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Palladium-Catalyzed Difunctionalization of 1,3-Diene with Amine
and Disilane under a Mild Re-oxidation System
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Abstract: A highly regioselective and stereoselective di-
functionalization reaction of 1,3-diene with amine and dis-

ilane to form C@N and C@Si bonds via a one-step Pd/Cu/
O2 system is disclosed. The difunctionalization reaction af-

fords allylic silanes, including the allylic amine moiety, in
up to 92 % yield in the absence of any acid, base, or exter-

nal ligand. The developed synthetic methodology can be
scaled to 100 g in high yield with high Z-selectivity, which
demonstrates the feasibility of the reaction for industrial

applications.

Catalytic bond formation reactions have been the subject of a
wealth of interdependent research as one of the most useful

strategies in the development of organic chemistry, as well as
for global industrial growth. Importantly, a wide variety of
methods to form C@C bonds, such as classical cross-coupling

reactions, have been developed over many decades. These re-
actions have been designed to produce desired products

along with stoichiometric amounts of by-products. In addition,
environmentally friendly reactions are desirable to suppress

excess energy losses and to reduce waste emissions.

Alternatively, difunctionalization reactions with 1,3-dienes
have received significant attention over recent decades be-

cause 1,3-dienes are regarded as chemical feedstocks, and 1,3-

butadiene in particular is produced on a global scale that ex-
ceeds 10 million tons per annum.[1–7] These difunctionalization
reactions allow 1,3-dienes to form two chemical bonds in one
step, which increases the molecular complexity. Thus, difunc-

tionalization reactions of 1,3-dienes are effective methods for
organic transformation reactions in terms of atom economy

and step economy. Huang and co-workers reported palladium-
catalyzed aminomethylamination of 1,3-dienes to form C@C
and C@N bonds (Scheme 1 A-I).[8] Terao and Kambe developed

a titanium-catalyzed carbosilylation of 1,3-diene using alkyl ha-
lides and chlorosilanes to form C@C and C@Si bonds

(Scheme 1 A-II).[9] Recently, iron-catalyzed difunctionalization of
olefins using hydrosilane and amine to form C@N and C@Si

bonds was reported by Song, Li, Luo, and co-workers.[10] How-
ever, difunctionalization reactions of 1,3-dienes to form C@N
and C@Si bonds, to the best of our knowledge, have not been

published.[11] Our group previously reported Pd-catalyzed de-
carbonylative coupling of 1,3-diene with acyl chloride and disi-

lane to form C@C and C@Si bonds in one step.[12] However,
emission of a stoichiometric amount of Me3SiCl and carbon
monoxide remains a significant problem because of the utiliza-

tion of acylchloride for alkylation into the allyl silane moiety.
Furthermore, our group has reported the oxidative amination

reaction of simple olefins via a Pd/molybdovanadophosphate
salt (NPMoV)/O2 system for introduction of an amino group

(Scheme 1 B-I).[13] Our research has also established oxidative si-
lylation of simple olefins via a Pd/O2 system for introduction of

Scheme 1. A) Difunctionalization reaction examples with 1,3-dienes. B) Previ-
ous reports. C) Difunctionalization of 1,3-diene to form C@Si and C@N bonds.
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a silyl group (Scheme 1 B-II).[14] These reactions proceed under
halogen-free conditions using molecular oxygen as the termi-

nal re-oxidant.
Next, our group envisioned a one-step Pd-catalyzed difunc-

tionalization of 1,3-diene with amine and disilane to form C@N
and C@Si bonds (Scheme 1 C). This reaction provided allylic

silane, including the allylic amine framework, in high yield with
high chemo-, regio-, and stereoselectivity. Furthermore, the re-

action system demonstrates significant advantages as a green

reaction procedure and a mild re-oxidation system because a
stoichiometric amount of the re-oxidant and halogen reagent

are not required.
First, the difunctionalization reaction conditions were opti-

mized (Table 1). The use of 2,3-dimethyl-1,3-butadiene (1 a), N-
methylaniline (2 a), and hexamethyldisilane (3 a) in the pres-
ence of PdCl2 (0.05 mmol, 5 mol %) and CuI (0.1 mmol,

10 mol %) as re-oxidant under an oxygen atmosphere (1 atm,
balloon) afforded the desired nitrogen-containing allylic silane

4 a in 36 % GC yield (entry 1). Pd(PPh3)4 was not an effective
catalyst in this reaction (entry 2). Compared with these cata-

lysts, Pd(OAc)2 and Pd(TFA)2 exhibited high catalytic activity
(entries 3 and 4). Furthermore, the use of Pd(dba)2 gave 4 a in

the highest yield (92 % GC yield) with high stereoselectivity

(92:8, Z/E) (entry 5).[15] Surprisingly, this reaction proceeded
only oxygen atmosphere (entries 5–7). The addition of 1,4-ben-

zoquinone (1 equiv) to the reaction system under Ar gave no
reaction (entry 8). These results suggest that molecular oxygen

plays a crucial role except in the re-oxidation of the catalytic
species. Alternative copper salts were also tested. The use of

CuBr improved the yield of 4 a (entry 9). Conversely, CuCl and
CuOAc were not efficient re-oxidants (entries 10 and 11) and
CuI was superior to any other copper salt. Among the solvents
employed in the difunctionalization reaction, amide solvents
such as N,N-dimethylformamide (DMF), N,N-dimethylacetamide

(DMA), and N-methylpyrrolidone (NMP) were extremely effec-
tive in yielding 4 a (entries 5, 12 and 13). The reaction in the
presence of acetonitrile or toluene barely proceeded (en-
tries 14 and 15). The yield of 4 a was also significantly influ-
enced by the substrate ratio (entries 16–18).

Thereafter, various amines, dienes, and disilanes were stud-

ied for the difunctionalization reaction (Table 2). In the pres-
ence of amines, N-methylaniline derivatives bearing electron-
withdrawing groups such as @Cl or @CF3 were applicable to

this reaction and gave corresponding products in good to ex-
cellent yields with high Z-selectivity (4 b–4 e). The reaction with

Table 1. Optimization of reaction conditions.[a]

Entry Pd/Cu Solvent X, Y Yield [%][b]

1 PdCl2/CuI DMF 3, 2 36(90:10)
2 Pd(PPh3)4/CuI DMF 3, 2 34(92:8)
3 Pd(OAc) 2/CuI DMF 3, 2 72(92:8)
4 Pd(TFA) 2/CuI DMF 3, 2 63(94:6)
5 Pd(dba)2/CuI DMF 3, 2 92[87][c] (92:8)
6[d] Pd(dba)2/CuI DMF 3, 2 <1
7[e] Pd(dba)2/CuI DMF 3, 2 n.d.[f]

8[g] Pd(dba)2/CuI DMF 3, 2 n.d.[f]

9 Pd(dba)2/CuBr DMF 3, 2 81(91:9)
10 Pd(dba)2/CuCl DMF 3, 2 28(94:6)
11 Pd(dba)2/CuOAc DMF 3, 2 34(92:8)
12 Pd(dba)2/CuI DMA 3, 2 88(92:8)
13 Pd(dba)2/CuI NMP 3, 2 72(94:6)
14 Pd(dba)2/CuI MeCN 3, 2 <1
15 Pd(dba)2/CuI toluene 3, 2 <1
16 Pd(dba)2/CuI DMF 1, 1 44(94:6)
17 Pd(dba)2/CuI DMF 3, 1 46(94:6)
18 Pd(dba)2/CuI DMF 3, 3 93(92:8)

[a] Reaction conditions: 1 a (3 mmol), 2 a (1 mmol), 3 a (2 mmol), Pd cata-
lyst (0.05 mmol, 5 mol %) and additive (0.1 mmol, 10 mol %) were stirred
at 70 8C for 16 h under O2. Yield was determined by GC based on 2 a
used (n-decane as internal standard). [b] The numbers in parentheses
show the Z/E ratio determined by GC. [c] Number in brackets shows iso-
lated yield. [d] Under air. [e] Under Ar. [f] n.d. = not detected. [g] Benzo-
quinone (1 equiv) was used under Ar. Pd(TFA)2 = palladium bis(2,2,2-tri-
fluoroacetate); DMF = N,N-dimethylformamide; DMA = N,N-dimethylace-
tamide; NMP = N-methyl-2-pyrrolidone.

Table 2. Variation of amines, dienes, and disilanes.[a]

69 % (88:12)
4 b

85 % (87:14)
4 c

83 % (84:16)
4 d

69 % (90:10)
4 e

79 % (93:7)
4 f

85 % (86:14)
4 g

77 % (92:8)
4 h

60 % (>99:-)[b,c]

4 j
CCDC 2044491[18]

92 % (94:6)[b]

4 i
51 % (11:89)[c,d]

4 k
65 % (95:5)[e]

4 l

[a] Reaction conditions: 1 (3 mmol), 2 (1 mmol), 3 (2 mmol), Pd(dba)2

(0.05 mmol, 5 mol %) and CuI (0.1 mmol, 10 mol %) were stirred at 70 8C
for 16 h under O2. The numbers in parentheses show Z/E ratio deter-
mined by GC. [b] Reaction time was 48 h. [c] Disilane (5 mmol) and CuI
(0.3 mmol, 30 mol %) were used. [d] DMF (8 mL) was used. [e] CuI
(0.3 mmol, 30 mol %) was used.
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o-, m-, and p-chloro-N-methylaniline proceeded with yields of
69 %–85 % (4 b–4 d). The use of N-methylaniline substituted

with an electron-donating group (@CH3) yielded 4 f in excellent
yields. The reaction in the presence of sterically hindered

amines, N-ethylaniline and diphenylamine, yielded 4 g and 4 h
in excellent yields. The highest yield was obtained in the pres-

ence of the diphenylamine derivative (4 i). Significantly, the het-
erocyclic amine, carbazole, also participated in this reaction

and a conformation of 4 j was determined by X-ray crystallo-

graphic analysis. However, the reaction with N-methylbenzyl-
amine or aniline did not afford the corresponding product

under these conditions. Next, the scope of dienes and disilanes
was investigated. The reaction with 1,3-butadiene proceeded

by employing 8 mL of DMF, and, because of the low boiling
point of 1,3-butadiene, the reaction furnished 4 k in moderate
yield. In this case, the E-isomer was principally obtained be-

cause of the smaller steric hindrance compared with 1 a. The
reaction to generate 4 k was sluggish under typical reaction
conditions. The reaction with 2,3-diphenyl-1,3-butadiene or
1,3-cyclohexadiene was sluggish under these conditions. Other

1,3-dienes such as isoprene or myrcene were tolerable to this
reaction; however, the generation of regioisomers increased

the difficulty of purifying the reaction mixture. The use of

PhMe2SiSiMe2Ph as the disilane reagent was successful and

gave 4 l in good yield. Unfortunately, other disilanes such as
Ph2MeSiSiMePh2 and Ph3SiSiPh3 were not suitable in this reac-

tion as a result of their poor solubility in DMF.
To evaluate the utility and scalability of this protocol, scale-

up experiments for the synthesis of 4 a were performed (Fig-
ure 1 A).[16]

The use of 1 a (29.8 mmol), 2 a (9.9 mmol), and 3 a
(19.8 mmol) in the presence of Pd(dba)2 (0.5 mmol, 5 mol %)
and CuI (1.0 mmol, 10 mol %) under an oxygen atmosphere

(1 atm, balloon) afforded 4 a in a satisfactory yield (87 %) with
excellent regioselectivity (94:6, Z/E). Next, the difunctionaliza-
tion reaction was scaled to 10 g in the presence of 1 mol %
(0.5 mmol) of Pd(dba)2 and 2 mol % of Cu (1.0 mmol) using 1 a
(151 mmol), 2 a (49 mmol), and 3 a (99 mmol). Product 4 a was
obtained in excellent yield (89 %) and with high Z-selectivity

(94:6, Z/E). Further scale-up achieved the synthesis of more

than 150 g of 4 a with excellent Z-selectivity based on the reac-
tion of 2.22 mol of 1 a, 0.74 mol of 2 a, and 1.50 mol of 3 a in

the presence of Pd(dba)2 (7.5 mmol, 1 mol %) and CuI
(15 mmol, 2 mol %). These results demonstrate the feasibility of

this reaction strategy for industrial application.
We envisioned four plausible reaction pathways (A–D)

(Scheme S1). In path A, 1,3-dienes reacted with amine via oxi-

dative amination, followed by silylation with disilane. Path B

Figure 1. A) Scale-up experiment for multi-gram, 10 g, and 100 g scale synthesis of 4 a. B) Deuterated labeling experiment using 2 a-d. C) Mechanistic studies.
(D) A plausible catalytic cycle for the difunctionalization reaction.
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sees hydroamination of 1,3-diene via 1,2- or 1,4-addition and
then silylation occurs. In the third possible mechanism de-

scribed as path C, a silyl group is introduced to 1,3-diene
before the oxidative amination process. Alternatively, oxidative

amination takes place after introduction of the silyl group to
1,3-diene in path D. To gain insight into the reaction mecha-

nism, a deuterated labeling experiment was performed substi-
tuting 2 a with 2 a-d under standard conditions (Figure 1 B).

Deuterated 4 a was not observed from this experiment, which

rules out the hydroamination path (Path B and C). Further in-
vestigation was performed by using possible reaction inter-

mediates (Figure 1 C).[16] The oxidative amination product 5,
which is the intermediate of path A was reacted with hexame-

thyldisilane in the presence of Pd(dba)2 and CuI in DMF at
70 8C for 48 h, furnishing the desired product 4 k in 20 % yield

as determined by GC (Figure 1 C-I). Compound 5 was not

formed when the reaction was performed without disilane.
When intermediates of hydroamination of 1,3-diene (6 and 7)

reacted with 3 a under standard conditions, desired product
4 a was not observed (Figure 1 C-II and III). An intermediate of

silylation of 1,3-diene 8 of path D did not react with 2 a (Fig-
ure 1 C-IV). These results suggest that 5 is the intermediate of

this difunctionalization reaction via oxidative amination fol-

lowed by silylation.
From the results of mechanistic studies and previous reports,

a plausible catalytic cycle for the difunctionalization reaction is
shown in Figure 1 D.[14, 17] First, PdII (I) coordinates with 1,3-

diene (1 a) to afford intermediate II. Thereafter, nucleophilic
amine (2 a) undergoes an intermolecular nucleophilic attack to

form intermediate III. b-hydride elimination of intermediate III
leads to intermediates IV, followed by the production of inter-
mediate V by coordination of PdII. Finally, p-allyl intermediate

VI is formed from V and reacts with disilane (3 a) to give de-
sired product (4 a) along with metallic Pd, which is oxidized to

PdII by Cu and O2. Previously, our group reported that Pd/p-
allyl intermediate could react with disilanes.[14] Therefore, the

mechanism involves oxidative amination, leading to Pd/p-allyl

formation, followed by silane functionalization and reoxidation.
In conclusion, a highly regioselective and stereoselective di-

functionalization reaction of 1,3-dienes with amine and disilane
was developed using molecular oxygen as the terminal re-oxi-

dant. The reaction produces allylic silanes, including the allylic
amine moiety, in up to 92 % yield and scale-up has been dem-

onstrated for more than 150 g. Further investigations of the
detailed reaction mechanism and applications of this method-
ology in medicinal or biological chemistry are in progress.
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