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Asymmetric hydrogenation of di-, tri- and tetrasubstituted minimal-

ly functionalized olefins and cyclic β-enamides with easily accessible 

Ir-P,oxazoline catalysts. 

Maria Biosca, Marc Magre, Oscar Pàmies* and Montserrat Diéguez* 

Universitat Rovira i Virgili. Departament de Química Física i Inorgànica. C/ Marcel·lí Domingo 1, 43007 Tarragona, 
Spain.  

ABSTRACT: We have developed a family of Ir-P,oxazoline catalysts for asymmetric hydrogenation. These catalysts, with a 
simple modular architecture, have shown a high tolerance to the olefin geometry and substitution pattern, and to the 
presence of several neighboring polar groups. Thus, they were able to successfully hydrogenate di-, tri- and tetrasubstitut-
ed minimally functionalized olefins (ee's up to 99%). The excellent catalytic performance was also extended to the hydro-
genation of cyclic β-enamides.  
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Asymmetric hydrogenation (AH) of olefins is a well-
known approach to introduce chirality into target mole-
cules. It has perfect atom economy, uses low catalyst 
loading and it is operationally simple.1 The AH of func-
tionalized olefins has been thoroughly studied for dec-
ades and can now be considered a mature field.2 Rh- and 
Ru-catalysts, mostly based on diphosphine ligands have 
performed the best. Their performance is critically influ-
enced by the substrate coordinative groups that guide the 
chiral transfer to the product. When those coordinative 
groups are absent (minimally functionalized olefins), the 
introduction of chirality becomes a much greater chal-
lenge and, in this field, Ir-catalysts have performed the 
best.3 The best catalysts have two characteristics in com-
mon: (i) they contain P,N ligands and (ii) their optimal 
structure is highly dependent on the geometry and substi-
tution pattern of the olefin.3 The consequence is that for 
each particular olefin type a different ligand family needs 
to be developed. Figure 1 shows a selection of the most 
efficient chiral ligands and illustrates how different the 
ligand motifs need to be to achieve high enantioselectivity 
for each particular olefin substitution pattern. It is also 
important to notice that different degrees of catalyst de-
velopment have been achieved for each olefin substitu-
tion pattern.3 The most successful cases have been report-
ed for trisubstituted olefines3 and, to a less extend, for 
disubstituted4. The AH of tetrasubstituted unfunctional-
ized substrates is still underdeveloped. Only four publica-
tions have reported high catalytic performance for certain 
substrates,5 being the Pfaltz catalysts the ones that work 
under milder conditions and are applicable to more sub-
strates. The discovery of a family of catalysts with a wide 
substrate scope remains a central task in AH of unfunc-
tionalized olefins. A desired additional condition is that 
the catalyst family should be synthesized from available 
starting materials and be easy to handle. 

Here we report the first P,N-ligand family (L1-L6, 
Scheme 1)  that performs well for the Ir-catalyzed AH of  
different types of unfunctionalized olefins. From a com-
mon skeleton, the right choice of either a phosphite 
group or phophinite group results in ligands that are 
suitable for di-, tri- and tetrasubstituted unfunctionalized 
olefins. The "ligand family" concept helps to reduce the 
time dedicated to ligand design and preparation and facil-
itates the discovery of the optimal ligand for a wide range 
of substrates. This family has also been successfully ap-
plied to the AH of challenging functionalized cyclic β-
enamides.6  

 

Figure 1. Representative ligands developed for the Ir-
catalyzed AH of di-, tri- and tetrasubstituted minimally func-
tionalized olefins.

5c,7
 

The new Ir-catalyst precursors [Ir(cod)(L1-L6a-h)]BArF, 
with the P,oxazoline ligands were prepared in few steps 
from readily available α-acetoxy acids 1-3 (Scheme 1).8 
From a common skeleton, several ligand modules can be 
independently varied to form the family of catalysts. The 
variations include: the substituents and configurations at 
the ligand backbone (R1); the substituents and configura-
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tions at the oxazoline (R2); the substituents and configu-
ration of the biaryl phosphite moiety (a-e); and the type 
of P-donor group (phosphite or phosphinite). Compounds 
1-3, already incorporate the desired diversity in the sub-
stituents at the alkyl backbone chain (R1). Compounds 1-3 
were first coupled with the desired chiral amino alcohol 
to afford amides 4-9. This step introduced diversity in the 
substituents and configuration of the oxazoline moiety 
(R2). Compounds 4-9 were then converted to the hydrox-
yl-oxazolines 10-15 by reaction with diethylaminosulfur 
trifluoride (DAST) followed by standard acetate deprotec-
tion. Reaction of the hydroxyl-oxazolines with the corre-
sponding phosphorochloridite afforded the phosphite-
oxazoline ligands (L1-L6a-e); the reaction with the chlo-
rophosphine afforded the phosphinite-oxazoline ligands 
(L1-L6f-h). Ligand coordination by reaction with 0.5 
equiv of [Ir(µ-Cl)(cod)]2 followed by in situ Cl-/BArF

- 
counterion exchange led to the desired catalyst precur-
sors [Ir(cod)(L1-L6a-h)]BArF as orange air stable solids. 

 

Scheme 1. Synthesis of [Ir(cod)(L1-L6a-h)]BArF catalyst 
precursors. (a) SOCl2, DCM, reflux, 3 h; (b) aminoalcohol, 
NEt3, DCM, rt, 5 h; (c) DAST, K2CO3, DCM, -78 °C to rt for 
3 h; (d) NaOH (aq), EtOH, 0 ºC, 3 h; (e) ClP(OR)2, Py, 
toluene, -78 °C to rt, 16 h; (f) ClPR2, NEt3, DMAP, toluene, 
rt, 20 min; (g) [Ir(µ-Cl)(cod)]2, DCM, reflux, 1 h then 
NaBArF, H2O, rt, 30 min. 

[Ir(cod)(L1-L6a-h)]BArF complexes were first evaluated 
in the hydrogenation of model di-, tri- and tetrasubstitut-
ed minimally functionalized alkenes (S1-S3; Table 1). For 
comparison, catalyst precursors were tested in the opti-
mal reaction conditions reported in previous studies with 
other P,N-ligands.3 High enantioselectivities, comparable 
to the best ones reported,3 were obtained for all sub-
strates, regardless of the olefin substitution pattern.  

 

Table 1. Ir-catalyzed AH of model tri-, di- and tetrasubstitut-
ed minimally functionalized olefins S1–S3.

a 

 

 

   

P,N %Co-
nv

b
 

% ee
c
 

%Co-
nv

b
 

% ee
c
 

%Co
-nv

b
 

% ee
c
 

L1a 100 58 (R) 100 96 (S) 39
d
 37 (S,S) 

L1b 100 75 (R) 100 88 (S) 14
d
 29 (S,S) 

L1c 100 67 (S) 100 40 (S) 25
d
 16 (S,S) 

L1d 100 92 (R) 100 93 (S) 22
d
 23 (S,S) 

L1e 100 68 (S) 100 42 (S) 36
d
 18 (S,S) 

L1f 100 60 (R) 100 81 (S) 100 84 (S,S) 

L1g 100 70 (R) 100 82 (S) 100 80 (S,S) 

L2a 100 30 (R) 100 95 (S) 25
d
 82 (S,S) 

L2b 100 64 (R) 100 89 (S) 10
d
 50 (S,S) 

L2f 100 38 (R) 100 80 (S) 100
e
 97 (S,S) 

L2g 100 44 (R) 100 84 (S) 100 87 (S,S) 

L2h 100 15 (R) 100 54 (S) 100 75 (S,S) 

L3a 100 9 (R) 100 97 (S) 5
d
 34 (R,R) 

L3b 100 88 (R) 100 77 (S) <5 nd
f
 

L4a 100 76 (S) 100 98 (R) 50
d
 64 (S,S) 

L4d 100 0 100 74 (R) 5
d
 4 (S,S) 

L4e 100 93 (S) 100 92 (R) 24 47 (R,R) 

L4f 100 71 (S) 100 85 (R) 100 75 (R,R) 

L4g 100 66 (S) 100 83 (R) 100 70 (R,R) 

L4h 100 80 (S) 100 85 (R) 100 20 (R,R) 

L5a 100 78 (R) 100 92 (S) 15
d
 42 (S,S) 

L5d 100 98 (R) 100 92 (S) 10
d
 25 (S,S) 

L5e 100 40 (S) 100 10 (S) 15
d
 21 (S,S) 

L6a 100 81 (R) 100 96 (S) 20
d
 53 (S,S) 

L6d 100 94 (R) 100 91 (S) 13
d
 12 (S,S) 

L6e 100 30 (R) 100 60 (S) 25
d
 30 (S,S) 

a
 Reaction conditions: 1 mol% Ir-catalyst precursor, sub-

strate (0.5 mmol), DCM, rt for 4 h, PH2 = 50 bar (for S1 and 
S3), 1 bar (for S2). 

b
 Conversions determined by GC. 

c
 Enanti-

omeric excesses determined by chiral GC. 
d
 Reactions carried 

out for 20 h. 
e
 Reaction performed at 25 bar H2. 

f
 not deter-

mined. 

The results also reveal several trends in the obtained 
enantioselectivities: (i) the highest enantioselectivity in 
the reduction of di- and trisubstituted olefins (ee's up to 
98%,) were obtained with phosphite-based ligands (eg. 
L4a and L5d) while phosphinite-based ligands were re-
quired for tetrasubstituted olefins (cf. L2f vs. L2a, ee's up 
to 97%),9 (ii) oxazolines derived from expensive tert-
leucinol (eg. ligands L3) were not needed to achieve high 
ees, which is an important advantage over the most wide-
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ly used P-oxazoline ligands (e.g. PHOX-derived ligands);3 
(iii) finally, for substrates S1 and S2, both enantiomers of 
the hydrogenated products were accessible in high enan-
tioselectivities by using diastereoisomeric ligands (e.g. 
98% (R) for S1 with L4a vs 96% (S) with  L1a; or 93% (S) 
for S2 with L4a vs 98 (R) with L5d).  

We then performed a broad unfunctionalized substrate 
screening that included di-, tri- and tetrasubstituted ole-
fins, different geometries (E and Z), and different neigh-
boring polar groups. A summary of the AH results of 53 
olefins is shown in Figure 2 (see S.I. for a complete series 
of results). As seen previously, the best results for di- and 
trisubstituted olefins were achieved with phosphite-based 
ligands and for tetrasubstituted with phosphinite-based 
ligands. The other ligand parameters had a different in-
fluence depending on the substrate and had to be specifi-
cally selected to obtain high enantioselectivities. 

For the reduction of minimally unfunctionalized trisub-
stituted olefins, the new catalyst precursors were found to 
be well suited for those with E-geometry (S4-S5) and for 
those with the challenging Z-geometry (S6) and the exo-
cyclic olefin (S7), obtaining in all cases both enantiomers 
of the reduced products. They also worked well for olefins 
with a variety of relevant neighboring polar groups such 
as α,β-unsaturated esters, ketones and lactames, vinyl 
boronates and enol phosphinates (S8-S32). All the sub-
strates were hydrogenated with excellent enantiocontrol 
(ee’s up to >99%), comparable to the best ones reported.3 
In addition, for each type of neighboring group, the enan-
tioselectivities were quite independent on the electronic 
and steric nature of the substituents decorating such 
motifs. The effective hydrogenation of such a range of 
olefins is of great importance since their reduced prod-
ucts are key structural chiral units found in many high 
value chemicals (e.g. α- and β-chiral ketones and carbox-
ylic acid derivatives are ubiquitous in natural products, 
fragrances, agrochemicals, and drugs).10  

Our catalyst precursors also proved to be highly compe-
tent in the hydrogenation of a broad range of disubstitut-
ed olefins (S33-S45). Excellent enantioselectivities were 
achieved (up to >99% ee) in the AH of a series of 1,1-
disubstituted (hetero)aryl/alkyl olefins and also aryl- and 

alkyl-enol phosphinates. The reduction α-alkylstyrenes 
with less sterically demanding alkyl substituents proceed-
ed with somewhat lower enantioselectivies (see S.I, for 
details), like in previous successful reports.4,11 

Finally, for tetrasubstituted olefins our catalyst precur-
sors proved to be highly efficient in the reduction of sev-
eral indenes (S46-S50) with different substituents at both 
the benzylic and vinylic position as well as substituents in 
the aryl ring (ee’s up to 98%), under the comparable mild 
reactions conditions developed by Pfaltz.5c This improved 
previously reported results. The high enantiocontrol for 
the more challenging 3,4-dimehtyl-1,2-dihydronapthalene 
and the acyclic tetrasubstituted olefins (S51-S56; ee’s up to  
98%), is even more remarkable, surpassing the best re-
sults reported so far. For acyclic substrates, only the 
Pfaltz's catalysts have been successful but enantioselectiv-

ity was high (97% ee) in the AH of one substrate only. 
Interestingly the hydrogenation of the latter substrates 
can be achieved at only 1 bar of H2. It should be noted 
that the more rigid the tretrasubstituted olefin is, the less 
bulky phosphinite moieties are required to reach the 
maximum enantioselectivity. For the more rigid cyclic 
indene derivatives S3 and S45-S50, the best catalytic per-
formance is reached with the phosphinite-based ligand 
L2f, while for the less rigid cyclic substrate S51, the phos-
phinite ligand L2g, with a more bulky tolyl group is need-
ed. Finally, the even less rigid acyclic substrates (S52-S56) 
require the diastereoisomeric ligand L4h, which has the 
bulkiest cyclohexenyl phosphinite group. 

 

 

Figure 2. Selected results for AH of a range of di-, tri- and 
tetrasubstituted minimally functionalized olefins. Typical 
reaction conditions: 1 mol% of [Ir(cod)(P-N)]BArF, 50 bar H2, 
DCM, rt for 4 h. Full conversions were achieved in all cases. 

a
 

Reactions carried out at 50 bar H2 for 24 h. 
b
 Reactions car-

ried out at 1 bar H2 for 4 h. 
c
 Reactions carried out at 25 bar 

H2 for 24 h. 
d
 Reaction carried out at 75 bar H2 for 24 h. 

e
 

Reactions carried out at 1 bar H2 for 24 h. 

Encouraged by these remarkable results, we decided to 
study the AH of cyclic β-enamides (Figure 3) which are a 
challenging type of functionalized olefins.6 While the 
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reduction of α-enamides can be carried out with good 
success,2 the AH of β-enamides remains one of the puz-
zling transformations, albeit the corresponding products 
are key units in many drugs and biologically active natu-
ral products such as Rotigotine,12a Alnespirone12b and Rob-
alzotan12c. We found that catalyst precursors with ligands 
L4e and L5d provided both enantiomers of the hydrogen-
ated products in high enantioselectivities (ee’s up to 99%) 

for a range of cyclic β-enamides, including the less stud-
ied enamides derived from 3-chromanones. These results 
are comparable to the best one reported in the literature.6 

 

Figure 3. Selected hydrogenation results for the AH of cyclic 
β-enamides. Typical reaction conditions: 1 mol% of 
[Ir(cod)(P-N)]BArF, 50 bar H2, DCM, rt for 24 h. Full conver-
sions were achieved in all cases. 

In summary, we have presented the first Ir-P,oxazoline 
catalytic family, with a simple modular architecture, that 
is able to successfully hydrogenate di-, tri- and tetrasub-
stituted minimally functionalized olefins (ee's up to 99%). 
This family of catalysts has been synthesized in a few 
steps from unexpensive starting materials and are solid 
and stable in air. From a common skeleton, the right 
choice of either a phosphite group or phophinite group 
gives ligands that are suitable for di-, tri- and also 
tetrasubstituted olefins (62 examples). Improving previ-
ous results reported, these catalysts are able to efficiently 
reduce a range of indenes and the challenging 1,2-
dihydro-napthalene (ee’s up to 98%) and also a range of 
the most elusive acyclic olefins with unprecedented enan-
tioselectivities (ee’s up to 98%) under mild reaction con-
ditions. The catalysts not only exhibited an unprecedent-
ed high tolerance to the geometry and steric constrains of 
the olefin, but they also could tolerate different functional 
groups very well. Thus, a broad range of olefins contain-
ing both minimally coordinative groups (e.g. α,β-
unsaturated carboxylic esters, enones, lactames, vinyl 
boronates and enol phosphinates) and coordinative 
groups (the challenging β-enamides) could be hydrogen-
ated with high levels of enantioselectivity. 
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