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ABSTRACT: The first earth-abundant cobalt-catalyzed highly 
branched- and enantioselective allylic amination of racemic 
branched allylic carbonates bearing alkyl groups with both 
aromatic and aliphatic amines have been developed. The process 
allows rapid access of allylic amines in high yields with exclusively 
branched selectivity and excellent enantioselectivities (normally 
99% ee) under mild reaction conditions. 

Transition-metal-catalyzed asymmetric allylic substitution 
reaction provides powerful methods for the enantioselective 
construction of carbon-carbon and carbon-heteroatom bonds.1 
However, several issues, such as regio/enantioseletive control and 
substrate scope, are still challenging for this transformation. For 
unsymmetrical allylic substrates, it is well known that Pd-catalyzed 
allylic substitutions mostly give the products at the less-hindered 
positions. Different from Pd, Ir-catalyzed asymmetric allylic 
substitution of linear allylic substrates could afford branched 
products with high regio- and enantioselectivities.2 Nevertheless, 
the Ir-catalyzed reactions for the more readily accessible racemic 
branched allylic substrates remain challenging. Although regio- 
and enantioselective allylic substitution for certain substrates3,4 or 
by other transition metals5 have been achieved in some cases, the 
reaction of simple alkyl-substituted allylic donors is largely 
unexplored. Highly regio- and enantioselective allylations of 
aliphatic amines and indoles have only been recently reported by 
Krische with their -allyliridium C,O-benzoate catalysts.4a,c 
Therefore, the development of new efficient catalytic system to 
achieve asymmetric allylic substitution of simple alkyl-substituted 
allylic substrates is still highly desired. 

Cobalt is an earth-abundant, lower-cost first-row transition 
metal. The development of Co-catalyzed allylic substitution is 
undoubtedly one of the ways to meet the criteria of sustainable and 
green chemistry.6 Although Co-catalyzed allylic substitution has 
sporadically been reported, the transformations normally produce 
the linear products (Scheme 1, a).7 To the best of our knowledge, 
highly branched- and enantioselective Co-catalyzed allylic 
substitutions were unknown before our recent report on Co-
catalyzed enantioselective reverse prenylation of -ketoesters, in 
which the enantioselectivity on the nucleophiles can be controlled 
(Scheme 1, b). During we are preparing this manuscript, 
Matsunaga and Kojima developed a Co-catalyzed allylation of 
malonates and other derivatives with high branch-selectivity in 
non-asymmetric variant (Scheme 1, c).9 Herein, we report the first 
Co-catalyzed highly regio- and enantioselective allylic amination 
with aniline and aliphatic amine derivatives, which allows rapid 
access allylic amines10 in high yields with complete branch-
selectivities and excellent enantioselectivities. In addition, the 

protocol is effective for both racemic branched and linear (Z and E) 
allylic substrates under neutral conditions (Scheme 1, d). 

Scheme 1. Earth-abundant Cobalt-Catalyzed Allylic 
Substitutions
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Challenging

Inspired by the high stability and reactivity of base-metal/pincer 
complexes,11 we initially conducted the reaction of racemic n-
propyl allylic carbonate 1a and aniline 2a as the model substrates 
in the presence of Co-catalyst in situ formed by Co(BF4)2 and 
tridentate chiral ligand (Table 1). However, the reaction with Pybox 
ligand L1 barely took place (entry 1). To our delight, when the 
reaction with bisoxazolinephosphine12 L2 in the presence of zinc 
dust as a reductant was conducted at room temperature, the desired 
allylic amine 3aa was obtained with exclusively branched 
regioselectivity and excellent enantioselectivity (>99% ee), 
whereas in moderate yield (entry 2). To further optimize the 
catalytic reactivity, several NPN-type ligands with variations on the 
oxazoline rings and the phosphine atom were synthesized (see 
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Supporting Information). It was found that the substitution on the 
oxazoline rings for the ligand played important roles for the 
reaction (entries 2-6). The reaction with ligand L3 bearing tert-
butyl group almost did not proceed (entry 3). It was delightedly 
found that the reaction with ligand L6 with phenyl on the oxazoline 
rings proceeded smoothly to give product 3aa in almost 
quantitative yield with complete branch- and enantioselectivity 
(entry 6).  Next, the ligand with several different R1-substituents 
were examined to evaluate the electronic and steric properties on 
the phosphorus atom. The electronic and steric properties of P-atom 
of the ligand also affected for the reaction efficiency (entries 7-11). 
The ligand with the electron-rich and more bulky group is 
beneficial for the reactivity, thus the reaction could be improved to 
give 3aa in high yield when using the ligand L10 and L11 with 4-
MeO-3,5-tBu2C6H2 group (entries 10 and 11). Notably, although 
the NPN-type ligands showed different reactivity for the reaction, 
above 99% ees could be observed for all cases (entries 2-11). Next, 
we examined the allylic amination reaction by using PN-type 
ligand L12 and NPN-type ligand L13 without rigid phenyl ring. 
However, the ligands are not effective for the reaction (entries 12 
and 13). Full conversion of 2a was also obtained with 1 mol% 
cobalt catalyst, although longer time (33 hours) is needed  (entry 
14).

Table 1. Optimization for Co-catalyzed Asymmetric Allylic 
Aminationa

P
R1

O N N O

R2 R2

L2, R1 = Ph, R2 = iPr
L3, R1 = Ph, R2 = tBu
L4, R1 = Ph, R2 = Me
L5, R1 = Ph, R2 = Bn
L6, R1 = Ph, R2 = Ph

L11, R1 = 4-OMe-3,5-tBu2C6H2, R2 = Bn

L9, R1 = 4-OMeC6H4, R2 = iPr
L8, R1 = 4-NMe2C6H4, R2 = iPr

L10, R1 = 4-OMe-3,5-tBu2C6H2, R2 = iPr

PPh2

O N

iPr

P
Ph

O N N O

iPr iPrL12 L13

NO

N N

O

iPr iPr
L1

n-C3H7

OCO2Me
+ PhNH2

5 mol% Co(BF4)2

10 mol% Zn

CH3CN, rt, 16 h n-C3H7

NHPh

rac-1a 2a 3aa

6 mol% L

L7, R1 = 4-CF3C6H4, R2 = iPr

entry catalyst yield (3aa, %)b ee  (%)c

1 Co(BF4)2/L1 < 5 --
2 Co(BF4)2/L2 57 > 99

3 Co(BF4)2/L3 < 5 > 99

4 Co(BF4)2/L4 84 > 99

5 Co(BF4)2/L5 68 > 99

6 Co(BF4)2/L6 99 > 99

7 Co(BF4)2/L7 38 > 99

8 Co(BF4)2/L8 70 --

9 Co(BF4)2/L9 63 > 99

10 Co(BF4)2/L10 89 > 99

11 Co(BF4)2/L11 96 > 99

12 Co(BF4)2/L12 < 5 --

13 Co(BF4)2/L13 < 5 --

14d Co(BF4)2/L6 99 99
aConditions: 1a (0.38 mmol, 1.5 equiv), 2a (0.25 mmol, 1.0 equiv), 
Co(BF4)2 (0.0125 mmol, 0.05 eq), ligand (0.015 mmol, 0.06 eq), Zn 
dust (0.025 mmol, 0.1 eq) and CH3CN (2 mL). bIsolate yield. cThe 
enantiomeric excess of 3aa was determined by HPLC with a chiral 

column. dCo(BF4)2 (0.01 eq), L6 (0.0125 eq), Zn dust (0.02 eq) were 
used in 1.25 mmol scale and the reaction time is 33 hours.

Under the optimized condition (Table 1, entry 6), the reaction 
scope was evaluated by using different substituted anilines 
(Scheme 2). Various anilines with different electronic and steric 
nature were tolerated under the reaction conditions to afford allylic 
amines 3aa-3af in high yields with complete regioselectivities and 
very high levels of enantioselectivities. In a 6 mmol scale reaction 
with 2 mol % catalyst, 3ab could be obtained in 94% yield and 98% 
ee, which indicates this transformation could be conducted in a 
larger scale. High chemoselectivity was also observed with N-(4-
aminophenyl)acetamide and 5-aminoindole, thus allylic amines 
3ag and 3ah as the only products were obtained with almost 
quantitative yields and high enantioselectivities. Secondary amines 
such as N-methylaniline and indoline were also suitable reaction 
partners to give corresponding allylic amines 3ai and 3aj with high 
selectivities. The phenylhydrazine 2k was also involved in this 
reaction to afford the product 3ak, which could be transformed into 
the N-allyl indole.10d The absolute configuration of 3ag was 
assigned to be R by the single crystal X-ray diffraction analysis. 

Scheme 2. The scope of anilinesa   
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aConditions: 1a (0.38 mmol, 1.5 equiv), 2 (0.25 mmol, 1.0 equiv), 
Co(BF4)2 (0.0125 mmol, 0.05 eq), L6 (0.015 mmol, 0.06 eq), Zn dust 
(0.025 mmol, 0.1 eq) and CH3CN (2 mL). b2 mol% catalyst in a 6 mmol 
scale.  c10 mol% catalyst  

The reaction scope was next examined by using various allylic 
carbonates with p-anisidine 2b as model substrate (Scheme 3). 
Importantly, the reaction is also effective for the allylic carbonate 
derivatized from but-3-en-2-ol to afford allylic amine 3bb  in 84% 
yield with high enantioselectivity (97% ee). The allylic amine 3cb 
with phenylethyl group could be synthesized in high yield and 
above 99% ee. Sterically more hindered isopropyl, isobutyl and 
cyclohexyl groups could be introduced by the allylic amination to 
give corresponding allylic amines in high yields with excellent 
enantioselectivities. Significantly, versatile cyclopropyl group, free 
and protected hydroxyl groups could also be installed to afford 
corresponding allylic amines with high yields with high levels of 
enantioselectivities. Not only aliphatic racemic allylic carbonates, 
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phenyl substituted allylic carbonate 1h also participated in this 
reaction to produce allylic amine 3hb in 84% yield with 99% of ee 
value when electron-rich L11 was used as a ligand under otherwise 
identical conditions.

We next examined the Co-catalyzed allylic amination of linear 
allylic carbonates. However, both Z- and E-linear allylic methyl 
carbonates are not active under the optimal conditions. To 

Scheme 3. The scope of allylic carbonatesa

R
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+

Ph

HO TBSO

5 mol %Co(BF4)2

10 mol% Zn
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Ar

89% yield
> 99% ee

81% yield
> 99% ee

3db 3eb

Me

Me

NH
Ar

88% yield
> 99% ee

3fb

NH
Ar

aConditions: 1 (0.38 mmol, 1.5 equiv) and 2b (0.25 mmol, 1.0 equiv) 
Co(BF4)2 (0.0125 mmol, 0.05 eq), L6 (0.015 mmol, 0.06 eq), Zn dust 
(0.025 mmol, 0.1 eq) in CH3CN (2mL). bL11 was used. c10 mol% of 
catalyst was used. 

accelerate the oxidative addition step, electron-withdrawing 
hexafluoroisopropyl carbonates13 4 and 5 were synthesized. As 
shown in Scheme 4, when using electron-riched L11 as a ligand at 
60 oC, the allylic aminations of both E/Z isomers 4 and 5 proceeded 
smoothly to afford same allylic product 3ab in acceptably high 
yields with excellent enantioselectivities, albeit slightly less regio- 
and enantioselectivity were observed for the reaction of Z-isomer 
5.

Scheme 4. The reactions of Z- and E-linear allylic 
carbonates.
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5 mol %Co(BF4)2
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To further expand the reaction scope of the Co-catalyzed 
asymmetric allylic amination, we investigated the allylic 
amination with aliphatic amines. Unfortunately, the reaction did 
not proceed under the optimal conditions (Table 1, entry 6). More 
basic aliphatic amines may lead to the deactivation of catalysts 
because of the relative hard nature of cobalt metal. After further 
optimization, we found that with 20 mol% Lewis acid La(OTf)3 
under otherwise identical conditions, the allylic product 7ka could 
be obtained in moderate yield. Inspired by the linear allylic 

carbonates, when branched allyl hexafluoroisopropyl carbonate 
1k was used in the presence of electron-rich L11 as ligand at 60 
oC, full conversion of morpholine was realized to afford allylic 
amine 7ka with 99% ee (Scheme 5). With this optimal conditions 
in hand, the reaction with different aliphatic amines was 
examined. The reactions with other cyclic secondary amines 6b, 
6c and 6d gave corresponding allylic amines with good yields and 
excellent enantioselectivities. Primary aliphatic amines were also 
suitable reaction partners to produce allylic amines 7ke  to 7kg in 
good yields with high levels of enantioselectivities. The reactions 
of both enantiomers of 1-phenylethanamine could also give the 
c o r r e s p o n d i n g  7 k h  a n d  7 k i

Scheme 5. The scope of aliphatic aminesa

O6(1.0eq)rac-1k(1.5eq)5mol%Co(BF4)210mol%ZnCH3CN,60oC,16hN99%yield>99%ee7kaOOF3CCF3+R1NHR2R1R2PhPh7ka-7kjNPh20mol%La(OTf)358%yield99%ee7kbNHPhPhMe67%yield>99%ee7kcNHPhPhMeNHPhF3C74%yield>20:1dr7khNPh76%yield>20:1dr7kiNPhON84%yieldb>99%ee7kjNPh6mol%L11CO2MeOO80%yield>99%ee7kdNHPhNHPhPhNHPh71%yield>99%ee7ke60%yield99%ee7kf67%yield>99%ee7kgPh

aConditions: 1k (0.38 mmol, 1.5 equiv) and 6 (0.25 mmol, 1.0 equiv) 
Co(BF4)2 (0.0125 mmol, 0.05 eq), L6 (0.015 mmol, 0.06 eq), Zn dust 
(0.025 mmol, 0.1 eq) in CH3CN (2 mL). b1k (1.0 eq) and 6j (2.0 eq).

with high diastereoselectivities, which supports an excellent 
catalyst control. As predicted, primary aliphatic amines with 
electron-withdrawing CF3 group is more reactive, thus the allylic 
amine 7kj bearing CF3 group was isolated in 84% yield. 

Scheme 6. The synthesis of Co(CH3CN)2(BF4)2-L8, Co(I)I-L4 
and their reactivities 
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To gain mechanistic insight of the Co-catalyzed asymmetric 
allylic amination, the complex of Co(CH3CN)2(BF4)2-L8 was 
synthesized by mixing L8 with Co(BF4)2 in acetonitrile (Scheme 6). 
In the solid state, the complex adopts a distorted square pyramidal 
geometry, with all of the three NPN atoms in ligand coordinated to 
cobalt center.  However, the complex of Co(CH3CN)2(BF4)2-L8 is 
not able to catalyze the reaction. Upon reduction by 10 mol% Zn, 
full conversion of aniline 2a was observed. These results indicated 
that a low oxidative state Co is the active species.14 To demonstrate 
whether the Co(I) is real active species, a complex of Co(I)-L4 was 
synthesized. The complex of CoI-L4 adopts a distorted tetrahedral 
geometry, and again the three NPN atoms in L4 coordinate with 
cobalt center.15 Although CoI-L4 itself is not active for the reaction, 
after the addition of 10 mol% Zn(BF4)2, the reaction proceeded 
smoothly to afford 3aa in 84% yield with 99% ee. Control 
experiment with 10 mol% Zn(BF4)2 and L6 excludes the possibility 
of zinc-catalyzed allylation reaction. These results implied that a 
cationic Co(I)/NPN complex is likely the active catalytic species in 
this allylic amination reaction, and Zn(II) species may works as 
Lewis acid to active allylic carbonate (see SI).  

In conclusion, we have developed a 
cobalt/bisoxazolinephosphine catalyst system for the exclusively 
branch-selective allylic substitutions. Chiral allylic amines were 
prepared in excellent enantioselectivities (normally 99% ee) from 
readily accessible racemic allylic carbonates bearing aliphatic 
groups under mild reaction conditions. Bisoxazolinephosphine was 
found to be unique in this transformation. Investigations on 
reaction intermediate isolation, nucleophiles scope and more 
challenging chiral quaternary carbon construction with this catalyst 
system are on-going in our group. 
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R1

OCO2R
+

5 mol% Co(BF4)2

10 mol% Zn

R1

N

racemic

6 mol% L*

R1 = alkyl, Ar R2 = Ar, Alkyl
R3 = alkyl, H

CH3CN

exclusive branched
normally 99% ee

N
H

R3R2 R2 R3
P
R'

O N N O

R'' R''
Bisoxazolinephosphine

L*
with/without LA
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