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In this article, we report the rapid and facile synthesis of chiral 3-methyl-2,5-trans-tetrahydrofurans. This
reaction utilizes cheap and easily available starting materials. A domino hydrolysis and intramolecular Michael-
type ring closure reaction was the key step. As a result, synthesis of the desired 3-methyl-2,5-trans-
tetrahydrofurans could be achieved in gram-scale over seven linear steps with high chemical yield and high
diastereoselectivity.
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Introduction

3-Methyl-2,5-trans-tetrahydrofurans are critical struc-
tural elements for various natural products, biolog-
ically active compounds, and pharmaceuticals.[1–7] For
instance, natural products chagosensine,[8,9]

cationomycin,[10,11] amphidinolides C, C2, C3, and
F[12–15] possess such trans-tetrahydrofuran substruc-
tures (Figure 1). As a consequence, many method-
ologies have been developed for the construction of
this type of heterocycle.[16–22]

Among them, intramolecular conjugated addition
of an oxygen nucleophile is often used for the
formation of 3-methyl-2,5-trans-tetrahydrofurans
(Scheme 1,a), which inspired us to identify suitable

conditions to obtain useful amount of 3-methyl-2,5-
trans-tetrahydrofurans intermediates for further stud-
ies on total synthesis of natural products.[23,24] Herein,
we report a rapid and facile process to access gram-
scale quantities of 3-methyl-2,5-trans-tetrahydrofurans
in just seven linear steps. A domino hydrolysis and
diastereoselective intramolecular Michael-type ring
closure strategy is the key step (Scheme 1,b).

Results and Discussion

As depicted in Scheme 2, our synthetic route began
with diazotization of inexpensive starting material, L-
glutamic acid 1, using NaNO2 in HCl aqueous solution
to provide lactone 2. Reduction of the carboxyl group
of lactone 2 with borane followed by protection of the
primary alcohol 3 with TBSCl led to lactone 4. Selective
methylation of 4 using LiHMDS and MeI delivered 5 as
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a mixture of two diastereoisomers (dr=10 :1).
Although the two stereoisomers of 5 could be
separated by chromatography on silica gel, purifica-
tion would be very time-consuming due to the similar
polarity of the two isomers. Hence, we used the
mixture directly for the next step, and easy separation
of isomeric products was performed at a later stage.
With the mixture of two stereoisomers of 5 in hand,

DIBAL reduction followed by Wittig reaction produced
the pure conjugated ester 6 with an isolated yield over
85% of two steps. Subsequent Mitsunobu reaction of
hydroxyl group in 6 delivered PNB ester 7.
Following successful preparation of ester precursor

7, the 3-methyl-2,5-trans-tetrahydrofuran 8 was
formed through a domino hydrolysis and intramolecu-
lar Michael-type ring closure process using K2CO3 as

Figure 1. Representative natural products and bioactive compounds containing a 3-methyl-2,5-trans-tetrahydrofurans core.

Scheme 1. Synthesis of 3-methyl-2,5-trans-tetrahydrofurans.
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base with multi-gram scale (7.9 g). Notably, the meth-
yl-bearing stereogenic center played a very important
role in controlling the stereochemical outcome of the
ring closure reaction (Scheme 3). Under the same
conditions, the ester 10 was obtained from the
cyclization of 9, which was synthesized from lactone 4
using the same synthetic route as described in
Scheme 2, but with no diastereocontrol (dr=1:1).

Conclusions

In summary, we have developed a domino hydrolysis
and intramolecular Michael-type ring closure strategy
to prepare 3-methyl-2,5-trans-tetrahydrofurans. It uses
the readily-available chiral pool material L-glutamic
acid as starting material. The required 3-methyl-2,5-
trans-tetrahydrofuran was obtained with high chemical
yield (18.8% overall yield) and high diastereoselectivity
(dr>25 :1) over seven steps. The process was also
efficiently realized on multi-gram scale. Furthermore,
the trans-tetrahydrofurans intermediate 8 can be
subjected to further chain extension in either direc-

tion, which might be useful for the synthesis of various
natural products and biologically active
compounds.[25–29]
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Scheme 2. The synthesis of intermediate 7. Reagents and conditions: a) NaNO2, HCl, H2O, 0 °C to r.t.; b) BH3 · SMe2, THF, 0 °C; c)
TBSCl, imidazole, DMAP, CH2Cl2, r.t., 42% over three steps; d) LiHMDS, MeI, THF, � 78 °C, 80%; e) DIBAL, � 78 °C; f) (Ph3P)3PCHCO2Et,
PhMe, 80 °C, 85% over two steps; g) Ph3P, DIAD, p-nitrobenzoic acid, THF, 0 °C, 74% over three steps.

Scheme 3. Domino hydrolysis and intramolecular Michael-type ring closure reaction. Reagents and conditions: a) K2CO3, EtOH,
55 °C, 89%; b) DIBAL, � 78 °C; c) (Ph3P)3PCHCO2Et, PhMe, 80 °C; d) K2CO3, EtOH, 55 °C.
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