

PII: S0968-0896(96)00173-3

N-Tetrachlorophthaloyl (TCP) for Ready Protection/ Deprotection of Amino Sugar Glycosides[†]

John S. Debenham, Sheryl D. Debenham[‡] and Bert Fraser-Reid^{*}

Paul M. Gross Chemical Laboratory, Department of Chemistry, Duke University, Durham, NC 27708, U.S.A.

Abstract—The tetrachlorophthaloyl (TCP) group can be utilized when imidic protection of an amine is desired and durability of the protecting group to conditions ranging from mildly basic to harshly acidic is required. Installation can be accomplished in two steps by treating the free base with the commercially available TCP anhydride, and then closing the imidic ring with acetic anhydride and pyridine. Cleavage is effected by 2–4 eq of ethylenediamine under very mild conditions under which esters and glycopeptides have been shown to be stable, and racemization of amino acid residues does not occur. Unsubstituted phthalimides, even within the same molecule, are also unaffected during TCP cleavage. TCP protecting groups serve as β -directors on donors and can also be present on acceptor species during electrophilic couplings in oligosaccharide synthesis. Copyright © 1996 Elsevier Science Ltd

Introduction

Amine protection and deprotection are major problems in organic synthesis as may be judged by the disproportionate amount of space devoted to the topics in popular reference texts.¹ The problems are compounded in the case of glycoproteins² by the preponderance of sensitive functionalities that must survive the protection or deprotection event. The easiest method of amine protection is undoubtedly acylation; but the conditions for de-N-acylation require the use of strong acid or base¹ which threatens the saccharide moiety. 2-Amino-2-deoxy sugars are ubiquitous components of glycoproteins. An additional level of complexity arises in protecting the 2-amino group in these compounds, because neighboring group participation by the 2-N-acyl moiety during reactions at the adjacent anomeric center frequently results in the formation of oxazolines.3 Recent projects in our laboratory⁴ have sensitized us to the problems of amine protection/deprotection, and in this manuscript we describe some pertinent studies.

With respect to the problem of de-N-acylation, we have recently explored a procedure that provides a solution.⁵ Our work on n-pentenyl glycosides (NPGs)⁶ had led to strategies for hydroxyl⁷ and diol⁸ protection/ deprotection, which in turn prompted the development of the 4-pentenoyl moiety for protection of primary and secondary amines.⁵ The ease of the procedure is

\$S.D. gratefully acknowledges support from an NSF-REU fellowship.

exemplified in Scheme 1. Thus the conversion of 1 into 2 is achieved under standard conditions, notably without formation of oxazoline 3, and de-N-acylation, $2\rightarrow 4$, occurs rapidly and quantitatively with the use of molecular iodine.⁵ Although the latter reaction is an oxidative process, the deprotection procedure does not affect commonly used oxidizable moieties such as *p*-methoxybenzyl and thioalkyl.⁵

Its success notwithstanding, the study in Scheme 1 presented us with a new problem stemming from the chemoselective cleavage of the 4-pentenamide residue of 2, leaving the pentenyl glycosidic moiety intact. This chemoselectivity is readily rationalized by the resonance form 5, which renders the amide carbonyl group much more nucleophilic than the glycosidic oxygen, thereby enhancing reaction with the respective cyclic iodonium ion intermediate.

Although the above chemoselectivity may be of value in certain cases, it was a disappointing corollary for us,

[†]Conference reports on the use of TCP group for amine protection (a) Debenham, J. S.; Fraser-Reid, B., XVIIth International Carbohydrate Symposium, Ottawa, Canada, July 1994, paper B1.38; (b) Debenham, J. S; Fraser-Reid, B., 209th National Meeting of the American Chemical Society, Anaheim, California, April **1995**, paper CARB 008. Preliminary publications (a) Debenham, J.S.; Madsen, R.; Roberts, C.; Fraser-Reid, B. J. Am. Chem. Soc., **1995**, 117, 3302–3303; (b) Debenham, J.S.; Fraser-Reid, B. J. Org. Chem., in press.

in that an NPG could not be used as a glycosyl donor in the presence of 4-pentenamide, since the preferred site of reaction would be the latter. This circumstance prompted us to develop an amine protection strategy that would permit the use of NPGs as glycosyl donors. In this context, the problem of neighboring group participation by the 2-N-acyl residue had to be addressed.

2-N-Acyl participation during glycoside coupling frequently results in formation of oxazolines such as **3**, except when the glycosyl acceptor is a primary alcohol as in $1\rightarrow 2$.³ Lemieux and co-workers had popularized the use of phthaloyl protection of 2-amino-2-deoxy sugars,⁹ and this procedure has seen wide application.¹⁰ Not only was oxazoline formation obviated, but the difficulty of deprotection was lessened since hydrazine could be used for cleavage in keeping with the Ing-Manske variation of the Gabriel synthesis.¹¹

Even so, in complex systems where other base sensitive sites exist, the use of hydrazine may cause major problems.¹² This is exemplified for glycopeptides such as 6^{13} where the indicated standard methods of phthaloyl cleavage all result in decomposition.

A procedure for cleaving phthalimides by the use of sodium borohydride had been developed by Ganem,¹⁴ and Garegg and Ogawa independently applied it to glucosamine derivatives.¹⁵ Their procedure was reasonably successful for compound **7**, but only decomposition was observed for the more complex glycopeptide **8**.

It seemed to us that phthalimide cleavage would be facilitated by the presence of electron withdrawing groups on the aromatic ring, the most likely candidates being halogen and nitro.¹⁶ To test the idea, the phthalimide 9, was deprotected to give amine 10 which was treated under standard Lemieux conditions⁹ to give the 4-nitrophthalimido derivative 11. Several cleavage conditions were tested with varying degrees of success. However these reactions were not always easy to monitor by TLC. The fact that initial attack on the carbonyl groups of the 4-nitrophthalimides (e.g. 11 or 13a) leads to regioisomeric intermediates, was probably responsible for the many 'spots' seen on TLC. Consequently, nitro (12a) and other monosubstituted phthalic anhydrides were eliminated from further consideration.

3,6 or 4,5-Disubstituted and 3,4,5,6-tetrasubstituted reagents (12b, c and d, respectively) would give symmetrical derivatives; but the cost of these reagents was now an added concern, since our aim was to install the protecting group in bulk, as soon as possible in the reaction sequence. In light of the costs¹⁷ shown in Scheme 2b, we decided to concentrate further attention on tetrachlorophthaloyl (TCP).¹⁸

Preparation of TCP derivatives

The preparation of TCP derivatives follows the standard procedures used for the unsubstituted analogue. Thus application of Lemieux's two-stage reaction⁹ to glucosamine hydrochloride and TCP anhydride **12d** (Scheme 3a) afforded the tetraacetate **14** in 56% overall yield which is similar to the yield obtained with the unsubstituted analogue.⁹ Standard Koenigs-Knorr strategy then afforded NPG **15**. Additionally, for the latter reaction silver zeolite was the promoter of choice.

In view of the TCP group's sensitivity to strongly basic conditions, such as metal hydride mediated benzylations, an alternative is to use unsubstituted phthaloyl for the problematic steps and then replace it at an appropriate time with TCP, as exemplified in Scheme 3b.

It is useful to note the use of chloroacetic anhydride for installing the TCP group under reaction conditions which simultaneously esterify the hydroxyl in the preparation of **20**. As indicated by the formation of **21**, the chloroacetyl ester can be chemoselectively cleaved under the usual conditions, and thus may be used

Scheme 3.

where the synthetic strategy requires the presence/ removal of an ester, or the removal of one ester in the presence of another.

Similarly since the use of sodium hydride is problematic with TCP, we have demonstrated with **22** (Scheme 3d) that benzylation can be quantitatively effected by use of benzyltrichloracetimidate.¹⁹

In view of the fact that C2-electron withdrawing esters such as trichloroacetyl do not participate in reactions at the anomeric center,²⁰ it was necessary to establish that 1,2-trans coupling products would still predominate in the presence of TCP groups. In the examples summarized in Scheme 4, β -glycosides were the only

Scheme 4.

detectable coupling products with NPG glycosyl donors and a variety of glycosyl acceptors. Notably the TCP group may be placed either on the donor, as in 24 and 27, or acceptor, as in 30.

Deprotection

We now set out to develop conditions for specific TCP cleavage. In this connection, Schmidt and coworkers²¹ examined TCP protected glycosyl trichloroacetimidates as glycosyl donors and applied the Ganem¹⁴-Ogawa-Garreg¹⁵ method for TCP deprotection. The recommended steps are sodium borohydride reduction, acid-catalysed phthalide formation, followed by treatment with acetic anhydride and pyridine. Since the last conditions are also O-acetylating, it would not have been possible to judge whether the substrate's esters had survived the dephthaloylation. The question of also chemoselective dephthaloylation was not addressed. We were interested in both of these possibilities.

Recently Barany²² and Meldal²³ and their coworkers have reported the use of the dithiosuccinyl (Dts) function in the synthesis of 1,2-trans-amino sugar glycosides. Among the advantages, are the procedures for cleaving the protecting group by solvolysis (with dithiothreitol), or reduction (with sodium borohydride). The Dts protecting group shows promise for solid-phase syntheses, for which it was first developed by Barany and Merrifield.²⁴ Unfortunately the reagents needed to install the Dts group are not commercially available, furthermore, four steps and two silica gel purifications are needed in the process. By contrast, the TCP reagent is commercially available, inexpensive, and can be installed in two steps from glucosamine HCl with a single recrystallization for purification. Additionally, it remains to be seen whether the Dts group has sufficient durability to survive the hydroxyl group manipulations that are essential in oligosaccharide synthesis.

Experimentation with various amines (hydrazine, methylhydrazine, ethylenediamine) in various solvents (ethanol, isopropanol, DMF, acetonitrile, THF) at various temperatures, revealed that suitable conditions were ethylenediamine (2-4 eq) in MeCN/THF/EtOH $(2:1:1)^{25}$ at 60°. An ideal test example is seen in Scheme 5a, where reaction of **19** gave amine **32a** in quantitative yield. These conditions are much milder than those required for cleaving the unsubstituted phthalimide, e.g. Schemes 2a and 3b, where ethylene-diamine is virtually a cosolvent.

In order to prevent the possibility of $O \rightarrow N$ acyl transfer and also to facilitate the ease of isolation we decided to N-acetylate all products directly as shown in Scheme 5b-e. Compound **31** gave us an opportunity to test for chemoselective dephthaloylation and the isolation of **33** in 64% yield provided a convincing demonstration. Thus cleavages such as this provide a new route to differentially N-functionalized chitobiosyl derivatives.

The isolation of **32a** made it clear that an acetate could survive the aminolysis conditions. That this result was not fortuitously related to the hindered location of the ester in precursor **19**, was reinforced with triacetate **15** which gave **34** in 54% yield. Not surprisingly, benzoate esters survived even better as exemplified in Scheme 5d for the 82% conversion of $24 \rightarrow 35$. Further optimization to enhance the durability of esters during the cleavage process is ongoing in our laboratories.

The case of the O-linked glycoamino acid 26 was of interest (Scheme 5e). In light of the three base-sensitive sites on the serine residue (ester, carbamate and epimerizable center) in addition to the three benzoate esters, the recovery of 36 in 42% yield is encouraging, particularly when the demands of any alternative route to 36 are considered.

Summary

We have found that there are many advantages to using the TCP protecting group in synthetic manipulations of aminodeoxy sugars. The required reagent is commercially available, inexpensive and can be installed in two steps on glucosamine without the need for chromatography. Many of the derivatives are highly crystalline, so purification is facilitated. The derivatives are stable to mildly basic to very acidic conditions but react readily with certain bases. The latter property has been used advantageously to develop efficient cleavage by treatment with 2–4 equivalents of ethylenediamine under conditions so mild that most esters survive. Chemoselectivity in TCP cleavage can also achieved since unsubstituted phthalimides are untouched by these cleavage conditions. Experiments to extend and optimize the use of TCP protection/deprotection are underway and will be reported in due course.

Experimental

General procedures

All reactions were conducted under a dry argon atmosphere. THF was distilled from sodium benzophenone ketyl. Dichloromethane and acetonitrile were distilled from calcium hydride. Cyclohexane and absolute ethanol were stored over 4 Å molecular sieves. Solutions of compounds in organic solvents were dried over sodium sulfate prior to rotary evaporation. TLC plates were Kieselgel 60 F254 (Merck Art. 5554). Carbohydrate compounds were visualized on the TLC plate by charring with H₂SO₄-EtOH-H₂O (1:10:10). Flash column chromatography was done with silica gel 60 (230-400 mesh, Merck). Optical rotations were determined at the sodium D line with a Perkin-Elmer 241 polarimeter. Mass spectra were recorded on a JEOL JMS-SX102A mass spectrometer operating at 3k resolution for low resolution fast atom bombardment (FAB) mass spectra or a Hewlett-Packard 5988A mass spectrometer using chemical ionization with ammonia as the reagent gas. FAB mass spectra were conducted using a m-nitrobenzyl alcohol matrix with xenon as the fast atom. Accurate mass measurements were made using FAB at 10k resolution. ¹H and ¹³C NMR spectra were recorded on a Varian XL-300, Inova-400 or GE QE-300 spectrometer. Coupling constants are reported in Hertz and chemical shifts are in ppm on the delta scale. ¹H and ¹³C chemical shifts are reported relative to internal tetramethylsilane (0.00 ppm). Elemental analyses were conducted by Atlantic Microlab, Inc. (P.O. Box 2288, Norcross, GA 30091, U.S.A.). The preparation of 29 can be found elsewhere.²⁶

Pent-4-enyl 3,4,6-tri-O-benzyl-2-deoxy-2-phthalimidoβ-D-glucopyranoside (9). To pent-4-enyl 2-deoxy-2-phthalimido-β-D-glucopyranoside¹³ (dried hv azeotroping with toluene) (3.15 g, 8.36 mmol) in 20 mL DMF was added benzyl bromide (6.0 mL, 50.4 mmol), tetrabutyl ammonium iodide (0.31 g, 0.84 mmol) and sodium hydride (1.5 g, 37.6 mmol) at 0 °C. After stirring for 30 min, the solution was allowed to warm to room temperature and then stirred an additional 2.5 h. The reaction was quenched with 4 mL of glacial acetic acid, and the DMF was removed in vacuo. The residue was partitioned between CH_2Cl_2 (100 mL) and satd aq. $NaHCO_3$ (50 mL) solution. The aqueous portion was extracted CH_2Cl_2 (2×40 mL). The concentrated reaction mixture was purified via flash chromatography eluting with 15:85 EtOAc/petroleum ether affording 9 as a clear oil (4.35 g, 80%). $R_f = 0.45$ (25:75 EtOAcpetroleum ether); $[\alpha]_{D}^{20} + 40.3^{\circ}$ (c 1.00, CHCl₃); ¹H NMR (300 MHz, $CDCl_3$): δ 7.56–7.84 (m, 4H), 7.21-7.39 (m, 10H), 6.84-7.02 (m, 5H), 5.48-5.62 (m, 1H), 5.12 (d, J=8.4 Hz, 1H), 4.56–4.86 (m, 8H), 4.11-4.46 (m, 3H), 3.62-3.84 (m, 4H), 3.34-3.42 (m, 1H), 1.81–1.85 (m, 2H), 1.44–1.54 (m, 2H); ¹³C NMR (75 MHz, CDCl₃): δ 167.85 (bs), 140.93, 137.76, 137.73, 137.60, 133.55, 128.27, 128.19, 127.85, 127.81, 127.71, 127.67, 127.62, 127.44, 127.25, 127.14, 126.73, 123.01, 114.44, 98.04, 79.52, 79.07, 74.78, 74.57, 73.28, 68.55, 68.48, 64.84, 55.73, 29.63, 28.27; MS (CI) *m/e* 665 (M+NH₄)⁺. Anal. calcd for C₄₀H₄₁O₇N: C, 74.17; H, 6.38%; found C, 73.91; H, 6.32%.

2-amino-3,4,6-tri-O-benzyl-2-deoxy-β-D-Pent-4-enyl glucopyranoside (10). To 9 (2.34 g, 3.45 mmol) in 10 mL ethanol was added ethylenediamine (6.9 mL, 103.5 mmol). The soln was heated to 80 °C and stirred for 5 h. The ethanol and excess ethylenediamine were removed in vacuo. The concd reaction mixture was purified via flash chromatography eluting with 2:98 CH₃OH/ CH₂Cl₂ affording 10 as a clear oil (1.71 g, 96%). $R_{\rm f}$ 0.43 (45:55 EtOAc-petroleum ether); $[\alpha]_{\rm D}$ +4.9° (*c* 0.91, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 7.17-7.40 (m, 15H), 5.75-5.86 (m, 1H), 4.95-5.06 (m, 3H), 4.54-4.81 (m, 5H), 4.18 (d, J=7.9 Hz, 1H), 3.89-3.97 (m, 1H), 3.42-3.77 (m, 6H), 2.88 (dd, J=8, 9.7 Hz, 1H), 2.10-2.17 (m, 2H), 1.67-1.77 (m, 2H), 1.52 (bs, 2H); ¹³C NMR (75 MHz, CDCl₃): δ 138.25, 138.01, 137.95, 137.79, 128.42, 128.32, 128.21, 127.82, 127.68, 127.47, 114.76, 103.76, 85.08, 78.52, 75.21, 75.09, 74.67, 73.37, 69.07, 68.75, 56.85, 30.07, 28.68; MS (FAB) m/e 518.2 MH⁺.

Pent-4-enyl 3,4,6-tri-O-benzyl-2-deoxy-2-(4-nitrophthalimido)-β-D-glucopyranoside (11). To 10 (0.934g, 1.80 mmol) in 18 mL CH₂Cl₂ was added tetrachlorophthalic anhydride (0.383, 1.98 mmol). After stirring 10 min, NEt_3 (0.28 mL, 1.98 mmol) was added and the reaction stirred an additional 45 min. The soln was concentrated and then diluted with pyridine (12 mL) before adding acetic anhydride (0.65 mL, 6.68 mmol). After stirring 12 h, the pyridine was removed in vacuo, and the residue was dissolved in CH₂Cl₂ (30 mL) and washed with H_2O (1×15 mL) and sat. aq. NaHCO₃ $(1 \times 15 \text{ mL})$ solution, back extracting the combined aqueous portions with $CH_2Cl_2(3 \times 15 \text{ mL})$. The concd soln was purified via flash chromatography eluting with 18:82 EtOAc-petroleum ether affording 11 as an oil $(1.11 \text{ g}, 89\%); R_{f} 0.47 (20:80 \text{ EtOAc:petroleum ether});$ $[\alpha]_{D}^{20} + 38.5^{\circ}$ (c 1.01, CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta 8.56 - 7.68$ (m, 3H), 7.40 - 7.20 (m, 10H), 7.40–6.70 (m, 5H), 5.62–5.51 (m, 1H), 5.15 (d, J = 8.5Hz, 1H), 4.84 (dd, J = 8.5, 10.6 Hz, 1H), 4.78-4.56 (m, 6H), 4.45-4.14 (m, 3H), 3.84-3.76 (m, 4H), 3.67-3.62 (m, 1H), 3.43–3.35 (m, 1H), 1.90–1.75 (m, 2H), (iii, 111), 5.45 5.65 (iii, 112), 1.58–1.40 (m, 2H); 13 C NMR (100 MHz, CDCl₃); δ 165.35, 151.26, 138.07, 137.95, 137.70, 137.56, 135.79, 132.57, 128.64, 128.35, 128.25, 127.95, 127.89, 127.78, 127.65, 127.51, 127.08, 125.84, 124.17, 118.37, 114.57, 97.77, 79.63, 79.27, 74.94, 74.73, 73.37, 68.58, 68.44, 56.35, 29.67, 28.31; HRMS calcd for C40H39N2O9 (M-H)⁺ 691.2656, found 691.2673.

(10) via 4-nitrophthalimido cleavage. To 11 (50.0 mg, 0.0722 mmol) in 2 mL ethanol was added ethylenediamine (24.1 μ L, 0.361 mmol). The solution was heated to 55 °C and stirred for 3 h. The ethanol and excess ethylenediamine were removed in vacuo. The coned reaction mixture was purified via flash chromatography eluting with 2:98 methanol/ CH_2Cl_2 affording **10** as a film (34.7 mg, 86%).

1,3,4,6-Tetra-O-acetyl-2-deoxy-2-tetrachlorophthalimido- α -p-glucopyranoside (14). Glucosamine • HCl (10.0 g. 46.37 mmol) was added to methoxide solution, Na (1.07 g 46.54 mmol) in MeOH (50mL), which stirred 8 min before filtering into another vessel containing tetrachlorophthalic (TCP) anhydride (4.64 g, 16.23 mmol). Once the filtration was complete TCP anhydride (4.64 g, 16.23 mmol) was added. The reaction stirred 10 minutes before addition of NEt₃ (6.50 ml, 46.63 mmol) and TCP anhydride (4.64 g, 16.23 mmol). The reaction mixture stirred an additional 3 h before removing the MeOH in vacuo. To the white foam was added pyridine (55 mL) and acetic anhydride (60 mL, 543 mmol). The solution stirred for 7.5 h before removal of the pyridine in vacuo. The residue was diluted with $CHCl_3$ (120 mL) and washed with 5% aq. HCl $(2 \times 40 \text{ mL})$ back extracting the aq. phase with CHCl₃ $(1 \times 40 \text{ mL})$ and then with satd aq. NaHCO₃ (80 mL) back extracting the aq. phase with CHCl₃ $(1 \times 40 \text{ mL})$. The organic phase was concd, and the residue recrystallized from EtOH. Compound 14 was recovered as a white solid (α anomer) (16 g, 56%). mp 219.5°; $R_f = 0.59$ (45:55 EtOAc: petroleum ether); $[\alpha]_{D}^{20} + 157.5^{\circ}$ (c 1.12, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 6.48 (dd, J = 9.6, 12.1 Hz, 1H), 6.26 (d, J = 3.4 Hz, 1H), 5.17 (t, J = 9.9 Hz, 1H), 4.72 (dd, J = 3.4, 14.9 Hz, 1H), 4.13-4.40 (m, 3H), 2.13 (s, 3H), 2.10 (s, 3H), 2.06 (s, 3H), 1.91 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 170.41, 169.54, 169.42, 169.27, 162.49, 140.51, 129.93, 126.53, 90.24, 70.07, 69.01, 66.74, 61.26, 53.20, 20.81, 20.64, 20.56, 20.48; MS (FAB) m/e 622.0 (M + Li)⁺; Anal. calcd for $C_{22}H_{19}NO_{11}Cl_4$: C, 42.95; H, 3.11%; found: C, 43.02; H, 3.14%.

Pent-4-enyl 3,4,6-tri-O-acetyl-2-deoxy-2-tetrachlorophthalimido-β-D-glucopyranoside (15). To 14 (25.22 g, 40.99 mmol) was added HBr (266 mmol, 53.2 mL, 30 wt. % in acetic acid) in acetic anhydride (110.7 mmol, 10.4 mL). After stirring in darkness for 27 h, the reaction mixture was diluted with CHCl₃ (300 mL) and poured onto ice cold H₂O (300 mL). The layers were separated and the organic portion was washed with H_2O (2 × 300 mL) and with satd aq. NaHCO₃ (1 × 250 mL) dried and concd to a syrup. To the crude glycosyl bromide was added pent-4-enyl alcohol (123 mmol, 12.7 mL) and Ag zeolite powder (33.1 g) in CH₂Cl₂ (120 mL). The reaction stirred in darkness for 36 h at reflux and was then filtered through Celite. After concentration of the CH₂Cl₂ solution, the solid was recrystallized from methanol affording 15 as a white solid (16.66 g, 63%); $R_{\rm F}$ 0.54 (30:70 EtOAc:petroleum ether); mp 161 °C; $R_f = 0.54$ (30:70 EtOAc-petroleum ether); $[\alpha]_D^{20} + 34.1^\circ$ (c 1.10, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 5.66–5.72 (m, 2H), 5.34 (d, J=8.4 Hz, 1H), 5.19 (t, J = 10.0 Hz, 1H), 4.82–4.88 (m, 2H), 4.14–4.36 (m, 3H), 3.79–3.85 (m, 2H), 3.45–3.53 (m, 2H), 2.12 (s, 3H), 2.04 (s, 3H), 1.90 (s, 3H), 1.90–2.0 (m, 2H), 1.55–1.65 (m, 2H); ¹³C NMR (75 MHz, CDCl₃): δ 170.46, 170.38, 169.18, 163.3 (bs), 162.3 (bs), 140.36, 137.40, 129.77, 126.75, 114.72, 97.56, 71.65, 70.75, 69.10, 68.50, 61.75, 55.22, 29.62, 28.20, 20.61, 20.45, 20.35; MS (FAB) *m/e* 648.1 (M+Li)⁻. Anal. calcd for C₂₅H₂₅NO₁₀Cl₄: C, 46.82; H, 3.93%; found: C, 46.98; H, 3.88%.

Pent-4-enyl 2-amino-2-deoxy-3,6-di-O-benzyl-β-D-glucopyranoside (18). To pent-4-enyl 2-deoxy-2-phthalimido-3,6-di-O-benzyl- β -D-glucopyranoside¹³ (1.52 g, 2.72 mmol) in 20 mL ethanol was added ethylenediamine (9.1 mL, 136 mmol). The soln was heated to 80 °C and stirred for 5.5 h. The ethanol and excess ethylenediamine were removed in vacuo. The concd reaction mixture was purified via flash chromatography eluting with 7:93 CH₃OH/CH₂Cl₂ affording 18 as a clear oil (1.14 g, 98%). $R_f = 0.41$ (45:55 EtOAcpetroleum ether); $[\alpha]_{D}^{20'} - 16.9^{\circ}$ (c 1.05, CHCl₃);¹H NMR (300 MHz, CDCl₃): δ 7.26-7.38 (m, 10H), 5.76-5.81 (m, 1H), 4.95-5.05 (m, 3H), 4.54-4.78 (m, 3H), 4.2 (d, J=8.1 Hz, 1H), 3.87-3.90 (m, 1H), 3.69-3.85 (m, 3H), 3.44-3.53 (m, 2H), 3.34 (t, J=9.5Hz, 1H), 2.90-3.20 (bs, 1H), 2.80-2.85 (m, 1H), 2.11-2.16 (m, 2H), 1.63-1.76 (m, 4H); ¹³C NMR (75 MHz, CDCl₃): δ 138.31, 137.61, 137.56, 128.08, 127.98, 127.27, 114.54, 103.11, 84.41, 74.46, 74.33, 73.17, 71.94, 69.80, 68.68, 55.90, 29.77, 28.41; HRMS calcd for C₂₅H₃₄NO₅ MH⁺ 428.2437; found 428.2427.

Pent-4-enyl 4-O-acetyl-3,6-di-O-benzyl-2-deoxy-2-tetrachlorophthalimido-\beta-D-glucopyranoside (19). To 18 (0.15 g, 0.36 mmol) in 6 mL CH₂Cl₂ was added 12d (0.12 g, 0.38 mmol). After stirring for 4 min, NEt₃ (55 μ L, 0.39 mmol) was added and the reaction stirred an additional 1 h. The soln was concd and then diluted with pyridine (5 mL) before adding acetic anhydride (0.2 mL, 2.14 mmol). After stirring 20 h, the pyridine was removed in vacuo, and the residue was dissolved in CH₂Cl₂ (30 mL) and washed with satd aq. NaHCO₃ $(2 \times 15 \text{ mL})$ solution back extracting the combined aq. portions with CH_2Cl_2 (1 × 15 mL). The concd soln was purified via flash chromatography eluting with 20:80 EtOAc-petroleum ether affording 19 as a slightly yellow oil (0.22 g, 83%). $R_{\rm f} = 0.\overline{2}5$ (15:85 EtOAcpetroleum ether); $[\alpha]_{D}^{20}$ + 69.6° (c 0.994, CHCl₃); 'H NMR (300 MHz, CDCl₃): δ 7.26-7.36 (m, 5H), 6.70-7.05 (m, 5H), 5.56-5.67 (m, 1H), 5.08-5.14 (m, 2H), 4.73-4.83 (m, 3H), 4.56 (s, 2H), 4.11-4.33 (m, 3H), 3.61-3.82 (m, 4H), 3.36-3.44 (m, 1H), 2.02 (s, 3H), 1.85–1.93 (m, 2H), 1.49–1.57 (m, 2H); ¹³C NMR (75 MHz, CDCl₃): δ 169.49, 163.25, 162.04, 138.13, 137.71, 137.61, 128.29, 128.27, 128.23, 127.95, 127.93, 127.87, 127.83, 127.75, 114.68, 97.67, 77.81, 74.59, 73.57, 73.54, 73.29, 72.71, 69.45, 68.76, 56.05, 29.73, 28.31, 20.84; MS (FAB) m/e 744.1 (M+Li)⁺. Anal. calcd for C₃₅H₃₃NO₈Cl₄: C, 57.00; H, 4.51; N, 1.90%; found: C, 57.03; H, 4.49; N, 1.94%.

Pent-4-enyl 4-O-chloroacetyl-3,6-di-O-benzyl-2-deoxy-**2-tetrachlorophthalimido-β-D-glucopyranoside** (20). To 18 (95.8 mg, 0.225 mmol) in 5 mL CH_2Cl_2 was added 12d (74.0 mg, 0.247 mmol). After stirring for 6 min, NEt₃ (31 μ L, 0.247 mmol) was added and the reaction stirred an additional 1 h. Chloroacetic anhydride (0.231 g, 1.35 mmol) and pyridine (73 µL, 0.898 mmol) were then added. After stirring for 3.5 h, the reaction was quenched with satd aq. NaHCO₃ (5 mL) and the soln was diluted with an additional 10 mL CH₂Cl₂. The layers were sepd and the aq. portion extracted (2×10) mL CH_2Cl_2). The concd soln was purified via flash chromatography eluting with 15:85 EtOAc-petroleum ether affording 20 as a clear glass (96.3 mg, 56%); $R_{\rm f}$ 0.33 (15:85 EtOAc: petroleum ether); $[\alpha]_{D}^{20} + 24.5^{\circ}$ (c 1.00, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.37–6.90 (m, 10H), 5.76-5.62 (m, 1H), 5.18 (t, J=9.9 Hz, 1H), $\dot{4}.94-4.82$ (m, 2H), $\dot{4}.7$ (d, J=12.7 Hz, 1H), 4.6 (d, J = 7.9 Hz, 1H), 4.52 (s, 2H), 4.38 (d, J = 12.3 Hz, 1H), 4.18 (dd, J = 7.9, 9.6 Hz, 1H), 3.90–3.70 (m, 5H), 3.66-3.62 (m, 2H), 3.52-3.44 (m, 1H), 2.01-1.95 (m, 2H), 1.63–1.55 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 166.17, 141.14, 138.44, 137.84, 137.67, 128.39, 127.93, 127.90, 127.79, 127.35, 127.05, 114.85, 101.84, 82.68, 75.07, 73.72, 73.06, 69.89, 68.97, 65.46, 40.58, 29.79, 28.48; HRMS calcd for C₃₅H₃₃NO₈Cl₄ MH⁺ 772.0624, found 772.0624.

3,6-di-O-benzyl-2-deoxy-2-tetrachloro-Pent-4-enyl phthalimido-β-D-glucopyranoside (21). To 20 (46.2 mg, 0.060 mmol) in ethanol (2.2 mL) and EtOAc (0.3 mL) was added thiourea (11 mg, 0.14 mmol) and NaHCO₃ (10.1 mg, 0.12 mmol) before heating to 75 °C. The reaction was stirred for 5 h at which point it was allowed to cool to room temperature. The reaction mixture was concd, and the residue was dissolved in CH₂Cl₂ (20 mL) and washed with H₂O (10 mL) back extracting the aq portion with CH_2Cl_2 (2×15 mL). The reaction mixture was concd, and the residue was purified by flash chromatography eluting with 25:75 EtOAc-petroleum ether. Compound 21 was recovered as a film (36 mg, 86%); R_f 0.20 (20:80 EtOAcpetroleum ether); $[\alpha]_{D}^{20} + 32.0^{\circ}$ (c 1.06, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 6.74-7.40 (m, 10H), 5.57-5.65 (m, 1H), 5.10 (d, J=8 Hz, 1H), 4.76-4.87(m, 3H), 4.62 (dd, J=11.9, 21.4 Hz, 2H), 4.43 (d, J = 12.83 Hz, 1H), 4.06–4.12 (m, 2H), 3.59–3.87 (m, 5H), 3.36-3.41 (m, 1H), 3.13 (bd, J=2.4 Hz, 1H), 1.83-1.92 (m, 2H), 1.47-1.54 (m, 2H); ¹³C NMR (75 MHz, CDCl₃): δ 163.27, 162.45, 139.59, 138.60, 137.69, 137.40, 129.30, 129.20, 128.50, 128.06, 127.93, 127.88, 127.80, 126.85, 114.69, 97.80, 79.36, 74.95, 74.76, 73.78, 73.31, 70.63, 68.73, 55.96, 29.77, 28.36; MS (Fab) m/e 702.08 $(M + Li)^+$; Anal. calcd for $C_{33}H_{31}NO_7Cl_4$: C, 57.00; H, 4.49; N, 2.01%; found: C, 57.01; H, 4.52; N, 2.03%.

Pent-4-enyl 4,6-benzylidene-2-deoxy-2-tetrachlorophthalimido-\beta-D-glucopyranoside (22). To 15 (40.10 g, 62.53 mmol) in acetone (800 mL) was added HCl (75 mL, conc.) in H₂O (260 mL). After refluxing 1 h H₂O (150 mL) was added. The reaction was refluxed an additional 15 h before removing the acetone in vacuo. The aq. soln was extracted with EtOAc (4×190 mL) and the combined organic portion was washed with with satd aq. NaHCO₃ $(2 \times 250 \text{ mL})$ back extracting the combined aq portions with EtOAc $(1 \times 200 \text{ mL})$. The soln was concd affording 16 as a white foam (31.90 g, 99%). 16 was then dissolved in acetonitrile (250 mL) before addition of benzaldehyde dimethyl acetal (25.1 mL, 168.8 mmol) and p-toluenesulfonic acid (0.476 g, 2.50 mmol). After refluxing for 10 h, the reaction was quenched with NEt₃ (0.75 mL) and concd to 1/4 of its original volume before diluting with EtOAc (550 mL). The organic soln was washed with sat. aq. NaHCO₃ $(2 \times 200 \text{ mL})$ soln back extracting the combined aq. portions with EtOAc $(2 \times 200 \text{ mL})$. The concd soln was purified via flash chromatography eluting with 12:88 EtOAc-petroleum ether affording 22 as a yellow foam (29.50 g, 79%); $R_{\rm f}$ 0.30 (20:80 EtOAc: petroleum ether); $[\alpha]_{D^{20}}^{20} - 26.4^{\circ}$ (c 1.05, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 7.55–7.35 (m, 5H), 5.74-5.88 (m, 1H), 5.56 (s, 1H), 5.22 (d, J = 8.4 Hz, 1H), 4.90–4.80 (m, 2H), 4.64–4.54 (m, 1H), 4.44-4.36 (m, 1H), 4.24 (dd, J=8.4, 10.6 Hz, 1H), 3.88-3.78 (m, 2H), 3.68-3.56 (m, 2H), 3.50-3.42 (m, 1H), 2.55 (bs, 1H), 1.97-1.90 (m, 2H), 1.62-1.51 (m, 2H); ¹³C NMR (75 MHz, CDCl₃): δ 163.00 (bd), 140.20, 137.52, 136.66, 129.07, 128.10, 125.79, 114.74, 101.40, 98.39, 81.83, 69.04, 68.49, 67.91, 66.00, 57.01, 29.69, 28.36; MS (FAB) m/e 603.99 MH+; Anal. calcd for C₂₆H₂₃NO₇Cl₄: C, 51.76; H, 3.84%; found: C, 51.76; H, 3.88.

Pent-4-enyl 3-O-benzyl-4,6-benzylidene-2-deoxy-2-tetrachlorophthalimido-\beta-D-glucopyranoside (23). To 22 (12.90 g, 21.38 mmol) in CH₂Cl₂ (18 mL) and cyclohexane (72 mL) was added benzyl 2,2,2-trichloroacetimidate (7.95 mL, 42.76 mmol) and triflic acid (49 µL, 0.56 mmol). The reaction mixture was stirred for 3 h and an additional amount of benzyl 2,2,2-trichloroacetimidate (4.0 mL, 21.38 mmol) and triflic acid (49 µL, 0.56 mmol) were added. After stirring an additional 7 h the reaction was quenched with 0.3 mL of pyridine and diluted with CH₂Cl₂ (250 mL). The reaction mixture was washed with 5% aq. HCl (80 mL) back extracting the aq. phase with CH_2Cl_2 (1 × 40 mL) and then with satd aq. NaHCO₃ (100 mL) back extracting the aq. phase with CH_2Cl_2 (1 × 40 mL). The organic phase was concd, and the residue was purified by flash chromatography eluting with a gradient of $6 \rightarrow 7\%$ EtOAcpetroleum ether. Compound 23 was recovered as a white foam (14.38 g, 97%); $R_{\rm f}$ 0.19 (6:94 EtOAc-petroleum ether); $[\alpha]_{\rm D}^{20}$ +48.6° (c 1.05, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 6.82-7.56 (m, 10H), 5.29–5.63 (m, 2H), 5.19 (d, J = 8.6 Hz, 1H), 4.14–4.85 (m, 4H), 3.90-3.41 (m, 5H), 1.80-1.92 (m, 2H), 1.45-1.56 (m, 2H); ¹³C NMR (75 MHz, CDCl₃): δ 162.86, 162.10, 139.71, 138.15, 137.56, 137.16, 128.99, 128.32, 128.22, 127.85, 127.02, 126.43, 125.97, 114.76, 101.29, 98.36, 82.68, 75.09, 74.39, 69.05, 68.62, 66.07, 56.43, 29.71, 28.35; MS (FAB) m/e 693.05 M⁻; Anal. calcd for C₃₃H₂₉NO₇Cl₄: C, 57.16; H, 4.22; N, 2.02%; found: C, 57.28; H, 4.26; N, 2.08%.

Pent-4-enyl 3,4,6-tri-O-benzoyl-2-deoxy-2-tetrachlorophthalimido- β -D-glucopyranoside (24). To 16 (6.435 g, 12.49 mmol) in 40 mL pyridine was added benzoyl chloride (6.85 mL, 48.71 mmol). After stirring for 17 h the reaction was quenched with H₂O (10 mL) before removing the pyridine in vacuo. The residue was dissolved in CH₂Cl₂ (100 mL) and washed with 5% aq. HCl $(2 \times 50 \text{ mL})$ back extracting the aq. phase with CH_2Cl_2 (1 × 20 mL) and then with satd aq. NaHCO₃ $(2 \times 50 \text{ mL})$ back extracting the aq. phase with CH₂Cl₂ $(1 \times 20 \text{ mL})$. The concd solution was purified via flash chromatography eluting with 15:85 EtOAc-petroleum ether affording **24** as a white foam (8.770 g, 85%). $R_{\rm f}$ 0.40 (20:80 EtOAc-petroleum ether); $[\alpha]_{\rm D}^{20}$ +52.0° (c 1.13°, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 7.26-8.04 (m, 15H), 6.15-6.22 (m, 1H), 5.61-5.75 (m, 2H), 5.54 (d, J=8.4 Hz, 1H), 4.82–4.88 (m, 2H), 4.90-4.67 (m, 3H), 4.18-4.25 (m, 1H), 3.83-3.90 (m, 1H), 3.50–3.58 (m, 1H), 1.91–1.98 (m, 2H), 1.57–1.65 (m, 2H); ¹³C NMR (75 MHz, CDCl₃): δ 165.98, 165.88, 165.02, 162.91 (bs), 161.77 (bs), 140.34, 137.48, 133.39, 133.02, 132.93, 129.96, 129.82, 129.71, 129.62, 129.46, 128.56, 128.28, 128.19, 126.85, 114.84, 97.85, 71.96, 71.21, 69.95, 69.23, 63.01, 55.55, 29.73, 28.35; MS (Fab) m/e 834.14 (M+Li)⁺; Anal. calcd for C₄₀H₃₁NO₁₀Cl₄: C, 58.06; H, 3.78%; found: C, 57.87; H, 3.79%.

1-O-[N-(Benzyloxycarbonyl)-L-serine benzyl ester] 3,4,6-tri-O-benzoyl-2-deoxy-2-tetrachlorophthalimidoβ-D-glucopyranoside (26). To 24 (0.35 g, 0.43 mmol) and 25 (0.10 g, 0.30 mmol) (both dried by azeotroping together with toluene) in 3 mL CH₂Cl₂ was added N-iodosuccinimide (0.124 g, 0.553 mmol) and triethylsilvl triflate (58 µL, 0.26 mmol). After stirring for 30 min at room temperature the glycosyl donor had been consumed, and the reaction was quenched with 1.5 mL 10% aq. $Na_2S_2O_3$ and 1.5 mL of satd aq. $NaHCO_3$ soln. The mixture was stirred for an additional 5 min before separating the layers and extracting the aq. portion with CH_2Cl_2 (3 × 10 mL). The concd soln was purified via flash chromatography eluting with a gradient of $25 \rightarrow 30\%$ EtOAc-petroleum ether affording 26 as a white foam (0.25 g, 76%); $R_{\rm f}$ 0.45 (30:70 EtOAcpetroleum ether); $[\alpha]_{D}^{20} + 54.8^{\circ}$ (c 0.98, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 7.26-8.03 (m, 25H), 6.14 (dd, J = 9.9, 10.4 Hz, 1H), 5.67 (t, J = 10.0 Hz, 1H), 5.55(d, J = 8.4 Hz, 1H), 5.28 (bd, J = 7.49 Hz, 1H), 4.98-5.10 (m, 4H), 4.39-4.62 (m, 4H), 3.97-4.24 (m, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 169.14, 165.90, 165.75, 164.90, 155.59, 163.73 (bs), 162.31 (bs), 140.17 (bs), 140.13 (bs), 135.97, 134.83, 133.40, 133.34, 132.99, 129.81, 129.68, 129.61, 129.32, 128.45, 128.34, 128.24, 128.09, 128.01, 127.96, 127.77, 127.01, 97.94, 71.96, 70.90, 69.55, 69.03, 67.33, 66.80, 62.63, 55.21, 54.46; MS (FAB) m/e 1077.1 (M+Li)⁺; Anal. calcd for C₅₃H₄₀N₂O₁₄Cl₄: C, 59.45; H, 3.77%; found: C, 59.20; H, 3.61%.

Pent-4-enyl 3,4,6-tri-O-benzyl-2-dexoy-2-tetrachlorophthalimido-β-D-glucopyranoside (27). To 10 (1.71 g, 3.31 mmol) in 11 mL CH₂Cl₂ was added 12d (1.08 g, 3.64 mmol). After stirring for 11 min, NEt₃ (0.51 mL,

3.64 mmol) was added and the reaction stirred for an additional 1 h. The solution was concd and then diluted with pyridine (11 mL) before adding acetic anhydride (1.2 mL, 11.57 mmol). After stirring 20 h, the pyridine was removed in vacuo, and the residue was dissolved in CH_2Cl_2 (80 mL) and washed with 5% HCl (2×30 mL), back extracting with CH₂Cl₂ (1×30 mL), and then washed with satd aq. NaHCO3 soln $(2 \times 30 \text{ mL})$, back extracting with CH₂Cl₂ $(1 \times 30 \text{ mL})$. The concd soln was purified via flash chromatography eluting with 10:90 EtOAc-petroleum ether affording **27** as a slightly yellow oil (1.51 g, 58%); $R_{f} 0.55 (15:85)$ EtOAc-petroleum ether); $[\alpha]_D^{20} + 31.6^\circ$ (c 1.08, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 6.66-7.39 (m, 15H), 5.58–5.67 (m, 1H), 5.08 (d, J=8.3 Hz, 1H), 4.55-4.91 (m, 8H), 4.06-4.37 (m, 3H), 3.56-3.81 (m, 4H), 3.34-3.42 (m, 1H), 1.85-1.92 (m, 2H), 1.47-1.56 (m, 2H); ¹³C NMR (75 MHz, CDCl₃): δ 162.79, 162.02, 140.34, 138.98, 138.24, 137.74, 137.55, 137.43, 128.98, 128.87, 128.05, 127.74, 127.70, 127.60, 127.49, 126.90, 126.34, 126.29, 114.47, 97.47, 79.84, 79.34, 74.82, 74.69, 74.64, 73.12, 68.28, 68.20, 56.13, 29.56, 28.17; HRMS calcd for C₄₀H₃₇NO₇Cl₄ M⁻ 785.1302, found 785.1293.

Benzyl 3,4,6-Tri-*O*-acetyl-2-deoxy-2-tetrachlorophthalimido-β-D-glucopyranoside. Prepared as above for 15 starting with 14 affords a white foam (11.35 g, 69%); $R_{\rm f}$ 0.5 (30:70 EtOAc:petroleum ether); $[\alpha]^{20}{}_{\rm D}$ -8.1° (*c* 1.09, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 7.08-7.38 (m, 5H), 5.70 (dd, *J* = 9.8, 11.2 Hz, 1H), 5.33 (d, *J* = 8.4 Hz, 1H), 5.2 (t, *J* = 9.6 Hz, 1H), 4.87 (d, *J* = 12.3 Hz, 1H), 4.49 (d, *J* = 12.2 Hz, 1H), 4.17-4.38 (m, 3H), 3.81-3.86 (m, 1H), 2.14 (s, 3H), 2.03 (s, 3H), 1.89 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 170.61, 170.37, 169.30, 162.8 (bs), 162.3 (bs), 136.57, 129.74, 128.41, 128.18, 127.98, 127.77, 126.83, 126.75, 97.09, 71.83, 71.80, 70.56, 68.52, 61.83, 55.39, 20.71, 20.52, 20.42; MS (FAB) *m/e* 662.93 M⁻; Anal. calcd for C₂₇H₂₃NO₁₀Cl₄: C, 48.89; H, 3.50%; found: C, 49.00; H, 3.51%.

Benzyl 4,6-benzylidene-2-deoxy-2-tetrachlorophthalimido-β-D-glucopyranoside. Prepared as above for 22 starting with benzyl 3,4,6-tri-O-acetyl-2-deoxy-2-tetrachlorophthalimido- β -D-glucopyranoside affords a white foam (14.564 g, 87%); $R_{\rm f}$ 0.35 (20:80 EtOAc-petroleum ether); $[\alpha]_{\rm D}^{20}$ -59.8° (c 1.00, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 7.45-7.02 (m, 10H), 5.54 (s, 1H), 5.20 (d, J=8.4 Hz, 1H), 4.82 (d, J=12.3 Hz, 1H), 4.64-4.36 (m, 3H), 4.24 (dd, J=8.6, 10.6 Hz, 1H), 3.88-3.54 (m, 3H), 2.7 (bs, 1H); ¹³C NMR (75 MHz, CDCl₃): δ 163.00, 162.23, 139.40, 139.21, 136.68, 136.53, 128.76, 127.83, 127.59, 127.26, 126.69, 126.44, 125.57, 101.01, 97.78, 81.34, 71.52, 68.21, 67.44, 65.77, 57.07; MS (FAB) *m/e* 625.01 M⁻; Anal. calcd for C₂₈H₂₁NO₇Cl₄: C, 53.78; H,3.39%; found: C, 53.65; H, 3.40%.

Benzyl 3-O-acetyl-6-O-benzyl-2-deoxy-2-tetrachlorophthalimido- β -D-glucopyranoside (30). To benzyl 4,6-benzylidene-2-deoxy-2-tetrachlorophthalimido- β -Dglucopyranoside (3.626 g, 5.794 mmol) in pyridine (16

mL) was added acetic anhydride (1.90 mL, 20.3 mmol). The reaction stirred 3 h before removing the pyridine in vacuo. The residue was dissolved in CH₂Cl₂ (100 ml) and washed with 5% aq. HCl $(1 \times 30 \text{ mL})$, back extracting with CH_2Cl_2 (1 × 10 mL), and then washed with satd aq. NaHCO₃ $(2 \times 30 \text{ mL})$ soln, back extracting with CH_2Cl_2 (1 × 10 mL). The concd soln was purified via flash chromatography eluting with 100% CH₂Cl₂ \rightarrow 2:98 EtOAc/ CH₂Cl₂ affording a white foam (3.611 g, 93%). To the foam (3.473 g, 5.204 mmol) in THF (50 mL) and ether (100 mL) was added 3 Å molecular sieves (1.6 g) and NaCNBH₃ (3.270 g, 52.04 eq). HCl_g was bubbled through the solution until the foaming had stopped at which point it was diluted with CHCl₃ (200 mL) and washed with with satd aq. NaHCO₃ $(1 \times 150 \text{ mL})$ solution, back extracting with CHCl₃ (1×40 mL), and with 5% aq HCl (1×150 mL), back extracting with CHCl₃ (1×40 mL). The concd soln was purified via flash chromatography eluting with 30:70 EtOAc-petroleum ether affording 30 as a white foam (3.045 g, 87%); R_f 0.30 (30:70 EtOAc-petroleum ether); $[\alpha]_D^{20} - 33.8^{\circ}$ (c 1.57, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 7.37-7.08 (m, 10H), 5.55 (dd, J=1.8, 8.8 Hz, 1H), 5.33 (d, J = 8.4 Hz, 1H), 4.84 (d, J = 12.3Hz, 1H), 4.69-4.58 (m, 2H), 4.47 (d, J = 12.3 Hz, 1H), 4.24 (dd, J = 2.2, 8.4 Hz, 1H), 3.88–3.67 (m, 4H), 2.94 (bs, 1H), 2.04 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 171.32, 162.95, 162.63, 140.06, 137.53, 136.93, 128.44, 128.13, 127.89, 127.84, 127.70, 127.65, 126.85, 97.19, 74.04, 73.71, 73.31, 71.66, 70.95, 69.87, 55.40, 20.68; MS (FAB) m/e 668.96 M ; Anal. calcd for C₃₀H₂₅NO₈Cl₄: C, 53.83; H, 3.76%; found: C, 53.70; H, 3.83%.

(3,4,6-tri-O-benzyl-2-deoxy-2-phthalimido-β-D-Benzyl glucopyranosyl)- $(1 \rightarrow 4)$ -3-O-acetyl-6-O-benzyl-2-deoxy-2-tetrachlorophthalimido-β-D-glucopyranoside (31). To 9 (1.258 g, 1.942 mmol) and 30 (1.000 g, 1.494 mmol) (both dried by azeotroping together with toluene) in 10 mL CH₂Cl₂ was added N-iodosuccinimide (0.57 g, 2.52 mmol) and triethylsilyl triflate (101 µL, 0.45 mmol). After stirring for 25 min at room temperature the glycosyl donor had been consumed and the reaction was quenched with 5 mL 10% aq. Na₂S₂O₃ and 5 mL of satd aq. NaHCO₃ solution. The mixture was stirred for an additional 5 min before separating the layers and extracting the aq. phase with CH_2Cl_2 (3 × 15 mL). The concentrated CH₂Cl₂ soln was purified via flash chromatography eluting with 25:75 EtOAc-petroleum ether affording 31 as a white foam (1.28 g, 70%); $R_{\rm f}$ 0.22 (25:75 EtOAc-petroleum ether); $[\alpha]_{p}^{20}$ +15.2° (c 1.04, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 7.65 (bs, 4H), 6.85–7.33 (m, 25H), 5.58 (dd, J=9.5, 11.3 Hz, 1H), 5.19–5.27 (m, 2H), 3.41–4.81 (m, 21H), 1.85 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 170.44, 167.70 (bs), 162.75 (bs), 162.56 (bs), 140.02, 139.75, 138.01, 137.87, 137.76, 136.87, 133.63, 131.45, 129.59, 129.40, 128.28, 128.23, 128.06, 128.00, 127.88, 127.70, 127.62, 127.48, 127.19, 126.86, 123.12, 97.18, 96.92, 79.08, 78.79, 74.70, 74.62, 74.25, 73.76, 73.12, 72.57, 71.43, 71.22, 68.10, 67.53, 56.08, 55.74, 20.50; MS (FAB) m/e 1237.2 $(M + Li)^+$; Anal. calcd for $C_{65}H_{56}N_2O_{14}Cl_4$: C, 63.42; H, 4.59%; found: C, 63.34; H, 4.64%.

Pent-4-enyl 4-O-acetyl-2-amino-3,6-di-O-benzyl-2-deoxyβ-D-glucopyranoside (32a). To 19 (0.135 g, 0.184 mmol) in 2 mL ethanol was added ethylenediamine (55.0 µL, 0.83 mmol). The reaction was heated to 60 °C for 2 h and then allowed to cool to room temperature. The reaction mixture was concentrated, and the residue was purified by flash chromatography eluting with 5:95 methanol:CH₂Cl₂. Compound **32a** was recovered as a film (86.3 mg, 93%); R_f 0.31 (45:55 EtOAc:petroleum ether); $[\alpha]_D^{20} - 8.5^\circ$ (*c* 1.06, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 7.20–7.40 (m, 10H), 5.71-5.90 (m, 1H), 4.92-5.10 (m, 3H), 4.60-4.75 (m, 2H), 4.23 (d, J = 7.8 Hz, 1H), 3.88–3.98 (m, 1H), 3.45-3.65 (m, 5H), 2.90-2.98 (m, 1H), 2.09-2.18 (m, 2H), 1.90 (s, 3H), 1.62–1.78 (m, 4H); ¹³C NMR (75 MHz, CDCl₃): 8 169.95, 137.99, 137.88, 128.56, 128.34, 127.92, 127.85, 127.75, 127.68, 114.94, 103.64, 82.91, 74.31, 73.62, 71.63, 69.89, 69.37, 63.91, 56.46, 30.15, 28.74, 20.96; HRMS calcd for $C_{27}H_{35}NO_6$ MH⁺ 470.2543, found 470.2563.

Pent-4-enyl 2-acetamido-4-O-acetyl-3,6-di-O-benzyl-2deoxy-B-D-glucopyranoside (32b). To 19 (0.135 g, 0.184 mmol) in 2 mL ethanol was added ethylenediamine (55.0 µL, 0.83 mmol). The reaction was heated to 60 °C for 2 h after which it was allowed to cool to room temperature. Acetic anhydride (0.34 mL, 3.67 mmol) was added, and the soln was allowed to stir for an additional 20 min. The reaction mixture was concd and the residue was partitioned between CH_2Cl_2 (20 mL) and satd aq. NaHCO₃ (15 mL). The layers were sepd, and the aq. portion extracted with CH_2Cl_2 (2 × 20 mL). The product was purified by flash chromatography eluting with 20:80 EtOAc-dichloromethane. Compound 32b was recovered as an off white film (80.4 mg, 86%); $R_1 0.39$ (22:78 EtOAc: CH₂Cl₂); $[\alpha]_D^{20} + 11.6^\circ$ (c 1.04, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 7.24–7.32 (m, 10H), 5.69-5.80 (m, 2H), 4.94-5.02 (m, 4H), 4.53-4.60 (m, 4H), 4.36 (t, J=9.7 Hz, 1H), 3.85-3.89(m, 1H), 3.47-3.68 (m, 4H), 3.15-3.18 (m, 1H), 2.06-2.13 (m, 2H), 1.89 (s, 3H), 1.87 (s, 3H), 1.64-1.72 (m, 2H); ¹³C NMR (75 MHz, CDCl₃): δ 170.19, 169.36, 137.50, 127.99, 127.85, 127.43, 127.34, 127.32, 127.17, 114.47, 98.78, 76.15, 73.6, 73.06, 72.73, 71.43, 69.17, 68.17, 57.65, 29.53, 28.21, 23.10, 20.42; MS (CI) m/e 512 $(M+H)^+$, 529 $(M+NH_4)^+$; HRMS calcd for C₂₉H₃₈NO₇ MH⁺ 512.2648, found 512.2633.

Benzyl (3,4,6-tri-*O*-benzyl-2-deoxy-2-phthalimido-β-Dglucopyranosyl)-(1→4)-2-acetamido-3-*O*-acetyl-6-*O*benzyl-2-deoxy-β-D-glucopyranoside (33). To 13 (100 mg, 0.0812 mmol) in 0.7 mL of 2:1:1 acetonitrile:ethanol:tetrahydrofuran was added ethylenediamine (10.0 µL, 0.15 mmol) before heating to 60 °C. The reaction mixture was stirred for 22 h, allowed to cool to room temperature, concd and then filtered through a short column of silica gel with 3:97 methanol-CH₂Cl₂. The residue was treated with acetic anhydride (76 µL, 0.81 mmol) and triethylamine (23 µL, 0.16 mmol) in pyridine (1 mL) for 3 h. The reaction mixture was diluted with CH₂Cl₂ (20 mL) and washed with satd aq. NaHCO₃ (8 mL) back extracting the aq. portion with

 CH_2Cl_2 (2 × 15 mL). The product was purified by flash chromatography eluting with 35:65 EtOAc-CH₂Cl₂. Compound 33 was recovered as a film (52 mg, 64%); $R_{\rm f}$ 0.24 (18:82 EtOAc:dichloromethane); $[\alpha]_{\rm D}^{20} - 1.3^{\circ}$ (c 1.28, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 7.62 (bs, 4H), 6.84-7.34 (m, 25H), 5.39 (d, J=9.5 Hz, 1H), 5.30 (d, J=9.1 Hz, 1H), 4.92 (t, J=9 Hz, 1H), 3.73-4.82 (m, 18H), 3.32-3.49 (m, 4H), 1.97 (s, 3H), 1.89 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 171.13, 169.93, 167.90, 138.14, 137.95, 137.85, 137.19, 133.69, 131.52, 128.40, 128.35, 128.27, 128.14, 127.98, 127.80, 127.69, 127.63, 127.28, 123.19, 99.69, 97.34, 79.23, 78.86, 74.81, 74.73, 74.64, 73.45, 73.30, 72.67, 69.91, 68.38, 67.88, 56.23, 53.33, 23.25, 20.82; HRMS calcd for $C_{59}H_{61}N_2O_{13}$ MH⁺ 1005.4174, found 1005.4129. Anal. calcd for $C_{59}H_{60}N_2O_{13} \bullet 2H_2O$: C, 68.06; H, 6.20%; found: C, 68.54; H, 6.01%.

Pent-4-envl 2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-B-Dglucopyranoside (34). To 15 (0.164 g, 0.256 mmol) in 1.65 mL 2:1:1 acetonitrile-ethanol-tetrahydrofuran was added ethylenediamine (77.0 µL, 1.15 mmol) before heating to 60 °C. The reaction was stirred for 100 min and then allowed to cool to room temperature. The reaction mixture was concd and filtered through a short column of silica gel with 10:90 methanol-CH₂Cl₂. The residue was treated with acetic anhydride (144 µL, 1.53 mmol) in ethanol (2 mL) for 30 min. The reaction mixture was concd and the residue was purified by flash chromatography eluting with 50:50 EtOAc-CH₂Cl₂. Compound 34 was recovered as an off-white film (56.7 mg, 54%); $R_{\rm f}$ 0.29 (50:50 EtOAc-dichloromethane); $[\alpha]_D^{20}$ -12.5° (c 1.00, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 5.9 (bs, 1H), 5.68-5.77 (m, 1H), 5.26 (t, J=9.7 Hz, 1H), 4.88-5.03 (m, 3H), 4.64 (d, J=8.4 Hz, 1H), 4.05-4.23(m, 2H), 3.64-3.84 (m, 3H), 3.41-3.48 (m, 1H), 2.02 (s, 3H), 1.97 (s, 3H), 1.96 (s, 3H), 1.89 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 170.75, 170.65, 170.17, 169.33, 137.83, 114.88, 100.64, 72.36, 71.60, 68.98, 68.76, 62.17, 54.66, 29.82, 28.52, 23.18, 20.54-20.62 (m, 3C); HRMS calcd for C₁₉H₃₀NO₉ MH⁺ 416.1921, found 416.1924.

2-acetamido-3,4,6-tri-O-benzoyl-2-deoxy-Pent-4-enyl **β-D-glucopyranoside** (35). To 24 (0.153 g, 0.185 mmol) in 2.3 mL of 2:1:1 acetonitrile-ethanol-tetrahydrofuran was added ethylenediamine (56.0 µL, 0.85 mmol) before heating to 60 °C. The reaction mixture was stirred for 4.5 h, allowed to cool to room temperature, concentrated and then filtered through a short column of silica gel with 8:92 methanol:CH₂Cl₂. The residue was treated with acetic anhydride (53 µL, 0.54 mmol) and triethylamine (52 μ L, 0.38 mmol) in CH₂Cl₂ (2 mL) for 30 min. The reaction mixture was diluted with $CH_2Cl_2(15 \text{ mL})$ and washed with satd aq. NaHCO₃ (8 mL) back extracting the aqueous portion with CH_2Cl_2 (2×15 mL). The reaction mixture was concd, and the residue was purified by flash chromatography eluting with 20:80 EtOAc-petroleum ether. Compound 35 was recovered as an off white film (80.4 mg, 86%); R_f 0.51 (10:90 EtOAc:dichloromethane); $[\alpha]_{D}^{20}$ -33.3° (c 1.03, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 7.27–8.03 (m, 15H), 5.59–5.82 (m, 4H), 4.85–5.02 (m, 3H), 4.44–4.63 (m, 2H), 4.07–4.16 (m, 2H), 3.88–3.95 (m, 1H), 3.51–3.59 (m, 1H), 2.06–2.13 (m, 2H), 1.90 (s, 3H), 1.66–1.75 (m, 2H); ¹³C NMR (75 MHz, CDCl₃): δ 170.32, 166.59, 166.13, 165.12, 137.82, 133.46, 133.38, 133.32, 133.28, 133.22, 133.08, 133.06, 132.98, 129.77, 129.62, 129.50, 128.76, 128.74, 128.33, 128.21, 114.90, 100.92, 72.89, 71.83, 69.85, 68.99, 63.24, 54.86, 29.86, 28.54, 23.21; MS (FAB) *m/e* 602.22 MH⁺ HRMS calcd for C₃₄H₃₆NO₉ MH⁺ 602.2390, found 602.2385.

1-O-[N-(benzyloxycarbonyl)-L-serine benzyl ester] 2acetamido-3,4,6-tri-O-benzoyl-2-deoxy-β-D-glucopyranoside (36). To 26 (0.110 g, 0.103 mmol) in 0.7 mL of 2:1:1 acetonitrile-ethanol-tetrahydrofuran was added ethylenediamine (12.0 L, 0.18 mmol) before heating to 60 °C. The reaction was stirred for 13 h at which point it was allowed to cool to room temperature. The reaction mixture was concd and filtered through a short plug of silica gel with 2:98 methanol- CH_2Cl_2 . The residue was treated with acetic anhydride (76 μ L, 0.82 mmol) in CH₂Cl₂ (1 mL) for 30 min. The reaction mixture was diluted with CH₂Cl₂ (20 mL) and washed with satd aq. NaHCO₃ (8 mL) back extracting the aqueous portion with CH_2Cl_2 (2×15 mL). The product was purified by flash chromatography eluting with 50:50 EtOAc- CH_2Cl_2 to give 36 as a film (36.1 mg, 42%); R_f 0.46 (55:45 EtOAc-petroleum ether); $[\alpha]_D^{20} - 22.1^\circ$ (c 0.936, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 7.26–8.00 (m, 25H), 5.55–5.90 (m, 4H), 5.09–5.18 (m, 4H), 4.88 (d, J = 8.2 Hz, 1H), 4.28–4.60 (m, 4H), 3.92–4.02 (m, 3H), 1.78 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 170.79, 169.55, 166.50, 166.09, 165.09, 156.01, 136.19, 135.23, 133.47, 133.39, 133.08, 129.94, 129.79, 129.68, 129.46, 128.83, 128.74, 128.66, 128.52, 128.42, 128.35, 128.20, 128.14, 128.07, 127.99, 100.86, 72.45, 72.04, 71.98, 69.42, 68.91, 67.41, 66.96, 62.96, 54.88, 54.29, 23.14; MS (FAB) m/e 845.2 MH+. HRMS calcd for $C_{47}H_{44}N_2O_{13}$ MH⁺ 845.2922, found 845.2935.

Acknowledgements

This work was supported by the National Institutes of Health through grants GM41071 and AI31862. We are indebted to Robert Rodebaugh and Robert Madsen for their assistance in this work.

References

1. Kocienski, P.J. *Protecting Groups*; Thieme: Stuttgart, 1994, Chapter 6; Greene, T. W.; Wuts, P. G. M. *Protecting Groups in Organic Synthesis*; John Wiley & Sons: New York, 2nd Ed., 1991, Chapter 7.

2. Garg, H. G.; von dem Bruch, K.; Kunz, H. Advances in Carbohydrate Chemistry and Biochemistry; Horton, D., Ed., Academic: San Diego, 1994: Vol. 50, pp 277-310; Kjellén,

Lena; Lindahl, U. Annu. Rev. Biochem. 1991, 60, 443-475; Hassell, J. R.; Kimura. J. H.; Hascall, V. C. Annu. Rev. Biochem. 1986, 55, 539.

3. See for example: Bochkov, A. F.; Zaikov, G. E. *Chemistry* of the O-Glycosode Bond; Pergamon: Oxford, 1979, Chapter 2; Banoub, J.; Boullanger, P.; Lafont, D. *Chem. Rev.* **1992**, 97, 1167.

4. Campbell, A.S.; Fraser-Reid, B. *Bioorg. Med. Chem.* **1994**, 2, 1209; Campbell, A.S.; Fraser-Reid, B. *J. Am. Chem. Soc.* **1995**, *117*, 10387.

5. Madsen, R.; Roberts, C.; Fraser-Reid, B. J. Org. Chem. 1995, 60, 7920.

6. Fraser-Reid, B.; Udodong, U.; Wu, Z.; Ottosson, H.; Merritt, J. R.; Rao, C. S.; Roberts, C.; Madsen, R. Synlett. 1992, 927.

7. Wu, Z.; Mootoo, D. R.; Fraser-Reid, B. Tetrahedron Lett. 1988, 29, 6549.

8. Madsen, R.; Fraser-Reid, B. J. Org. Chem. 1995, 60, 772.

9. Lemieux, R.; Takeda, T.; Chung, V Synthetic Methods for Carbohydrates; El Khadem, H. S., Ed., ACS Symposium Series: Washington, DC 1976, Vol. 39, pp 90-115.

10. For example see: Spijker, N. M.; Westerduin, P.; van Boeckel, C. A. A. *Tetrahedron* **1992**, 48, 6297; Matsuzaki, Y.; Ito, Y.; Nakahara, Y.; Ogawa, T. *Tetrahedron Lett.* **1993**, 34, 1061; Koeman, F. A. W.; Meissner, J. W. G.; van Ritter, H. R. P.; Kamerling, J. P.; Vliegenthart, J. F. G. J. Carbohydr. Chem. **1994**, 13, 1.

11. Ing, H.; Manske, R. J. Chem. Soc. 1926, 2348.

12. Kanie, O.; Crawley, S. C.; Palcic, M. M.; Hindsgaul, O. Carbohydr. Res. 1993, 243, 139 and references cited therein.

13. Handlon, A. L.; Fraser-Reid, B. J. Am. Chem. Soc. 1993, 115, 3796.

14. Osby, J. A.; Martin, M. G.; Ganem, B. Tetrahedron Lett. 1984, 25, 2093.

15. Dasgupta, F.; Garegg, P. J. Carbohydr. Chem. 1988, 7, 701; Ito, Y.; Sato, S.; Mori, M., Ogawa, T. J. Carbohydr. Chem. 1988, 7, 359.

16. While this work was in progress, a timely report by Tsubouchi and coworkers also demonstrated the increased susceptibility to cleavage that NO_2 substitution on phthalimides at the 4-position had on benzylamine derivatives. Tsubouchi, H.; Tsuji, K.; Ishikawa, H. *Synlett.* **1994**, 63.

17. The prices shown are from a recent Aldrich catalog.

18. Shimizu et al. have recently reported a study on the less base-sensitive 4,5-dichlorophthalimido group. Shimizu, H., Ito, Y., Matsuzaki, Y., Iijima, H., Ogawa, T. *Biosci. Biotech. Biochem.* **1996**, *60*, 73.

19. Wessel, H.-P.; Iverson, T; Bundle, D. R. J. Chem. Soc., Perkin Trans. 1 1985, 2247.

20. Capon, B. Chem. Rev. 1969, 69, 407.

21. Castro-Palomino, J. C.; Schmidt, R. R. *Tetrahedron Lett.* **1995**, *36*, 5343. See also N,N-diacetyl protection which, however, requires more basic conditions (NaOMe/MeOH) for removal. Castro-Palomino, J. C.; Schmidt, R. R. *Tetrahedron Lett.* **1995**, *36*, 6871.

22. Jensen, K. J., Hansen, P. R., Venugopal, D., Barany, G. J. Am. Chem. Soc. 1996, 118, 3148.

23. Meinjohanns, E.; Meldal, M.; Paulsen, H.; Bock, K. J. Chem. Soc., Perkin. Trans. 1 1995, 405-415.

24. Barany, G.; Merrifield, R.B. J. Am. Chem. Soc. 1977, 99, 7363.

25. This solvent system dissolves every TCP substrate we have encountered. TCP cleavages can be effected either with or without a protic cosolvent.

26. Merritt, J. R.; Debenham, J. S.; Fraser-Reid, B. J. Carbohydr. Chem. 1996, 15, 1, 65.