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ABSTRACT: The clinically approved Fondaparinux (Arixtra) has
been used for the treatment of deep vein thrombosis and acute
pulmonary embolism since 2002 and is considered to be better
than the low-molecular weight heparin in terms of anticoagulation
response, duration of action, and biosafety. However, the synthetic
methods previously developed for its manufacture are relatively
complicated, thus restricting its extensive use. We report here a
potentially scalable and programmable one-pot synthesis of
Fondaparinux using the [1,2,2] strategy and designed thioglyco-
sides with well-defined reactivity as building blocks.

Fondaparinux 1, a synthetic pentasaccharide with the brand
name Arixtra, is a heparin-based anticoagulant that has

been used for the treatment of deep vein thrombosis (DVT)
and acute pulmonary embolism (PE) since 2002. Two types of
heparins, namely, high-molecular weight heparin (HMWH)
and low-molecular weight heparin (LMWH), have been used
as injectable anticoagulants that bind to antithrombin III (AT)
and exhibit selective inhibition of factor Xa and thrombin in
the blood clotting cascade.1 However, active monitoring is
required for the patients to which heparins have been
administered as serious complications like heparin-induced
thrombocytopenia bleeding may occur. The sulfate-containing
synthetic pentasaccharide 1 with the sequence D-GlcNS6S-α-
(1,4)-D-GlcA-β-(1,4)-D-GlcNS3,6S-α-(1,4)-L-IdoA2S-α-(1,4)-
D-GlcNS6S-OMe was identified as the AT-binding sequence2

and later was introduced into the market in 2002 with the
trade name “Fondaparinux (Arixtra)” (Figure 1).3 Fondapar-
inux was shown to have a faster anticoagulation response,
higher and more predictable anti-Xa activity, a longer half-life,
a longer duration of action, a lower risk of heparin-induced
thrombocytopenia (HIT), and better biosafety compared to

those of LMWH, making it a more acceptable anticoagulant.4

In addition, the contamination in naturally occurring heparins
that caused several deaths5 in 2008 led to the increasing
clinical use of Fondaparinux as an alternative and perhaps
better anticoagulant.
For the treatment of DVT and acute PE, the recommended

dose of 1 ranges from 5 to 10 mg/day based on body weight.
However, the high-cost treatment ($600−1400 in the United
States), mainly due to its complicated and high-cost
manufacturing process, has limited the availability of
Fondaparinux.
Thus, development of an efficient and cost-effective

synthesis of 1 is highly desirable to meet the clinical demand.
The synthesis of Fondaparinux is very challenging due to the
difficulty in the regio- and stereoselective glycosylation among
the glucosamine, glucuronic acid, and iduronic acid building
blocks and the strategic installation of OSO3

− and NHSO3
−

groups. In particular, the 1,2-cis or α-glycosylation between a
glucosamine and a uronic acid building block without the
formation of the unwanted β-isomer as well as improvement of
the overall yield via the shortest possible synthetic route
represents a major challenge. In the past years, many groups,
including those of Petitou,6 Lin,7 Hung,8 Wang,9 Qin,10

Manikowski,11and Ding,12 have reported the synthesis of
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Figure 1. Structure of Fondaparinux.
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Fondaparinux, but the procedures still encounter problems
such as a long stepwise process, non-stereoselective glyco-
sylation and low yield and efficiency. Zhao and co-workers
recently reported a preactivation-based iterative one-pot
synthesis of Fondaparinux with a <40% yield.13 We thought
the method of programmable one-pot synthesis of oligosac-
charides using designed thioglycoside building blocks with
defined relative reactivity values (RRVs) developed by us14,15

could be useful for the practical synthesis of 1.
The concept of RRV is based on the quantitative

determination of the reactivity of a thioglycoside donor with
methanol as compared to the reactivity of the thioglycoside
donor of per-acetyl mannose. RRV is measured using HPLC to
determine the amount of leaving group released and the
starting donor left during the reaction time course. With the
RRVs of various thioglycoside building blocks (BBLs)
available, one can design computer software to guide the
selection of appropriate BBLs with well-differentiated RRVs for
the one-pot assembly of oligosaccharides. We developed the
first computer program, Optimer, in 199914 as a database
search tool for the rapid one-pot assembly of large numbers of
linear and branched complex oligosaccharides including N-
glycans15 and glycosaminoglycans.16 In 2018, we reported an
upgraded version of this software, Auto CHO, with a library of
150 BBLs with experimentally measured RRVs and 50000
BBLs with RRVs predicted by machine learning (including
those with RRVs predicted by chemical shifts by NMR)14 to
diversify the applicability of the software for the synthesis of
oligosaccharides. To use either Optimer or Auto CHO, the
user needs to input the desired oligosaccharide structure, and
then the software will generate one or more synthetic routes
based on the RRVs of the BBLs needed for the synthesis of the
oligosaccharide as output. Once the user chooses a specific
synthetic route from the output, BBLs are required to be
synthesized in the laboratory and then one-pot synthesis can
be performed by sequential addition of BBLs starting from the
most reactive from the nonreducing end unit toward the less
reactive, least reactive, and so on in the reducing end. The one-
pot strategy was successfully applied to the synthesis of
heparin-like oligosaccharides16a,b and the heparin-based
anticoagulant Idraparinux.16c

The building blocks used in this one-pot strategy allow
differential removal of the protecting groups for the
regioselective introduction of sulfate groups to evaluate their
role in biological functions. Following this strategy, we report
here an efficient and scalable programmable one-pot synthesis
of Fondaparinux 1 using the [1,2,2] strategy and designed
thioglycosides (2, 10, and 18) as building blocks.
All of the building blocks can be readily attained from

commercially available monosaccharides. The synthetic design
involves the use of our established programmable one-pot
method to conduct highly α-selective glycosylation using
TBDPS and Ac groups at O6 and late stage introduction of the
acidic functionalities (glucuronic and iduronic). For the
selective installation of the 3-SO3

− group, we masked the
C3-hydroxyl group (C3-OH) with an orthogonal protecting
group, namely, 2-naphthylmethyl ether (Nap). The synthesis
of 2-azido thioglycoside donor 2 was achieved from D-
glucosamine hydrochloride using our previously reported
procedure (Scheme S1).16b The RRVs of the newly
synthesized building blocks were measured by HPLC analysis
in a competition assay with a reference thioglycoside donor
with a known RRV (Supporting Information).14,15

The synthesis of disaccharide 10 involved the glycosylation
between glycosyl trichloroacetimidate 317 and thioglycoside
acceptor 418 in the presence of TMSOTf to generate 5 in 96%
yield. Zeḿplen deacetylation gave 6, and O-benzylation of
2′,3′-OH led to the formation of 7 in 80% yield. Removal of
the 2-Nap protecting group using 2,3-dichloro-5,6-dicyano-1,4-
benzoquinone (DDQ)19 furnished disaccharide 8 with a free
hydroxyl group at C3 in 84% yield. Removal of the silyl
protecting group under a F− source (HF-Py) followed by
protection of 3,6-OH as acetyl ester using Ac2O/py led to 9 in
90% yield. Hydrolysis of the 4′,6′-O-benzylidene acetal using
an AcOH/H2O/CH2Cl2 (4:2:1) mixture produced the crude
dihydroxy derivative for the selective oxidation of the primary
hydroxyl group to carboxylic acid using (2,2,6,6-tetramethylpi-
peridin-1-yl)oxyl or (2,2,6,6-tetramethylpiperidin-1-yl)oxidanyl
(TEMPO)/diacetoxyiodo benzene (BAIB) and subsequent
esterification with MeI/KHCO3 to give disaccharide acceptor
10 in 58% yield (Scheme 1).

For the synthesis of Ido-GlcN3 disaccharide derivatives (17
and 18), we used commercially available diacetone glucose 11
that was converted to α-L-idopyranoside 12 using known
procedures.20 The 2-OH group of 12 was protected as both
benzoyl (Bz) and acetyl ester (Ac) to generate 1316b and 14 in
80% and 95% yields, respectively. N-Iodosuccinimide (NIS)/
TMSOTf-mediated glycosylation of 13 with α-methyl acceptor
1916b generated disaccharide 15 in 94% yield. The 4′,6′-O-
benzylidene acetal was hydrolyzed using 80% AcOH-H2O; the
crude dihydroxy derivative was treated with TEMPO/BAIB to
oxidize the primary hydroxyl group to acid, and subsequent
esterification of the acid with MeI/KHCO3 generated L-
iduronic acid-containing disaccharide acceptor 17 in 58% yield
(Scheme 2). We have also reported the synthesis of 17 using a
different synthetic route previously.16b

We measured the RRVs of glycosyl donors (2 and 10)14,15

and found that the RRV of 2 was 132.0 whereas that of 10 was
2.14. After synthesizing all of the required building blocks (2,
10, and 17), we attempted the programmable one-pot
synthesis of the protected pentasaccharide 20. However, the
yield was only 26%. To improve the yield of the one-pot
synthesis, we changed the disaccharide acceptor from 17 to 18,
in which the 2-OH is protected as acetyl ester. The 2-O-acetyl-
protected donor 14 was coupled with α-methyl acceptor 19 in
the presence of NIS/TMSOTf to generate disaccharide 16 in

Scheme 1. Synthesis of the D-Glc-β-(1→4)-D-GlcN3
Disaccharide Building Block
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95% yield. Hydrolysis of the 4′,6′-O-benzylidene acetal,
TEMPO/BAIB oxidation of the primary alcohol to acid, and
subsequent esterification of the acid using MeI/KHCO3
generated 18 (56%) (Scheme 2) that was then used in the
one-pot synthesis of protected Fondaparinux 21 in 50% yield
(Scheme 3). The concept of RRV is based on the

measurement of the reactivity of the thioglycoside donor.
Both 17 and 18 are glycosyl acceptors without a leaving group,
so the RRVs were not measured and assigned to “zero”. Thus,
it was difficult to foresee the lower yield (26%) of
pentasaccharide 20 using 2-O-Bz-protected disaccharide 17
(Scheme 3) and the higher yield of 21 (50%) using 2-OAc-
containing disaccharide 18.
We used the protected pentasaccharides 20 and 21 for

differential deprotection and chemical sulfation. The silyl
group (TBDPS) in 20 and 21 was removed using HF-Py to
generate compounds 22 and 23 in 89% and 91% yields,
respectively. Protection group free O-sulfated pentasaccharide
24 was obtained in three steps. Saponification of 22 and 23
using LiOH/H2O2

21 in the presence of NaOH/MeOH
hydrolyzed all ester functional groups. For the installation of
the OSO3

− groups, it was further treated with excess SO3-Et3N
followed by unmasking of all O-benzyl groups and reduction of
N3 to amine under catalytic hydrogenation with Pd(OH)2/C
to give 24 in 82% yield. The selective N-sulfation was
performed at pH 9.5 with SO3-Py, and the pH of the reaction
was controlled by slow addition of 1 M NaOH(aq) from time
to time. The crude product was passed through size-exclusion
(Sephadex G-25) and ion-exchange (Dowex 50WX8Na+)
columns to furnish Fondaparinux 1 (Scheme 4). The reported
NMR and mass spectrometry data are well matched with the

reported values.7−13 All newly synthesized derivatives were
characterized by 1H and 13C NMR spectra and high-resolution
mass spectra (HRMS). 1JC−H coupling constants were
measured via two-dimensional NMR to determine the α-
and β-linkages between the building blocks (Supporting
Information).
In conclusion, we have developed a programmable one-pot

synthesis of the clinically important anticoagulant Fondapar-
inux using designed thioglycoside building blocks with well-
defined RRVs for α-selective glycosylation guided by silyl ether
and acetyl ester functionality at O6 in the one-pot sequence.
The introduction of 3-OSO3

− was performed with the aid of 2-
naphthylmethyl ether (Nap). The carefully selected orthogonal
protecting groups that can be differentially deprotected and
readily accessible thioglycoside building blocks in the one-pot
synthesis effectively reduce the number of synthetic steps and
eliminate the multiple purification steps. In addition, the
advantage of a programmable approach is to allow a pre-
evaluation of the building blocks to be used in a one-pot
manner. The total synthesis was accomplished in the 22
longest linear route with 4.2% overall yield from diacetone
glucose, which is a very significant improvement compared to
previously reported synthetic methodologies. The protected
pentasaccharide was synthesized in >200 mg and can be
performed on a gram scale. The synthetic route reported here
is scalable and should be useful for the synthesis of
Fondaparinux and closely related structures decorated with
regiodefined O- and N-sulfation.16b

Scheme 2. Synthesis of the L-Ido-α-(1→4)-D-GlcN3
Disaccharide Building Block

Scheme 3. One-Pot Synthesis of Protected Fondaparinux

Scheme 4. Synthesis of Fondaparinux
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