. Fan, L. Yu, C. Ma, X. Wu, D. H. Deng, M. M. Wei, D. L. Tan, R. Si, S. Zhang, J. Q. Li, L. T. Sun, Z. C. Tang, X. L. Pan, X. H. Bao, *Science* 2014, 344, 616-619; b) P. F. Xie, T. C. Pu, A. M. Nie, S. Hwang, S. C. Purdy, W. J. Yu, D. Su, J. T. Miller, C. Wang, *ACS Catal.* 2018, *8*, 4044-4048.
- [8] Y. Kim, T. Y. Kim, H. Lee, J. Yi, Chem. Commun. 2017, 53, 4116-4119.
- a) M. Belgued, P. Pareja, A. Amariglio, H. Amariglio, *Nature* 1991, 352, 789-790; b) S. F. Moya, R. L. Martins, A. Ota, E. L. Kunkes, M. Behrens, M. Schmal, *Appl. Catal., A* 2012, 411, 105-113.
- [10] D. Soulivong, S. Norsic, M. Taoufik, C. Coperet, J. Thivolle-Cazat, S. Chakka, J. M. Basset, J. Am. Chem. Soc. 2008, 130, 5044-5045.
- [11] a) G. N. Li, L. Li, Y. Yuan, J. J. Shi, Y. Y. Yuan, Y. S. Li, W. R. Zhao, J. L. Shi, *Appl. Catal. B* 2014, *158*, 341-347; b) Y. T. Chen, H. J. Zheng, Z. Guo, C. M. Zhou, C. Wang, A. Borgna, Y. H. Yang, *J. Catal.* 2011, *283*, 34-44; c) L. H. Xiao, K. P. Sun, X. L. Xu, X. N. Li, *Catal. Commun.* 2005, 6, 796-801.
- [12] R. J. Farrauto, J. K. Lampert, M. C. Hobson, E. M. Waterman, *Appl. Catal.* B 1995, 6, 263-270
- [13] a) S. Colussi, A. Gayen, M. F. Camellone, M. Boaro, J. Llorca, S. Fabris, A. Trovarelli, Angew. Chem. Int. Ed. 2009, 48, 8481-8484; b) M. Danielis,

WILEY-VCH

COMMUNICATION


S. Colussi, C. de Leitenburg, L. Soler, J. Llorca, A. Trovarelli, *Angew. Chem. Int. Ed.* 2018, 57, 10212-10216.

- [14] T. P. Senftle, A. C. T. van Duin, M. J. Janik, ACS Catal. 2017, 7, 327-332.
- [15] Y. H. Chin, C. Buda, M. Neurock, E. Iglesia, J. Am. Chem. Soc. 2013, 135, 15425-15442.
- a) Y. Lou, J. Ma, W. D. Hu, Q. G. Dai, L. Wang, W. C. Zhan, Y. L. Guo, X. M. Cao, Y. Guo, P. Hu, G. Z. Lu, *ACS Catal.* 2016, 6, 8127-8139; b)
 A. W. Petrov, D. Ferri, O. Kröcher, J. A. v. Bokhoven, *ACS Catal.* 2019, 9, 2303–2312.
- [17] a) J. S. Zou, Z. C. Si, Y. D. Cao, R. Ran, X. D. Wu, D. Weng, *J. Phys. Chem. C* 2016, *120*, 29116-29125; b) X. L. Yang, M. M. Zhen, G. Li, X. Z. Liu, X. Y. Wang, C. Y. Shu, L. Jiang, C. R. Wang, *J. Mater. Chem. A* 2013, *1*, 8105-8110.
- [18] W. An, X. C. Zeng, C. H. Turner, J. Chem. Phys. 2009, 131. 174702.
- [19] a) J. S. Lin, L. Y. Yang, T. Wang, R. X. Zhou, *Phys. Chem. Chem. Phys.* 2017, *19*, 7844-7852; b) Y. Ryou, J. Lee, H. Lee, C. H. Kim, D. H. Kim, *Catal. Today* 2017, *297*, 53-59.

WILEY-VCH

COMMUNICATION

Entry for the Table of Contents

A highly oxidized Pd deposited on ceria could oxidize methane directly to ethane in a stable manner using gaseous O₂ below 400 °C. The Pd-O-Pd sites, not Pd-O-Ce, enabled the oxidative methane coupling.