November 1990 SYNTHESIS 1057 ## Nucleophilic Ring Opening of 3-Benzyl-1,3-oxazinanes by Reformatsky Reagents. A Synthesis of β -Amino Ester Derivatives Angel Alberola, Maria A. Alvarez, Celia Andrés, Alfonso González, Rafael Pedrosa* Departamento de Quimica Orgánica, Facultad de Ciencias, Universidad de Valladolid, Dr. Mergelina s/n. E-47011-Valladolid, Spain 2-Substituted 3-benzyl-1,3-oxazinanes react with the Reformatsky reagent derived from ethyl 2-bromoacetate and zinc, using very mild conditions (0°C, 1 h) leading regioselectively to 3-substituted ethyl 3-[(3-hydroxypropyl)benzylamino]propanoates in high yield. The synthesis of β -amino acid derivatives has been extensively studied due to their biological interest and their use as starting materials in the preparation of β -lactams.¹ The most general methods are: 1,4-addition of nitrogen derivatives to α , β -unsaturated nitriles, esters or acids followed by hydrolysis, the homologation of α -amino acids following the Arndt-Eistert methodology,² the hydrolysis of diyhdrouracils in alkaline solution,³ the reaction of N-(1-alkoxyalkyl)carbamates with ester enolates,⁴ and the condensation of imines with organomagnesium carboxylates.^{5,6} The synthesis of β -amino ester derivatives has been also performed from 1,3,5-trialkyl-1,3,5-triazinanes⁷⁻⁹ and N,N-bis-(trimethylsilyl)methoxymethylamine¹⁰ by a titanium tetrachloride or a trifluoromethanesulfonate catalyzed amino-alkylation. Although the Reformatsky reaction was intitially restricted to aldehydes or ketones, 11,12 it has been now extended to a great number of substrates. 13 In this way, β -amino acids or their derivatives can be prepared by reaction of zinc enolates 14,15 or organozinc carboxylates 16 with imines; the Reformatsky reaction applied to azomethines leads to β -lactams, 17,18 and recently, Katritzky has published a general preparation of β -amino esters by reaction of 1-alkyloxycarbonylamino-1-(1-benzotriazolyl)alkanes with ethyl 2-bromoalkanoates under Reformatsky-type conditions. 19 furthermore, β -amino esters have been obtained by reaction of α -amino ethers with α -bromo esters in the presence of magnesium or zinc, 20 and 7-hydroxy-3-aminoheptanenitriles from α -amino tetrahydropyrans and α -bromonitriles and zinc. 21 Although nucleophilic ring opening of oxazolidines is a well-documented process, ²² homologous 1,3-oxazinanes have received less attention. Recently, we have shown that they are excellent starting materials in the synthesis of 3-dialkylaminopropanol derivatives and alkyl 3-dialkylaminopropyl ethers by lithium aluminum hydride reduction. ²² We have now extended our studies to the regioselective ring opening of these substrates by Reformatsky reagents. 3-Benzyl-1,3-oxazinanes 1a-k, obtained by condensation of 3-(benzylamino)propanol and the corresponding aldehyde, are reacted with the organozinc derivative, ethyl bromozincioacetate, previously prepared²³ from ethyl 2-bromoacetate and zinc dust, affording the β -amino ester derivatives 2a-k in high yield. As expected, the ring opening of the heterocyclic ring occurs by regioselective cleavage of the hemiacetal carbon-oxygen bond. We have also attempted to prepare the corresponding ethyl alkoxyalkanoates, by reaction of 3-methyl-5,6-dihydro-4*H*-1,3-oxazinium iodides Table 1. β-Amino Esters 2 Prepared | Prod-
uct | Yield ^a
(%) | mp (°C) ^b | Molecular Formula of 3,5-DNB° | |--------------|---------------------------|--------------------------|---| | 2a | 72 | oil (69-70) ^d | C ₂₃ H ₂₇ N ₃ O ₈ (473.4) | | 2b | 77 | oil (67–68) ^d | $C_{24}H_{29}N_3O_8$ (487.5) | | 2c | 78 | oil (91–92) ^e | $C_{25}H_{31}N_3O_8$ (501.5) | | 2d | 95 | oil (81–82) ^e | $C_{26}H_{33}N_3O_8$ (515.5) | | 2 e | 87 | oil (98-99)e | $C_{26}H_{33}N_3O_8$ (515.5) | | 2f | 96 | oil (74–75) ^e | $C_{30}H_{33}N_3O_8$ (563.6) | | 2g | 83 | oil (93–94) ^d | $C_{28}H_{29}N_3O_3$ (535.5) | | 2h | 87 | oil (98–99) ^e | $C_{28}H_{28}CIN_3O_8$ (569.9) | | 2i | 87 | oil (74–75) ^d | $C_{29}H_{31}N_3O_9$ (565.5) | - a Yields of isolated pure products. - Numbers in parenthesis refer to melting point of the 3,5-dinitrobenzoates (3,5-DNB). - $^{\circ}$ Satisfactory microanalyses for 3,5-DNB: C $\pm\,0.13,~H\,\pm\,0.16,~N\,\pm\,0.14.$ - d From hexane. - e From hexane/toluene. with ethyl bromozincioacetate, taking into account the previously described regioselective cleavage of the carbon–nitrogen bond by lithium aluminum hydride in these salts.²² However 3-methyl-5,6-dihydro-4*H*-1,3-oxazinium iodides are unable to react with ethyl α-bromoacetate and zinc, in diethyl ether, anhydrous tetrahydrofuran or dioxan; the starting materials are recovered unchanged after 24 hours at reflux in these solvents. This new general approach is suitable for the preparation of both aliphatic and aromatic β -amino ester derivatives in high yield, from easily accessible starting materials, and using very mild conditions. 3-Benzyl-1,3-oxazinanes were synthesized from 3-(benzylamino) propanol as previously described. ²² The Reformatsky reagent was prepared as a ca. $0.6\,\mathrm{M}$ solution in anhydrous Et₂O from ethyl α -bromoacetate and zinc dust by a literature method. ^{23,24} IR were recorded on a Pye-Unicam SP-1000 spectrophotometer as neat film; **Table 2.** Spectral Data for β -Amino Esters 2 Prepared | Prod-
uct | IR (neat) v_{OH} , v_{CO} (cm ⁻¹) | 1 H-NMR (CDCl ₃ /TMS) δ , J (Hz) | MS (70 eV)
m/z (%) | |--------------|---|---|--| | 2a | 3400, 1710 | 1.05 (d, 3H, $J = 6$, 4-CH ₃), 1.15 (t, 3H, $J = 7$, CH ₃ CH ₂ O), 1.65 (m, 2H, NCH ₂ CH ₂), 2.40 (m, 4H, 2-CH ₂ , NCH ₂), 3.10 (m, 1H, 3-CH), 3.20 (br s, 1H, OH), 3.40 (m, 2H, HOCH ₂), 2.50 (c) | 279
(M ⁺ , < 1), | | 2 b | 3400, 1715 | 3.50 (s, 2H, $C\underline{H}_2Ph$), 4.05 (q, 2H, $J = 7$, $OC\underline{H}_2CH_3$), 7.20 (m, $5H_{arom}$)
0.95 (t, 3H, $J = 6$, 5-CH ₃), 1.15 (t, 3H, $J = 7$, $C\underline{H}_3CH_2O$), 1.60 (m, 4H, 4-CH ₂ , $NCH_2C\underline{H}_2$), 2.45 (m, 4H, 2-CH ₂ , NCH_2), 3.00 (m, 1H, 3-CH), 3.30 (br s, 1H, OH), 3.45 (m, 2H, NCH_2CH_2) | 91 (100)
264
(M ⁺ – 29, 1) | | 2c | 3400, 1715 | HOC \underline{H}_2), 3.55 (s, 2H, C \underline{H}_2 Ph), 4.00 (q, 2H, $J = 7$, OC \underline{H}_2 CH ₃), 7.15 (m, 5H _{arom}) 0.95 (d, 6H, $J = 6$, (C \underline{H}_3) ₂ CH), 1.15 (t, 3H, $J = 7$, C \underline{H}_3 CH ₂ O), 1.60 (m, 3H, 4-CH, NCH ₂ C \underline{H}_2), 2.40 (m, 4H, 2-CH ₂ , NCH ₂), 2.90 (m, 1H, 3-CH), 3.20 (br s, 1H, OH), 3.45 (s, | 91 (100)
264
(M ⁺ - 43, 1) | | 2d | 3360, 1715 | 2 H, $C\underline{H}_2$ Ph), 3.60 (m, 2 H, $HOC\underline{H}_2$), 4.05 (q, 2 H, $J=7$, $OC\underline{H}_2$ CH ₃), 7.20 (m, 5 H _{arom}) 0.95 (t, 3 H, $J=6$, 6-CH ₃), 1.15 (t, 3 H, $J=7$, $C\underline{H}_3$ CH ₂ O), 1.60 (m, 8 H, (CH ₂) ₃ , $NCH_2C\underline{H}_2$), 2.40 (m, 4 H, 2-CH ₂ , NCH_2), 2.45 (m, 1 H, 3-CH), 3.20 (br s, 1 H, OH), 3.45 (s, 2 H, $C\underline{H}_2$ Ph), | 91 (100)
321
(M ⁺ , 2), | | 2e | 3400, 1715 | 3.55 (m, 2H, HOCH ₂), 4.05 (q, 2H, OCH ₂ CH ₃), 7.20 (m, 5H _{arom})
0.85 (d, 3H, <i>J</i> = 6, CH ₃ CH), 0.95 (d, 3H, <i>J</i> = 6, CH ₃ CH), 1.10 (t, 3H, <i>J</i> = 7, CH ₃ CH ₂ O),
1.40–1.80 (m, 5H, NCH ₂ CH ₂ , 4-CH ₂ , 5-CH), 2.40 (m, 4H, 2-CH ₂ , NCH ₂), 3.05 (m, 1H, 3-
CH), 3.15 (br s, 1H, OH), 3.35 (m, 2H, HOCH ₂), 3.40 (s, 2H, CH ₂ Ph), 4.00 (q, 2H, <i>J</i> = 7, | 91 (100)
321
(M ⁺ , 1),
91 (100) | | 2f | 3400, 1715 | OCH ₂ CH ₃), 7.20 (m, 5H _{arom})
1.15 (t, 3H, $J = 7$, CH ₃ CH ₂ O), 1.60 (m, 4H, 4-CH ₂ , NCH ₂ CH ₂), 2.50 (m, 6H, 2-CH ₂ , 5-CH ₂ , NCH ₂), 3.05 (m, 1H, 3-CH), 3.30 (d, 1H, $J = 14$, NCHPh), 3.50 (m, 2H, HOCH ₂), 3.65 (d, 1H, $J = 14$, NCHPh), 3.95 (br s, 1H, OH), 4.05 (q, 2H, $J = 7$, OCH ₂ CH ₃), 7.20 (m, | 369
(M ⁺ , < 1),
91 (100) | | 2g | 3400, 1710 | $10\mathrm{H}_{\mathrm{arom}}$) 1.15 (t, 3H, $J=7$, CH ₃ CH ₂ O), 1.60 (m, 2H, NCH ₂ CH ₂), 2.55 (m, 4H, 2-CH ₂ , NCH ₂), 3.05 (br s, 1H, OH), 3.20 (d, 1H, $J=14$, NCHPh), 3.45 (m, 2H, CH ₂ OH), 3.60 (d, 1H, $J=14$, NCHPh), 4.00 (a, 2H, A), and a constant of the second | 341
(M ⁺ , 3), | | 2h | 3380, 1710 | NCHPh), 4.00 (q, 2H, $J = 7$, OCH ₂ CH ₃), 4.30 (m, 1H, 3-CH), 7.20 (m, 10H _{arom})
1.15 (t, 3H, $J = 7$, CH ₃ CH ₂ O), 1.60 (m, 2H, NCH ₂ CH ₂), 2.60 (m, 4H, 2-CH ₂ , NCH ₂), 2.90 (br s, 1H, OH), 3.25 (d, 1H, $J = 14$, NCHPh), 3.45 (m, 2H, CH ₂ OH), 3.70 (d, 1H, $J = 14$, NCHPh), 4.00 (c, 2H, $J = 7$, OCH CH, C | 91 (100)
375
(M ⁺ , 2), | | 2i | 3320, 1710 | NCHPh), 4.00 (q, 2H, $J = 7$, OCH ₂ CH ₃), 4.25 (m, 1H, 3-CH), 7.20 (m, 9H _{arom})
1.10 (t, 3H, $J = 7$, CH ₃ CH ₂ O), 1.60 (m, 2H, NCH ₂ CH ₂), 2.40 (br s, 1H, OH), 2.80 (m, 4H, 2-CH ₂ , NCH ₂), 3.30 (d, 1H, $J = 15$, NCHPh), 3.60 (m, 2H, HOCH ₂), 3.65 (d, 1H, $J = 15$, NCHPh), 3.70 (s, 3H, OCH ₃), 4.00 (q, 2H, OCH ₂ CH ₃), 4.35 (m, 1H, 3-CH), 6.80 (d, 2H, $J = 9$, m-H _{arom}), 7.10 (d, 2H, $J = 9$, o-H _{arom}), 7.20 (m, 5H _{arom}) | 91 (100)
367
(M ⁺ , 3),
91 (100) | ¹H-NMR were registered on a Bruker AC-80 at 80 MHz, and Mass spectra were measured on a Hewlett-Packard 5988-A mass spectrometer by electronic impact at 70 eV. Melting points (uncorrected) were taken using a Büchi apparatus, in a capillary open tube. ## Reaction of 3-Benzyl-1,3-oxazinanes with Reformatsky Reagents; General Procedure: To a solution of the corresponding 3-benzyl-1,3-oxazinane (5 mmol) in anhydrous $\rm Et_2O$ (10 mL), cooled to $0\,^{\circ}\rm C$, under $\rm N_2$, is syringed a previously prepared 0.6 M solution (10 mL) of ethyl bromozincioacetate in the same solvent. ^{23,24} The mixture is stirred at $0\,^{\circ}\rm C$ for 1 h and then hydrolyzed by addition of sat.aq NH₄Cl (10 mL). The aqueous layer is extracted with $\rm Et_2O$ (4 × 25 mL), the organic layers are washed with brine and dried (MgSO₄). After removal of the solvent, the oily residues are purified by filtration on a short column of silica gel (10 × 2 cm, 230–400 mesh), using EtOAc as solvent. Compounds **2a-i** are colorless oils, and are characterized by their spectral data, and mp and microanalyses of their 3,5-dinitrobenzoates (3,5-DNB). We are indebted to the Spanish DGICYT for financial support (Project PB86-0145). One of us (M.A.A.) also thanks to the Ministry of Education and Science of Spain for a studentship (PFPI). Received: 18 April 1990 - Koster, W.H.; Cimarusti, C.M.; Sykes, R.B. in Chemistry and Biology of β-Lactam Antibiotics, Morin, R.B.; Gorman, M. (eds.), Academic Press, New York 1982, vol. 3. - (2) Jones, J. H. in Comprehensive Organic Chemistry, Sutherland, I.O. (ed.), Pergamon Press, Oxford, 1979, vol. 2, part 9, p. 834. - (3) Rachina, V.; Blagoeva, I. Synthesis 1982, 967. - (4) Shono, T.; Kise, N.; Sanda, F; Ohi, S.; Tsubata, K. Tetrahedron Lett. 1988, 29, 231. - (5) Ivanov, D.; Vassiliev, G.; Ranayotov, I. Synthesis 1975, 83. - (6) Blagoev, B.; Ivanov, D. Synthesis 1970, 615. - (7) Ikeda, K.; Terao, Y.; Sekiya, M. Chem. Pharm. Bull. 1981, 29, 1156. - (8) Ikeda, K.; Terao, Y.; Sekiya, M. Chem. Pharm. Bull. 1981, 29, 1747. - (9) Ikeda, K.; Achiva, K.; Sekiya, M. Tetrahedron Lett. 1983, 24, 913. - (10) Okano, K.; Morimoto, T.; Sekiya, M. J. Chem. Soc., Chem. Commun. 1984, 883. - (11) Sriner, R.L. Org. React. 1942, 1, 1. - (12) Rathke, M.W. Org. React. 1975, 22, 423. - (13) For a recently review on Reformatsky reaction see: Fürstner, A. Synthesis 1989, 571. - (14) Dardoize, F.; Moreau, J. L.; Gaudemar, M. Bull. Soc. Chim. Fr. 1972, 3841. - (15) Dardoize, F.; Gaudemar, M. Bull. Soc. Chim. Fr. 1974, 939. - (16) Bellassoued, M.; Arous-Chtara, R.; Gaudemar, M. J. Organomet. Chem. 1982, 231, 185. - (17) Odriozola, J.M.; Cossio, F.P.; Palomo, C. J. Chem. Soc. Chem. Commun. 1988, 809. - (18) Cossio, F.P.; Odriozola, J. M.; Oiarbide, M.; Palomo, C. J. Chem. Soc., Chem. Commun. 1989, 74. - (19) Katritzky, A.R.; Yannakopoulou, K. Synthesis 1989, 747. - (20) Canceill, J.; Jacques, J. Bull. Soc. Chim. Fr. 1965, 903. - (21) Glacet, C.; Brocard, J.; Maciejewski, L. Bull. Soc. Chim. Fr. 1977, 337. - (22) Alberola, A.; Alvarez, M.A.; Andrés, C.; González, A.; Pedrosa, R. Synthesis 1990, 153, and references therein. - (23) Siegel, A.; Keckeis, H. Monatsh. Chem. 1953, 84, 910. - (24) Vaughan, W.R.; Bernstein, S.C.; Lorber, M.E. J. Org. Chem. 1965, 30, 1790.