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1,3-Dipolar cycloaddition of ylidic species, such as azome-
thine ylides with p bonds, is a powerful method for the
construction of complex N heterocycles.[1] Its utility has been
proven in numerous natural product syntheses, providing
expedient routes to complex polycyclic skeletons.[2] Among
various approaches for the generation of azomethine ylide,
metal-catalyzed decomposition of a-diazo carbonyl com-
pounds,[3] and subsequent carbene addition and cycloaddition
has been one of the most popular and effective approaches.[4]

However, diazo derivatives (or their precursors) can be
explosive, which limits their use in large-scale applications. In
addition, their syntheses from carbonyl compounds involve
stoichiometric amounts of a base and the generation of waste
from the diazo-transfer agents. To solve this problem, we
envisioned using a nitrone as an oxidant for the alkyne under
electrophilic metal catalysis; that is, addition of the nitrone to
a metal-activated alkyne with subsequent N�O cleavage by
back bonding would lead to an a-carbonyl carbenoid by an
internal redox (IR) reaction.[5,6] Addition of an imine would
then generate an azomethine ylide equivalent in both a safe
and atom-economical fashion (Scheme 1a).[7,8] Furthermore,
the inter-/intramolecular dipolar cycloaddition (DC) cascade
with a catalyst turnover would provide an expedient route to
azabicyclo[3.2.1]octane systems (Scheme 1b) from a simple
precursor.

To probe such reactivity, nitrone 1 was easily prepared
from the condensation of ortho-1,6-enynyl benzaldehyde and
N-benzyl hydroxyamine, and then treated with electrophilic
metal salts (Table 1). When 1 was treated with 5 mol% of
PtCl2 in 1,2-dichloroethane (DCE) at 100 8C, the expected
azabicyclo[3.2.1]octane 2 was indeed obtained and isolated in
a 73% yield as a single diastereomer (Table 1, entry 1).[9] Its
tetracyclic structure was unambiguously confirmed by X-ray
crystallographic analysis (Figure 1).[10] Among the metals we

tested, various PtII, AgI, and AuIII salts were found to be
effective for the IR-DC cascade reaction (Table 1, entries 1–4
and 8), whereas cationic AuI complexes gave inferior results
(Table 1, entries 5 and 6).[11] When bulky [tBu2(o-biphenyl)-
Au]OTf was used, a side product, whose NMR spectra are
consistent with isoindole 3, was isolated in 66% yield
(Table 1, entry 7; also see Eq. (2) and Scheme 2).[13] Among
the catalysts surveyed, AuCl3 (5 mol%) gave the best results,

Scheme 1. a) Generation of an azomethine ylide by a metal-catalyzed
internal redox reaction. b) Internal redox/dipolar cycloaddition (IR-DC)
cascade.

Table 1: Catalyst screening by using 1 as the substrate.

Entry[a] Cat. (mol%) t [h] T [8C] Yield 2 [%][b] Yield 3 [%]

1 PtCl2 (5) 1 100 73[c] 13
2 PtBr2 (5) 1 100 70 13
3 AuCl3 (5) 2 RT 81 <5
4 AuCl3 (1) 1 70 61[c,g] 0
5 [Au(IMes)]SbF6 (5) 20 100 44 6
6 [Au(PPh3)]OTf (5) 12 70 n.r.[d] –
7 [Au(L)]OTf (5)[e] 4 50 trace 66[c]

8 AgSbF6 (5) 1 70 45 0[f ]

9 AuCl3 (2) 1 70 88(82[c,g]) 0

[a] [1]=0.1m in 1,2-dichloroethane. [b] Yield based on NMR spectra of
the crude reaction mixture unless otherwise noted. [c] Yield of isolated
product. [d] No reaction. [e] L= tBu2P(2-biphenyl). [f ] 43% 1 remained.
[g] In CH3NO2. IMes=1,3-bis(2,4,6-trimethylphenyl)imidazolin-2-yli-
dene.
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providing 2 (81%) in 2 hours at room temperature (Table 1,
entry 3). Significant catalytic activity was observed even when
the catalyst loading was lowered to 1 mol%, although higher
temperature was required (Table 1, entry 4). Additional
screening of the solvent led to AuCl3 (2 mol%) in CH3NO2

(70 8C) as our optimized conditions (Table 1, entry 9), and
then we examined the generality of this reaction.[11]

Various substituents on the enyne skeleton were well-
tolerated, efficiently providing the desired azabicyclo-
[3.2.1]octanes (Table 2). For example, variously substituted
olefins (Table 2, entries 1–4), as well as enoates (Table 2,
entry 5) on the alkene were suitable.N-methyl nitrone 12, 1,6-
diynyl 14 and 16, as well as substrates having an NTs (Ts= p-
toluenesulfonyl) or C(CH2OBn)2 tether (e.g. 18 and 21) gave
satisfactory yields of the desired azabicycles (Table 2,
entries 6–11). However, the allyl propargyl ether 20 was not
a suitable substrate under the reaction conditions. Impor-
tantly, the skeletal variation allows departure from the o-
alkynyl benzaldehyde motif; substrates 21, 23, and 25, having
an alkene tether between the nitrone and the enyne, also
underwent an efficient IR-DC cascade with reasonable yields
(Table 2, entries 11–13). Notably, for the reaction of 21
(E/Z=1:1 mixture), only the Z isomer participated in the
reaction (Table 2, entry 11).

We then attempted to extend this chemistry to an
intermolecular dipolar cycloaddition. To our delight, when
alkyne/nitrone 27 was reacted with 5 equivalents of diethyl
acetylenedicarboxylate (DEAD) in the presence of AuCl3,
dipolar cycloaddition of the azomethine ylide gave product 28
in 58% yield; notably, none of the competing nitrone
cycloaddition product was observed [Eq. (1)]. Intriguingly,
in the absence of DEAD, substrate 27 did not react at all to

afford a free azomethine ylide under AuCl3 catalysis; it
remained intact under otherwise identical conditions.[12]

However, treating 27 with [Au(IPr)]OTf (IPr=N,N’-bis(2,6-
diisopropylphenyl)imidazol-2-ylidene; 5 mol%) in CH2Cl2 in
the absence of DEAD, led instead to the isolation of
isoindole/aldehyde 29 in 55% yield [Eq. (2)]. Under similar
conditions 30 was transformed into known compound 31,
confirming our assignment of the isoindole structure.[13]

The generality and efficiency of the above IR-DC cascade
reaction strongly supports the intermediacy of an azomethine
ylide (C, Scheme 1b). The formation of isoindole 3 (as well as

Figure 1. Molecular structure of compound 2 (ORTEP view). Selected
bond lengths [H] and angles [8]: O1–C12 1.2187(15), N1–C5
1.4726(15), N1–C13 1.4771(14); N1-C5-C6 111.14(10), N1-C5-C4
99.97(9), C6-C5-C4 112.52(10).

Table 2: Scope of IR-DC cascade reaction.

Entry[a] Substrate[b] Conditions Product,
yield [%][c]

1 1 R1 =Bn, R2, R3, R4 =H 70 8C, 1 h 2, 82
2 4 R1 =Bn, R2, R3 =H, R4 =Me 70 8C,

1.5 h
5, 59

3 6 R1 =Bn, R2/R3 =Me/H and H/Me
(E/Z=3:1), R4 =H

70 8C,
0.5 h

7, 80[d]

4 8 R1 =Bn, R2, R3 =Me, R4 =H 70 8C,
0.5 h[e]

9, 67

5 10 R1 =Bn, R2 =CO2Me, R3, R4 =H 70 8C,
0.5 h

11, 83

6 12 R1 =Me, R2, R3, R4 =H 70 8C,
2.5 h

13, 75

7 14 R=Me 70 8C, 1 h[e] 15, 76
8 16 R=Ph 70 8C,

0.5 h[e]
17, 77

9 18 X=NTs, R=H 70 8C, 1 h 19, 85
10 20 X=O, R=Cy 70 8C, 1 h dec.[f ]

11 21 R1,R2 =H (E/Z =1:1),
X=C(CH2OBn)2

70 8C, 2 h 22, 89[g]

12 23 R1 =H, R2 = nBu, X=C(CO2Et)2
(Z isomer)

70 8C,
0.5 h

24, 55

13 25 R1, R2 = (CH2)4, X=C(CO2Et)2 70 8C, 1 h 26, 58

[a] 2 mol% of AuCl3 unless otherwise noted. [b] [Substrate]=0.1m in
CH3NO2. [c] Yield of products isolated after chromatography; all
products were obtained as single respective diastereomers, except
entry 3. [d] Product 7 in 3:1 d.r. in favor of the structure shown.
[e] 4 mol% of AuCl3 was used. [f ] Decomposed. [g] Based on the
recovered starting E isomer (47%). Cy=cyclohexyl.
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29 and 31) could also be rationalized as a result of an internal
redox sequence shown in Scheme 2. In this case, the initial 7-
endo-dig attack of the O atom of the nitrone on the alkyne
and subsequent N�O cleavage will lead to a-oxo Au-
carbenoid F. Subsequent addition of the imine to this
carbenoid leads to G, from which the catalyst is regenerated
to provide 3.

Interestingly, the use of a bulky and relatively electron-
rich AuI catalyst produced 3 selectively (Table 1, entry 7 and
Eq. (2)), for reasons that are not clear at this stage. On the
other hand, an AuIII complex completely diverts the reaction

pathway to 6-exo-dig process as delineated in Scheme 3.
Detailed mechanistic analysis of the N�O bond cleavage
(H/H’!I) in this redox cascade led to the identification of two
plausible pathways: 1) The 6-exo-dig attack of the nitrone on
the Au-activated alkyne would generate H, which has a
possible resonance structure depicted as H’. A retro-electro-
cyclization would then lead to a-carbonyl Au-carbenoid I
(path A) and subsequent carbene addition to J (or its O-
bound tautomer J’). 2) Alternatively, the same species (I)
could be generated without undergoing dearomatization
(path B). To differentiate between these possibilities, sub-

strate 32 having a saturated bridge between the enyne and the
nitrone was prepared and treated with AuCl3 [Eq. (3)]. In this
case, desired 33 was isolated in 43% yield, proving that the
conjugation between the nitrone and the alkyne is not

required for the internal redox; this led us to favor path B
as a possible IR mechanism for the formation of azomethine
ylide J/J’.[14]

Additionally, we reasoned that the subsequent dipolar
cycloaddition probably occurs at the stage of the Au-bound
J/J’ based on some observations: failure of 27 to undergo a
redox reaction in the absence of DEAD under AuCl3 catalysis
to form a free stabilized azomethine ylide suggests that the
catalyst turnover occurs only after the cycloaddition of Au-
bound azomethine ylide J/J’. In addition, the current dipolar
cycloaddition occurs at lower temperatures relative to those
of related azomethine ylides (even at RT, Table 1, entry 3),[2]

presumably because of the favorably modulated frontier
molecular orbital (FMO) of the dipole for a facile cyclo-
addition.

In summary, we have described herein a novel gold-
catalyzed generation of an azomethine ylide, featuring an
internal redox reaction between a tethered nitrone and an
alkyne under electrophilic metal catalysis. The azomethine
ylide that is formed undergoes an efficient cycloaddition
cascade in a highly diastereoselective manner. The benefit of
atom economy (100%) as well as environmental safety is
apparent from this approach. Efforts are currently directed
toward an asymmetric version of this IR-DC cascade.

Experimental Section
Representative procedure for an IR-DC cascade reaction: AuCl3
(0.5 mg, 0.0018 mmol, 2 mol%; for a lower catalyst loading, 0.02m
stock solutions in respective solvents were used) was added to a
solution of alkyne/nitrone 1 (40 mg, 0.089 mmol) in nitromethane
(0.8 mL). The resulting mixture was heated to 70 8C for an hour. (At
this point the mixture turned blue-green and the TLC indicated
complete conversion. However, there was no appreciable amount of
precipitate or metallic gold.) The solvent was removed under reduced
pressure and the residue was purified by silica gel chromatography
(EtOAc/hexanes= 1:2) to afford 32.8 mg (82%) of 2 as pale yellow
crystals.
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Scheme 2. Proposed mechanism for the formation of isoindole 3.

Scheme 3. Proposed mechanism for the IR-DC cascade reaction.
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