Contents lists available at ScienceDirect

Tetrahedron: Asymmetry

journal homepage: www.elsevier.com/locate/tetasy

First stereoselective total synthesis of (-)-stagonolide A

Pabbaraja Srihari*, Boyapelly Kumaraswamy, Gokada Maheswara Rao, Jhillu Singh Yadav

Organic Chemistry Division-I, Indian Institute of Chemical Technology, Hyderabad 500 607, India

ARTICLE INFO

ABSTRACT

Article history: Received 23 November 2009 Accepted 21 December 2009 Available online 11 January 2010 The first stereoselective total synthesis of the nonenolide (-)-stagonolide A is described. Olefin metathesis and epoxide opening reaction are the key steps involved.

© 2009 Elsevier Ltd. All rights reserved.

Tetrahedror

1. Introduction

Ten-membered macrolides with significant biological properties continue to attract the attention of both biologist and chemists.¹ The scarcity coupled with complexity of the natural materials poses a great challenge for synthetic chemist. Herbarumin I–III² are recent examples with potent phytotoxic properties, and have been well addressed by several groups.³ Our own interest in these types of natural products has allowed us to accomplish the total synthesis of herbarumin III³¹ in a concise manner. Stagonolides (Fig. 1) are other examples, which have been isolated recently from the fungus Stagonospora cirsii, a pathogen of Cirsium arvense causing necrotic lesions on leaves.⁴ To the best of our knowledge, there are no reports so far on the total synthesis of the toxic metabolite stagonolide A, and in continuation of our investigations for concise synthetic routes for the total synthesis of biologically active lactone containing natural products, we herein report the first stereoselective total synthesis of stagonolide A.

Interestingly, we observed that both herbarumin I and stagonolide A have a similar skeleton but differ by the presence of an oxidized carbon in stagonolide (C7). Retrosynthetically, we identified lactone **10** as the key intermediate, which can be manipulated further by acetonide deprotection and selective allyl alcohol oxidation to give the target compound stagonolide A. The macrolactone **10** can be synthesized by coupling two fragments **11** and **12** via an olefin metathesis followed by macrolactonization or esterification followed by an olefin metathesis. While the 5-hexenoic acid fragment is commercially available, the second fragment with three stereogenic centers **11** can be easily synthesized from *trans*-2-hexenol (a non-carbohydrate route) or D-ribose (chiral pool strategy) (Scheme 1).

2. Results and discussion

Initially we started with the commercially available *trans*-2-hexenol, which was epoxidized under Sharpless conditions⁵ to provide chiral epoxy alcohol **15**. The epoxy alcohol was converted to

$$\begin{split} &\mathsf{R}^1 = \alpha\text{-}\mathsf{CH}_2\mathsf{CH}_2\mathsf{CH}_3, \, \mathsf{R}^2 = \beta\text{-}\mathsf{OH}, \, \mathsf{R}^3 = \alpha\text{-}\mathsf{H}, \, \mathsf{R}^4 = \beta\text{-}\mathsf{OH}, \\ &\mathsf{R}^5 = \mathsf{H}, \, \mathsf{R}^6 = \mathsf{H}: \mathsf{Herbarumin} \mid \mathbf{1} \\ &\mathsf{R}^1 = \alpha\text{-}\mathsf{CH}_2\mathsf{CH}_2\mathsf{CH}_3, \, \mathsf{R}^2 = \beta\text{-}\mathsf{OH}, \, \mathsf{R}_3 = \alpha\text{-}\mathsf{H}, \, \mathsf{R}^4 = \beta\text{-}\mathsf{OH}, \\ &\mathsf{R}_5 = \mathsf{H}, \, \mathsf{R}^6 = \beta\text{-}\mathsf{OH}: \, \mathsf{Herbarumin} \mid \mathbf{12} \\ &\mathsf{R}^1 = \alpha\text{-}\mathsf{CH}_2\mathsf{CH}_2\mathsf{CH}_3, \, \mathsf{R}^2 = \mathsf{H}, \, \mathsf{R}^3 = \alpha\text{-}\mathsf{H}, \, \mathsf{R}^4 = \beta\text{-}\mathsf{OH}, \\ &\mathsf{R}_5 = \mathsf{H}, \, \mathsf{R}^6 = \mathsf{H}: \, \mathsf{Herbarumin} \mid \mathbf{II} \; \mathbf{3} \\ &\mathsf{R}^1 = \alpha\text{-}\mathsf{CH}_2\mathsf{CH}_2\mathsf{CH}_3, \, \mathsf{R}^2 = \beta\text{-}\mathsf{OH}, \, \mathsf{R}^3 + \mathsf{R}^4 = \mathsf{O}, \, \mathsf{R}^5 = \mathsf{H}, \\ &\mathsf{R}^6 = \mathsf{H}: \, \mathsf{Stagonolide} \, \mathsf{A} \\ &\mathsf{R}^1 = \alpha\text{-}\mathsf{CH}_2\mathsf{CH}_2\mathsf{CH}_3, \, \mathsf{R}^2 = \alpha\text{-}\mathsf{OH}; \, \mathsf{R}^3 = \beta\text{-}\mathsf{H}, \, \mathsf{R}^4 = \alpha\text{-}\mathsf{H}, \\ &\mathsf{R}^6 = \mathsf{H}: \, \mathsf{Stagonolide} \, \mathsf{B} \; \mathbf{5} \\ &\mathsf{R}^1 = \alpha\text{-}\mathsf{Me}, \, \mathsf{R}^2 = \mathsf{H}, \, \mathsf{R}^3 = \alpha\text{-}\mathsf{OH}, \, \mathsf{R}^4 = \beta\text{-}\mathsf{H}, \, \mathsf{R}^5 = \beta\text{-}\mathsf{OH}, \\ &\mathsf{R}^6 = \mathsf{H}: \, \mathsf{Stagonolide} \, \mathsf{C} \; \mathbf{6} \end{split} \end{split}$$

epoxy chloride **16** with triphenylphosphine and CCl₄ and then subjected to our earlier reported procedure to give chiral propargyl alcohol **17**.⁶ The newly generated chiral secondary alcohol was protected as TBS ether **18** and the terminal acetylene was then treated with *n*-BuLi followed by quenching with ethyl chloroformate to yield α ,β-unsaturated ester **19**. The *cis* reduction under Lindlar's condition gave *Z* olefin **13**, which was subjected to dihydr-

^{*} Corresponding author. Tel.: +91 40 27161490; fax: +91 40 27160512. *E-mail addresses:* srihari@iict.res.in, sriharipabbaraja@yahoo.com (P. Srihari).

^{0957-4166/\$ -} see front matter \circledcirc 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetasy.2009.12.015

Scheme 1. Retrosynthesis.

oxylation with OsO_4 to give the polyhydroxylated ester **20** along with undesired **20a** as an easily separable diastereomeric mixture (85:15).⁷ Isopropylidination of the desired major diol **20** with 2,2-DMP in CH₂Cl₂ yielded ester **21**, which was reduced with LiAlH₄ to afford alcohol **22**. Oxidation of **22** with PCC provided aldehyde **23**, which was subsequently treated with iodomethyltriphenylphosphine in the presence of *n*-BuLi to give the 1-C homologated prod-

uct **24**. Silyl deprotection with TBAF yielded the key fragment **11** with the required stereogenic centers (Scheme 2).

Alternatively, in a concise manner, we also synthesized the key intermediate **11** utilizing a chiral pool synthetic strategy. This synthesis is a departure from the prior work at the readily available epoxide intermediate **14**.⁸ The epoxide **14** is treated with ethyl magnesium bromide in the presence of copper iodide to give the key intermediate **11**.

Coupling of alcohol 11 with 5-hexenoic acid under standard DCC, DMAP conditions gave ester 25 which in turn allowed us to proceed further for the metathesis reaction. We observed that 1st generation Grubb's catalyst works efficiently to produce the desired lactone ring **10** as a diastereomeric mixture E/Z (8:2).⁹ The diastereomers were not separated at this stage due to very close $R_{\rm f}$ values but were separated after performing the next reaction. The major diastereomer was found to be the desired *E*-isomer based on the comparison of the crude data with earlier literature^{3b} and was characterized fully after deprotection of the acetonide moiety. Thus, we proceeded further for acetonide deprotection by TFA in CH₂Cl₂ to give the easily separable diastereomers to provide herbarumin I 1, whose analytical data were compared with those of the natural product² and the synthetic products from earlier reports.^{3b} Further oxidation of herbarumin I with MnO₂ yielded the new nonenolide stagonolide A 4 in a good yield (Scheme 3). The spectroscopic data were found to be identical to those of the natural product.4a

3. Conclusion

In conclusion, the first total synthesis of stagonolide A has been achieved in nine steps with an overall yield of 24%. Two synthetic

Scheme 2.

routes for the synthesis of the key intermediate **11** with three stereogenic centers have been provided, which could be utilized for the synthesis of herbarumin I and stagonolide A. The key reactions involved are the epoxide opening, the generation of chiral propargyl alcohol from a chiral epoxy chloride, Lindlar's reduction, and Grubb's olefin metathesis. Application of this strategy to the preparation of other analogues toward investigation for biological activity is currently being pursued.

4. Experimental

4.1. General

The reactions were carried out under an N₂ atmosphere in anhydrous solvents such as CH_2CI_2 , THF, and EtOAc. THF used was freshly distilled over benzophenone prior to use. All reactions were monitored by TLC (silica-coated plates and visualized under UV light). Yields refer to isolated yields. Air-sensitive reagents were transferred by a syringe or a double-ended needle. ¹H and ¹³C NMR spectra were recorded in CDCl₃ solution on Bruker Avance 300 spectrometers. Chemical shifts are reported relative to TMS as an internal standard. Column chromatography was performed on Silica Gel (60–120 mesh) supplied by Acme Chemical Co., India. TLC was performed on Merck 60 F-254 silica gel plates. IR (FT-IR) spectra were recorded either on KBr pellets or neat as thin film. Optical rotations were recorded on JASCO DIP-360 digital polarimeter.

4.1.1. (2R,3R)-(3-Propyl-oxiranyl)-methanol 15

A mixture of D-(-)-diisopropyl tartrate (15.92 mL, 75 mmol) and Ti($O^{i}Pr$)₄ (17.85, 60 mmol) in CH₂Cl₂ (100 mL) containing 4 Å molecular sieves was stirred for 15 min at -25 °C under a nitrogen atmosphere. After 15 min at the same temperature, t-BuOOH (150 mL, 4 M in toluene, 600 mmol) was added over a period of 10 min and the mixture was stirred for 30 min. A solution of trans-2-hexene-1-ol (30 g, 300 mmol) in dry CH₂Cl₂ (100 mL) was slowly added at -25 °C. The mixture was stirred for 1 h at -25 °C and then to this was added 10% NaOH (50 mL) followed by aq satd NaCl solution (100 mL) at 0 °C. The reaction mixture was warmed to room temperature for 1 h and diluted with CH₂Cl₂. The mixture was filtered through Celite and extracted with CH₂Cl₂ $(2 \times 200 \text{ mL})$. The combined organic phases were washed with water and brine solution and were concentrated under reduced pressure. Purification by silica gel column chromatography (30% EtOAc/hexane) provided the epoxy alcohol 15 (31.5 g, 90%) as a colorless oil; $[\alpha]_D^{28} = +40.5$ (*c* 1.0, CHCl₃); IR (neat) v_{max} : 3406, 2961,2872, 1462, 1223, 1068, 897 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 0.94 (t, *J* = 6.8 Hz, 3H), 1.35–1.58 (m, 4H), 2.48 (br s, 1H), 2.80–2.92 (m, 2H), 3.53 (dd, *J* = 12.8, 4.5 Hz, 1H), 3.83 (dd, *J* = 12.8, 2.3 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃): δ 13.5, 18.9, 33.3, 55.8, 58.5, 61.8. Anal. Calcd for C₆H₁₂O₂: C, 62.04; H, 10.41. Found: C, 62.12; H, 10.38.

4.1.2. (2R,3R)-trans-3-Propyloxiranemethylchloride 16

A stirred solution of alcohol **15** (1.0 g, 8 mmol), triphenyl phosphine (Ph₃P) (3.39 g, 12 mmol), and NaHCO₃ (362 mg, 4 mmol) in CCl₄ (15 mL) under nitrogen atmosphere was refluxed for 3 h. The solvent was removed in vacuo and the residue was purified by silica gel column chromatography (5% EtOAc/hexane) to yield the epoxy chloride **16** (0.91 mg, 85%) as a yellow oil. $[\alpha]_{2}^{D7} = +10.0$ (*c* 2.8, CHCl₃); IR (neat) ν_{max} : 1637, 1219, 913, 771 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 0.99 (t, *J* = 7.6 Hz, 3H), 1.22–1.37 (m, 2H), 1.43–1.59 (m, 2H), 2.78–2.83 (m, 1H), 2.91–2.96 (m, 1H), 3.38 (dd, *J* = 11.0, 5.9 Hz, 1H), 3.61 (dd, *J* = 11.0, 5.8 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃): δ 13.7, 19.0, 33.3, 44.7, 57.0, 58.8. Anal. Calcd for C₆H₁₁OCl: C, 53.54; H, 8.24. Found: C, 54.56; H, 8.26.

4.1.3. (3R)-Hex-1-yn-3-ol 17

To a solution of $LiNH_2$ [prepared from lithium (1.03 g, 148 mmol) in liquid NH₃ (50 mL) at -35 °C, and catalytic amount of ferric nitrate] was added epoxy-choloride 16 (2.5 g, 18.5 mmol) in THF (100 mL) and was allowed to stir for 2 h. The reaction was quenched with solid NH₄Cl and allowed to warm to room temperature. The reaction mixture was diluted with water and extracted with diethyl ether (2×10 mL). The combined organic phase was washed with water and brine, and evaporated in vacuo. The crude product was purified by silica gel column chromatography (10% EtOAc/hexane) to give yellow liquid **17** (1.36 g, 75%). $[\alpha]_D^{27} =$ +15.8 (c 0.3, CHCl₃); IR (neat): v_{max} 3421, 2959, 2855, 1458 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 0.87 (t, J = 7.3 Hz, 3H), 1.31-1.48 (m, 2H), 1.53-1.72 (m, 2H), 2.39 (d, J = 2.0 Hz, 1H), 3.02–3.13 (br s, 1H), 4.30 (td, J = 6.4, 1.1 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃): δ 13.5, 18.1, 39.4, 61.7, 72.5, 85.0. Anal. Calcd for C₆H₁₀O: C, 73.43; H, 10.27. Found: C, 73.32; H, 10.65.

4.1.4. (3R)-3-tert-Butyldimethylsilyloxy-hex-1-yne 18

Imidazole (2.7 g, 40 mmol) was added to a solution of alcohol **17** (2.0 g, 20 mmol) in dry CH_2CI_2 (100 mL) and the mixture was stirred at 0 °C under nitrogen. After 30 min TBDMSCI (4.6 g, 30 mmol) was added to the reaction mixture and stirred at the same temperature for 2 h. After complete consumption of the starting material, the reaction was quenched with the addition of water, and the reaction mixture was extracted with CH_2CI_2

(2 × 25 mL). The organic extract was washed with water and brine. The organic layer was concentrated using a rotaevaporator to give the crude product, which was purified by silica gel column chromatography (5% EtOAc/hexane) to provide TBS protected ether **18** as a colorless oil, yield (4.0 g, 95%). $[\alpha]_{D}^{29} = +27.9$ (*c* 1.2, CHCl₃); IR (neat): v_{max} 3311, 2958, 2933, 2859, 1466, 1255, 1114, 1084, 896, 778 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 0.10 (s, 3H), 0.13 (s, 3H), 0.88–0.95 (m, 12H), 1.35–1.54 (m, 2H), 1.58–1.73 (m, 2H), 2.36 (d, *J* = 2.26 Hz, 1H), 4.34 (td, *J* = 6.4, 2.0 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃): δ –5.0, –4.5, 13.7, 18.2, 18.4, 25.7, 40.7, 62.5, 71.8, 85.7. Anal. Calcd for C₁₂H₂₄OSi: C, 67.86; H, 11.39. Found: C, 67.95; H, 11.52.

4.1.5. (4*R*)-(*tert*-Butyl-dimethyl-silanyloxy)-hept-2-ynoicacid ethyl ester 19

n-Butyllithium (10.5 mL, 1.6 M in hexane 16.9 mmol) was added to a stirred solution of alkvne 18 (3 g. 11.4 mmol) in THF (100 mL) at -78 °C. After 30 min, ethyl chloroformate (3 mL, 21 mmol) was added at the same temperature for 30 min. After completion of the reaction (judged by TLC analysis), the reaction was guenched with saturated aqueous NH₄Cl solution and the reaction mixture was extracted with ethyl acetate. $(2 \times 30 \text{ mL})$. The extract was washed with water and brine, and dried over anhydrous Na₂SO₄. The organic layer was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (10% EtOAc/hexane) to give ester 19 (2.7 g, 87%) as a yellow liquid. $[\alpha]_{D}^{30} = +8.0$ (c 1.0, CHCl₃); IR (neat): v_{max} 2959, 2933, 2860,1716,1248 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 0.12 (s, 3H), 0.15 (s, 3H), 0.90 (s, 9H), 0.95 (t, J = 6.8 Hz, 3H), 1.33 (t, J = 6.8 Hz, 3H), 1.38–1.54 (m, 2H), 1.65–1.77 (m, 2H), 4.21 (q, J = 6.8 Hz, 2H), 4.44 (t, J = 6.8 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃): δ -5.2, -4.6, 13.5, 13.9, 18.0, 18.2, 25.6, 39.8, 61.8, 62.3, 76.5, 88.7, 153.5; MS-ESI: m/z 307 (M⁺+Na); HRMS (ESI): m/z calcd for C₁₅H₂₈O₃NaSi: 307.1705, found: 307.1704.

4.1.6. (4*R*)-(*tert*-Butyl-dimethyl-silanyloxy)-hept-2-enoic acid ethylester 13

To a stirred solution of alkyne 19 (2 g, 7 mmol) in EtOAc (15 mL) were added Pd-CaCO₃ (50 mg) and 10 mL ethyl acetate/quinoline (10:3) and the mixture was stirred under a hydrogen atmosphere for 1 h at room temperature. The resultant mixture was filtered through a short pad of Celite. The filter cake was washed with ethyl acetate and the filtrate was concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel (10% EtOAc/hexane) to afford unsaturated ester 13 (1.9 g, 95%) as a pale yellow liquid; $[\alpha]_D^{30} = -14.8$ (*c* 1.9, CHCl₃); IR (neat): v_{max} 2957, 2932, 2859, 1721, 1465, 1410, 1187 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 0.01 (s, 3H), 0.03 (s, 3H), 0.81–0.91 (m, 12H), 1.24 (td, J = 7.1, 0.9 Hz, 3H), 1.28–1.58 (m, 4H), 4.12 (qd, J = 7.1, 0.9 Hz, 2H), 5.22–5.31 (m, 1H), 5.63 (dt, J = 12.8, 7.7 Hz, 1H); 6.10 (dt, J = 12.8, 0.9 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃): δ -4.9, -4.6, 13.9, 14.1, 18.0, 18.3, 25.7, 39.7, 59.9, 68.5, 117.1, 153.7, 165.7; MS-ESI: m/z 309 (M⁺+Na); HRMS (ESI): m/z calcd for C₁₅H₃₀O₃NaSi: 309.1861, found: 309.1867.

4.1.7. (2*R*,3*S*,4*R*)-4-(*tert*-Butyldimethylsilyloxy)-2,3-dihydroxy-heptanoicacid ethylester 20

4-Methylmorpholine *N*-oxide (NMO) (2 g, 17.4 mmol) and OsO₄ (8.74 mL, 0.1 M in *t*-BuOH, 0.4 mmol) were added to a stirred solution of unsaturated ester **13** (2.5 g, 1 mmol) in *t*-BuOH, water, acetone (24 mL, 1:1:1) at room temperature and were stirred for 12 h. The reaction was quenched with solid sodium sulfite. The solvent was removed under reduced pressure and the compound was extracted with ethyl acetate. (3 × 20 mL) The combined organic layer was washed with water and brine and dried over sodium sulfate. Purification by column chromatography over silica gel (15%)

EtOAc/hexane) provided diol **20** as a yellow liquid (2.2 g, 88%). $[\alpha]_D^{27} = -4.5$ (*c* 1.0, CHCl₃); IR (neat): v_{max} 3451, 2957, 2931, 2858, 1733, 1638, 1255, 1070, 772 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 0.07 (s, 6H), 0.83–0.92 (m, 12H), 1.20–1.48 (m, 6H), 1.58–1.72 (m, 1H), 2.70 (d, *J* = 8.8 Hz, 1H), 3.21 (d, *J* = 7.9 Hz, 1H), 3.48–3.56 (m, 1H), 3.88–3.95 (m, 1H), 4.02 (t, *J* = 7.8 Hz, 1H), 4.15–4.30 (m, 2H); ¹³C NMR (75 MHz, CDCl₃): δ –4.8, –4.2, 14.0 (2 C), 17.9, 18.2, 25.7, 35.8, 61.4, 71.0, 71.9, 73.5, 173.7; MS-ESI: *m/z* 343 (M⁺+Na); HRMS (ESI): *m/z* calcd for C₁₅H₃₂O₅NaSi: 343.1916, found: 343.1927.

4.1.8. (2*R*,3*S*,4*R*)-5-[1-(*tert*-Butyl-dimethyl-silanyloxy)-butyl]-2,2dimethyl-[1,3]dioxolane-4-carboxylic acid ethyl ester 21

Pyridinium *p*-toluenesulfonate (PPTS) (39 mg, 0.15 mmol) was added to the stirred solution of diol **20** (500 mg, 1.56 mmol) in dry CH₂Cl₂ (100 mL) under nitrogen at room temperature. 2,2-Dimethoxy propane (1 g, 3 mmol) was added to the reaction mixture and stirred at room temperature for 12 h. The solvent was removed under reduced pressure, purified by silica gel column chromatography gel (5% EtOAc/hexane) to give a colorless liquid **21** (100 mg, 77%). $[\alpha]_{30}^{00} = +25.8$ (*c* 1.2, CHCl₃); IR (neat): v_{max} 2958, 2933, 2858, 1756, 1733, 1251, 1104, 777 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 0.04 (s, 3H), 0.06 (s, 3H), 0.84–0.91 (m, 12H), 1.21–1.54 (m, 10H), 1.58 (s, 3H), 3.61 (td, *J* = 8.4, 2.0 Hz, 1H), 4.06–4.27 (m, 3H), 4.43 (d, *J* = 6.2 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃): δ –4.7, –3.9, 13.9, 14.0, 18.4, 18.6, 25.5, 25.9, 26.5, 36.1, 60.9, 71.2, 76.0, 81.8, 110.5, 170.2; MS-ESI: *m/z* 361 (M⁺+H); HRMS (ESI): *m/z* calcd for C₁₈H₃₆O₅NaSi: 383.2229, found: 383.2229.

4.1.9. (2S,3S,4R)-5-[1-(*tert*-Butyl-dimethyl-silanyloxy]-2,2dimethyl-[1,3]dioxolan-4-yl-methanol 22

To the stirred solution of compound 21 (1.2 g, 3.3 mmol) in dry THF (10 mL) was added LiAlH₄ (164 mg, 4.3 mmol) under nitrogen at -15 °C for 15 min. The reaction was guenched with saturated Na₂SO₄ (3 mL) and stirred at rt for 1 h. The reaction mixture was filtered through Celite and extracted with EtOAc (2×10 mL). The combined organic laver was washed with water and brine and concentrated under reduced pressure. Residue was purified by chromatography over silica gel (20% EtOAc/hexane) to give alcohol as a yellow liquid **22** (950 mg, 91%). $[\alpha]_D^{28} = +39.1$ (*c* 1.0, CHCl₃); IR (neat): v_{max} 3455, 2956, 2932, 2857, 1464, 1250, 776 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 0.07 (s, 3H), 0.08 (s, 3H), 0.87–0.97 (m, 12H), 1.24-1.57 (m, 10H), 2.05 (br s, 1H), 3.54 (m, 2H), 3.70-3.79 (m, 1H), 3.98–4.12 (m, 2H); 13 C NMR (75 MHz, CDCl₃): δ –4.6, -4.0, 14.0, 18.3, 19.0, 25.3, 25.9, 28.0, 36.2, 61.5, 70.8, 77.5, 80.2, 108.2; MS-ESI: m/z 341 (M⁺+Na); HRMS (ESI): m/z calcd for C₁₆H₃₄O₄NaSi: 341.2124, found: 341.2120.

4.1.10. (2R,3S,4R)5-[1-(*tert*-Butyl-dimethyl-silanyloxy)-butyl]-2,2dimethyl-[1,3]dioxolane-4-carbaldehyde 23

At first, PCC (311 mg, 1.4 mmol) and anhydrous sodium acetate (118 mg, 1.4 mmol) were added to a solution of alcohol **22** (400 mg, 1.2 mmol) in dry CH₂Cl₂ (10 mL). The reaction mixture was stirred under a nitrogen atmosphere at room temperature for 3 h. The reaction mixture was filtered through a Celite pad and concentrated under reduced pressure, the crude product was purified by column chromatography over silica gel (10% EtOAc/hexane) to give aldehyde **23** (306 mg, 88%) as a colorless liquid. $[\alpha]_D^{30} = -13.6$ (*c* 1.1, CHCl₃); IR (neat): v_{max} 2957, 2932, 2858, 1738, 1465, 1253, 773 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 0.05 (s, 3H), 0.06 (s, 3H), 0.76–0.98 (m, 12H), 1.37 (s, 3H), 1.38–1.56 (m, 4H), 1.57 (s, 3H), 4.04 (td, *J* = 2.3 Hz, 1H), 4.32 (d, *J* = 3.2 Hz, 1H), 4.36 (d, 2.0, *J* = 2.4 Hz, 1H), 9.56 (d, *J* = 3.2 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃): δ –4.8, –4.1, 14.1, 18.0, 19.1, 25.1, 25.8, 27.1, 36.7, 70.8, 80.6, 82.7, 110.0, 198.8; MS-ESI: *m/z* 317 (M⁺+H).

4.1.11. *tert*-(3*S*,4*S*,5*R*)-Butyl-[-(2,2-dimethyl-5-vinyl-[1,3]dioxolan-4-yl-butoxyl-dimethyl-silane 24

To a stirred solution of iodomethyltriphenylphosphine (383 mg, 0.94 mmol) in THF (10 mL) was added n-BuLi (0.29 mL, 1.6 M, 0.47 mmol) dropwise at 0 °C. After 30 min, aldehyde 23 (100 mg, 0.31 mmol) was added and the reaction mixture was allowed to warm to room temperature over 15 min. The resultant mixture was quenched with saturated aqueous NH₄Cl, diluted with ethylacetate (2×5 mL). The combined organic layer was washed with water and then brine. The organic layer was dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified by chromatography on silica gel (10% EtOAc/hexane) to give compound **24** (78 mg, 70%) as a yellow liquid. $[\alpha]_D^{27} = -19.6$ (c 12.5, CHCl₃); IR (neat): v_{max} 2956, 2933, 2860, 1465, 1374, 1251, 1078,773 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 0.03 (s, 3H), 0.05 (s, 3H), 0.87 (s, 9H), 0.90 (t, J = 7.2 Hz, 3H), 1.36 (s, 3H), 1.37-1.46 (m, 2H), 1.47 (s, 3H), 1.54-1.71 (m, 2H), 3.80-3.89 (m, 1H), 4.07 (t, *J* = 7.0 Hz, 1H), 4.55 (t, *J* = 7.0, 6.4 Hz, 1H), 5.20 (d, J = 10.4 Hz, 1H), 5.31 (br d, J = 17.2 Hz, 1H), 5.96 (ddd, J = 17.2, 10.4 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃): δ –4.3, –3.7, 14.3, 16.6, 25.3, 25.9, 27.8, 29.6, 36.0, 70.3, 79.0, 79.6, 108.0, 117.6, 134.9; MS-ESI: m/z 337 (M⁺+Na); HRMS (ESI): m/z calcd for C₁₇H₃₄O₃NaSi: 337.2174, found: 337.2174.

4.1.12. (*R*)-1-((4*S*,5*S*)-2,2-Dimethyl-5-vinyl-1,3-dioxolan-4-yl)butan-1-ol (11) from 24

To a stirred solution of TBS ether **24** (75 mg, 0.23 mmol) in THF (5 mL) at 0 °C, TBAF (0.47 mL, 0.47 mmol, 1 M solution in THF) was added dropwise at the same temperature. The mixture was allowed to stir at room temperature over 3 h. The resultant mixture was quenched with water and diluted with diethyl ether (5 mL). The organic layer was washed with water and then with brine, respectively. The combined organic layers was dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified by chromatography on silica gel (15% EtOAc/hexane) to give compound **11** (42 mg, 90%) as a yellow liquid.

4.1.13. Synthesis of compound 11 from 14

To a solution of an epoxide 14 (600 mg, 3.5 mmol) in THF (8 mL) at -40 °C was added CuI (0.134, 0.7 mmol) and stirred at the same temperature for 15 min. After this time, the pre cooled ethyl magnesium bromide (10.5 ml of 1 M solution in THF, 10.5 mmol) was added by a cannula. The resulting mixture was stirred at -40 °C for 3 h and the reaction was guenched by the addition of aqueous NH₄Cl solution and warmed to room temperature. The layers were separated and the aqueous layer was extracted with ethyl acetate $(2 \times 20 \text{ mL})$. The combined organic layer was washed with brine, dried over anhydrous Na2SO4, and concentrated to provide the crude product. Silica gel column chromatography (15% EtOAc/hexane) afforded the pure product 11 (649 mg, 92%) as a colorless oil. $[\alpha]_D^{30} = +8.8$ (c 1.6, CH₂Cl₂); lit.^{3a} $[\alpha]_D^{20} = +8.8$ (c.1.2, CH₂Cl₂). IR (neat): v_{max} 3467, 2983, 2959, 2932, 2873, 1642, 1217, 1065, 872 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 0.94 (t, J = 7.2 Hz, 3H), 1.37 (m, 1H), 1.37 (s, 3H),1.45 (m, 1H), 1.48 (s, 3H), 1.57 (m, 1H), 1.69 (m, 1H), 1.80 (br s, 1H), 3.67 (dt, J = 2.6, 2.3 Hz, 1H), 3.97 (dd, J = 8.1, 6.4 Hz, 1H), 4.63 (t, J = 7.4 Hz, 1H), 5.31 (d, J = 10.4 Hz, 1H), 5.43 (d, J = 17.2 Hz, 1H), 6.04 (ddd, J = 17.2, 10.4, 7.4 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃): δ 14.0, 18.3, 25.3, 27.8, 35.8, 69.7, 78.9, 80.7, 108.6, 118.9, 134.7; MS-ES: m/z 223 (M⁺+Na); HRMS (ESI): *m/z* calcd for C₁₁H₂₀O₃Na, 223.1305, found 223.1304.

4.1.14. (*R*)-1-((4*R*,5*S*)-2,2-Dimethyl-5-vinyl-1,3-dioxolan-4-yl)butyl hept-6-enoate 25

A solution of 5-hexenoic acid (792 mg, 5.5 mmol) in CH_2CI_2 (8 mL) was cooled to 0 °C. A sample of DCC (1.34 g, 6.5 mmol) was added in several portions and a white precipitate formed

quickly. After 15 min stirring, alcohol 11 (1 g, 5.0 mmol) was added as a solution in 9 mL CH₂Cl₂ along with a small amount of DMAP (15 mg). The cooling bath was removed and stirring was continued for 6 h. The solution was filtered and the solvent was removed under reduced pressure. The resulting oil purified by column chromatography (2% EtOAc/hexane) to give 25 (1.24 g, 84%) as colorless oil; $[\alpha]_D^{30} = +19.7$ (c 1.5, CH₂Cl₂): IR (neat): v_{max} 2961, 2933, 2873, 1738, 1642, 1459, 1376, 1246, 1217, 1169, 1100, 1065 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 0.91 (t, J = 7.4 Hz, 3H), 1.23-1.35 (m, 2H), 1.36 (s, 3H), 1.47 (s, 3H), 1.53-1.75 (m, 4H), 2.07 (q, J = 7.0 Hz, 2H), 2.16–2.33 (m, 2H), 4.17 (t, J = 7.4 Hz, 1H), 4.60 (t, J = 7.4 Hz, 1H), 4.92 (q, J = 7.4 Hz, 1H), 4.95–5.06 (m, 2H), 5.21 (d, J = 10.4 Hz, 1H), 5.32 (d, J = 17.0 Hz, 1H), 5.68-5.87 (m, 2H); ¹³C NMR (75 MHz, CDCl₃): δ 14.0, 17.9, 23.9, 25.2, 27.5, 33.0, 33.4, 33.7, 71.5, 78.4, 78.9, 108.7, 115.3, 118.5, 133.2, 137.6, 172.5; MS-ES: m/z 297 (M⁺+1); HRMS (ESI); m/z calcd for C₁₇H₂₈O₄Na 319.1885, found 319.1872.

4.1.15. Synthesis of herbarumin-1 1 via 10

A degassed solution of Grubbs' first generation catalyst (0.055 g, 0.06) in CH_2Cl_2 (30 mL) was added over 30 min to a refluxing solution of compound **25** (0.1 g, 0.33) in CH_2Cl_2 (180 mL) and was stirred for 8 h at reflux. After the starting material was completely consumed (judged by TLC), the reaction was stopped and allowed to cool to room temperature. The solvent was removed under reduced pressure to give a dark brown colored residue. The crude product was purified by silica gel column chromatography (7% EtOAc/hexane) to afford *E/Z* (4:1) mixture of **10** (0.074 g, 82%) as a colorless liquid.

The diastereomeric mixture of compound **10** (70 mg, 0.26 mmol) and trifluoroacetic acid (0.03 mL) in CH₂Cl₂ (3 mL) was stirred at room temperature for 8 h until TLC showed complete consumption of the starting material. The reaction mixture was concentrated under reduced pressure and the resulting residue was purified by column chromatography (25% EtOAc/hexane) to obtain Herbarumin-1 (30 mg, 88%), as a low melting solid along with a mixture of E/Z diastereomers 22.4 mg. $[\alpha]_D^{31} = +11.2$ (*c* 0.7, EtOH); Lit.^{3b} $[\alpha]_D^{20} = +10.8$ (*c* 0.51, EtOH); IR (neat): *v*_{max} = 3451, 2959, 2929, 1730, 1455, 1206, 1061, 811 cm⁻¹; ¹H NMR (300 MHz, CDCl₃); δ 0.91 (t, I = 7.2 Hz, 3H), 1.20-1.40 (m, 2H), 1.50-1.54 (m, 1H), 1.72 (m, 1H), 1.82-2.00 (m, 4H), 2.16 (br s, 1H), 2.38-2.50 (m, 3H), 3.51 (dd, J = 9.8, 1.9 Hz, 1H), 4.42 (br s, 1H,), 4.94 (dt, J = 9.6, 2.4 Hz, 1H), 5.45-5.57 (m, 1H), 5.61 (d, I = 15.9, Hz, 1H,); ¹³C NMR (75 MHz, CDCl₃): δ 13.8, 18.0, 24.6, 33.3, 33.7, 34.4, 70.2, 73.3, 73.7, 120.8, 130.6, 176.4; MS-ES: m/z 251 (M⁺+Na); HRMS (ESI) *m/z* calcd for C₁₂H₂₀O₄Na, 251.1259, found 251.1248.

4.1.16. Stagonolide A

To a solution of herbarumin-1 (30 mg, 0.13 mmol) in CH₂Cl₂ (6.0 mL) was added manganese dioxide (229 mg, 2.6 mmol) at room temperature. After being stirred at the same temperature for 20 h, the reaction mixture was filtered through a pad of Celite. The solvent was concentrated under reduced pressure and the resulting residue was purified by column chromatography (10% EtOAc/hexane) to obtain stagonolide A (28.5 mg, 96%, based on recovery of starting material) as a colorless crystalline solid. Mp = 71–72 °C. $[\alpha]_D^{32} = -60$ (*c* 0.2, EtOH); IR (neat): v_{max} = 3417, 2960, 2930, 2869, 1727, 1692, 1632, 1438, 1398, 1152, 1075, 824 cm⁻¹; ¹H NMR (300 MHz, CDCl₃); δ 0.93 (t, J = 7.3 Hz, 3H), 1.24-1.50 (m, 2H), 1.58-1.73 (m, 1H), 1.86-2.03 (m, 3H), 2.05 (m, 1H), 2.13 (dd, J= 14.0, 2.3 Hz, 1H), 2.44 (d, J= 5.7 Hz, 1H), 2.47-2.55 (m, 1H), 4.05 (dd, J = 9.5, 6.2 Hz, 1H), 4.65 (dt, J = 9.6, 2.4 Hz, 1H), 6.24–6.37 (m, 1H), 6.42 (d, / = 16.0, Hz, 1H); ¹³C NMR (75 MHz, CDCl₃); δ 13.7, 18.0, 25.0, 33.5, 34.0, 34.2, 74.5, 76.5, 131.9, 143.1, 174.1, 199.6; MS-ES: *m/z* 249 (M⁺+Na); HRMS (ESI) *m*/*z* calcd for C₁₂H₁₈O₄Na, 249.1102, found 249.1095.

Acknowledgment

B.K. and G.M.R. thank CSIR, New Delhi, for financial assistance.

References

- (a) Gerald, D.; Andreas, K.; Ralf, T.; Marion, Z. Nat. Prod. Rep. **1996**, 365–375; (b) Valeria, B. R.; Ronaldo, A. P.; Mauricio, M. V. Tetrahedron **2008**, 64, 2279–2300; (c) Surat, B.; Prasat, K.; Masahiko, I.; Daraporn, P.; Morakot, T.; Yodhathai, T. J. Nat. Prod. **2001**, 64, 965–967; (d) Ken, I. Biosci. Biotechnol. Biochem. **2009**, 73, 971–979; (e) Hendrik, G.; Peter, J. S.; Ekaterina, E.; Stefan, K.; Gabriele, M. K. J. Nat. Prod. **2008**, 71, 1651–1653.
- (a) Rivero-Cruz, J. F.; Garcia-Aguieee, G.; Cerda-Garcia-Rojas, C. M.; Mata, R. Tetrahedron 2000, 56, 5337–5344; (b) Rivero-Cruz, J. F.; Martha, M.; Cerda-Garcia-Rojas, C. M.; Mata, R. J. Nat. Prod. 2003, 66, 511–514.
- (a) Furstner, A.; Radkowski, K. Chem. Commun. 2001, 671–672; (b) Furstner, A.; Radkowski, K.; Wirtz, C.; Goddard, R.; Lehmann, W. C.; Mynott, R. J. Am. Chem. Soc. 2002, 124, 7061–7069; (c) Sabino, A. A; Pilli, R. A. Tetrahedron Lett. 2002, 424, 2819–2821; (d) Diez, E.; Dixon, D. J.; Ley, S. V.; Polara, A.; Rodriguez, F. Helv. Chim. Acta 2003, 86, 3717–3729; (e) Gurjar, M. K.; Karmakar, S.; Mohapatra, D. K. Tetrahedron Lett. 2004, 45, 4525–4526; (f) Nanda, S. Tetrahedron Lett. 2005, 46, 3661–3663; (g) Gurjar, M. K.; Nagaprasad, R.; Ramana, C. V.; Mohapatra, D. K. Arkivoc 2005, 3, 237–257; (h) Salaskar, A.; Sharma, A.; Chattopadhyay, S. Tetrahedron: Asymmetry 2006, 17, 325–329; (i) Boruwa, J.; Gogoi, N.; Barua, N. C. Org. Biomol. Chem. 2006, 4, 3521–3525; (j) Gupta, P.; Kumar, P. Tetrahedron

Asymmetry **2007**, *18*, 1688–1692; (k) Nagaiah, K.; Sreenu, D.; Rao, R. S.; Yadav, J. S. Tetrahedron Lett. **2007**, *48*, 7173–7176; (l) Yadav, J. S.; Kumar, V. N.; Rao, R. S.; Srihari, P. Synthesis **2008**, 1938–1942; (m) Yadav, J. S.; Ather, H.; Gayathri, K. U.; Rao, N. V.; Prasad, A. R. Synthesis **2008**, 3945–3950; (n) Selvam, P. J. J.; Rajesh, K.; Suresh, V.; Chanti, B. D.; Venkateswarlu, Y. *Tetrahedron: Asymmetry* **2009**, *20*, 1115–1119; (o) Kamal, A.; VenkataReddy, P.; Prabhakar, S. *Tetrahedron: Asymmetry* **2009**, *20*, 1120–1124.

- For the isolation of stagonolides: (a) Oleg, Y.; Galin, M.; Alexander, B. J. Agric. Food Chem. 2007, 55, 7707–7711; (b) Antonio, E.; Alessio, C.; Alexander, B.; Galina, M.; Anna, A.; Andera, M. J. Nat. Prod. 2008, 71, 31–34.
- For Sharpless: Gao, Y.; Hanson, R. M.; Klunder, J. M.; Ko, S. Y.; Masamune, H.; Sharpless, K. B. J. Am. Chem. Soc. **1987**, 109, 5765–5780.
- (a) Yadav, J. S.; Deshpande, P. K.; Sharma, G. V. M. *Tetrahedron* **1990**, *46*, 7033–7046; For related work from other groups see: (b) Takano, S.; Samizu, K.; Sugihara, T.; Ogasawara, K. *J. Chem. Soc., Chem. Commun.* **1989**, 1344–1345; (c) Takano, S.; Sugihara, T.; Ogasawara, K. *Synlett* **1991**, 279–282.
- 7. (a) Seiki, S.; Yasuhisa, M.; Toshio, M. J. Org. Chem. **1990**, 55, 5424–5426; (b) Ludmila, E.; Andre, N. S. J. Org. Chem. **2006**, 71, 693–703; (c) Cha, J. K.; Christ, W. J.; Kishi, Y. Tetrahedron Lett. **1983**, 24, 3943–3946; (d) Cha, J. K.; Christ, W. J.; Kishi, Y. Tetrahedron **1984**, 40, 2247–2255; (e) The compounds were easily separated by silica gel column chromatography.
- Srihari, P.; Kumaraswamy, B.; Yadav, J. S. Tetrahedron 2009, 65, 6304– 6309.
- (a) Furstner, A. Angew. Chem., Int. Ed. 2000, 39, 3012–3043; (b) Grubbs, H. R.; Chang, S. Tetrahedron 1998, 54, 4413–4450; (c) The diastereomeric mixture ratio was determined based on GC–MS analysis.