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(+)-Nootkatone is a high-value sesquiterpenoid known for its
grapefruit-odor impression. Its isolation from natural plant
sources suffers from low yields, and chemical syntheses involve
carcinogenic or hazardous compounds. Herein, a biocatalytic
route for the synthesis of (+)-nootkatone that combines two
enzymes in one pot is presented. In the first step, a cytochrome
P450 monooxygenase catalyzes the selective allylic hydroxyl-
ation of the sesquiterpene (+)-valencene to the intermediate
alcohol nootkatol. In the second step, nootkatol is further oxi-
dized to (+)-nootkatone by an alcohol dehydrogenase (ADH).
The challenging task of finding a suitable cofactor regeneration
system was solved by careful selection of an appropriate co-
substrate for the ADH, which works in a dual-functional mode.
After reaction optimization, involving cosolvent and cosub-
strate screening, (+)-nootkatone concentrations of up to
360 mg L

�1 and a space-time yield of 18 mg L
�1 h�1 were

achieved.

Selective (enzymatic) oxyfunctionalizations of readily available
terpene molecules have attracted attention of chemists and
biotechnologists because the resulting products are often
sought-after compounds with high market values.[1] One exam-
ple is the sesquiterpenoid (+)-nootkatone, a high-price constit-
uent of grapefruit with applications in the flavor, fragrance,
and pharmaceutical industries. Isolation of (+)-nootkatone
from natural sources suffers from low yields.[2] Its chemical syn-
thesis by means of (+)-valencene oxidation involves carcino-
genic tert-butyl chromate and sodium dichromate, or hazard-
ous compounds, such as tert-butyl peracetate and tert-butyl
hydroperoxide.[2–3] Hence, biotechnological routes for (+)-noot-
katone synthesis have become important.[2] Cytochrome P450
monooxygenases (EC 1.14.–.–; P450) represent an attractive en-
zymatic alternative for the allylic oxidation of (+)-valencene.
P450s catalyze the direct insertion of one atom of molecular
oxygen into (non-)activated C�H bonds upon formation of

water as byproduct.[4] The existing biocatalytic approaches for
(+)-valencene oxidation based on P450s are hampered by in-
complete conversion of nootkatol to (+)-nootkatone.[5] The
odor threshold of (+)-nootkatone is approximately 50 times
lower (�1 mg L

�1) compared to that of nootkatol,[2, 6] therefore,
complete conversion to (+)-nootkatone is desired.

We have developed a two-enzyme reaction sequence for
the synthesis of (+)-nootkatone, operating in a one-pot mode
in aqueous solution. The reaction includes P450-catalyzed re-
gioselective allylic C2-hydroxylation of (+)-valencene (1) to
yield the intermediate alcohols cis- (2 a) and trans-nootkatol
(2 b), which are both further oxidized to (+)-nootkatone (3) by
an unselective alcohol dehydrogenase (ADH) (Scheme 1). The

same ADH converts an appropriate cosubstrate to ensure ef-
fective regeneration of the cofactor NADH.

Two previously developed P450 BM3 (CYP102A1) mutants,
F87A/A328I (BM3-AI) and F87V/A328V (BM3-VV),[5d] were ap-
plied for the initial hydroxylation of 1. BM3-AI produced a mix-
ture of 2 a and 3 (and minor amounts of 2 b), whereas BM3-VV
generated almost exclusively 2 b and minor amounts of 3 (Sup-
porting Information, section 2.7), as described previously.[5d]

Thus, in contrast to the common demand for stereoselective
ADHs, we were interested in an enzyme with no pronounced
stereoselectivity for either of the two isomers, 2 a and 2 b.

To find a nootkatol-oxidizing ADH, we screened the propriet-
ary enzyme collection at c-LEcta (c-LEcta GmbH, Leipzig, Ger-

Scheme 1. Cosubstrate-supported two-enzyme cascade for selective allylic
oxidation of (+)-valencene (1). P450 catalyzes the hydroxylation step to cis-
(2 a) and trans-nootkatol (2 b). An unselective ADH oxidizes both nootkatol
(2) isomers to (+)-nootkatone (3) and simultaneously converts cosubstrates
to regenerate the cofactor NADH.
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many), which included wild-type enzymes from biodiversity
screenings and well-studied ADHs,[7] as well as mutants there-
of. Remarkably, only two active evolved ADH variants could be
identified for the desired reaction, whereas none of the
screened wild-type ADHs showed detectable activity. Based on
conversion experiments and kinetic data with 2 (Supporting In-
formation, section 2.1), ADH-21 was chosen for the P450–ADH
cascade.

ADH-21 showed a clear preference for the cofactor NAD+ ;
activity with NADP+ was <1 % of the activity with NAD+ . Al-
though P450 BM3 prefers NADPH, it has been reported to also
accept NADH.[8] Similar levels of conversion of 1 with P450 BM3
mutants, supported by a glucose dehydrogenase (GDH) for co-
factor regeneration, could be achieved regardless of whether
NADPH or NADH was applied (Supporting Information, sec-
tion 2.5). Based on this finding we combined the P450 BM3
mutants and ADH-21 in one pot with NADH as the cofactor.
Additionally, we intended to further optimize BM3-AI for NADH
acceptance by introduction of two previously described amino
acid substitutions in the reductase domain (R966D/W1046S).[8b]

However, the resulting mutant was approximately 50 % less
productive than BM3-AI when using NADH (Supporting Infor-
mation, section 2.3).

Initial attempts to develop the two-enzyme cascade led, as
expected, to the formation of 3, however, the reaction stopped
after 30 min. Uncoupling reactions in which NAD(P)H is con-
sumed by the P450, but the target substrate is not oxidized,
often occur in reactions with non-natural substrates.[9] This was
also observed for the oxidation of 1 by BM3-AI (coupling effi-
ciency of 33 %). We concluded that the cascade reaction
stopped as the NADH was depleted. Indeed, when doses of
NADH were added during the reaction course, conversion of
1 continued (Supporting Information, section 2.2).

The addition of stoichiometric amounts of costly NADH is
not economically feasible. Addition of GDH for cofactor regen-
eration along with BM3-AI and ADH-21 resulted in incomplete
conversion of 2 to 3 (data not shown), which can be explained
by the reduced availability of NAD+ for ADH-21 owing to GDH.
To address this issue we screened for an ADH-21 cosubstrate
to effectively regenerate NADH while ensuring simultaneous
complete oxidation of 2 to 3. Consequently, ADH-21 should
serve as a dual-functional enzyme, which performs both the
oxidation of 2 and cofactor regeneration by cosubstrate con-
version (Scheme 1). Several alcohols were identified as poten-
tial cosubstrates for ADH-21, which displayed an apparent pref-
erence for secondary alcohols (Supporting Information, sec-
tion 2.4). All measured volumetric activities were lower com-
pared with that of 2 ; an important factor to achieve complete
conversion of 2. 2-Butanol and 2-pentanol, for which ADH-21
displayed 9 and 42 % activity relative to the activity for 2, re-
spectively, were chosen to establish a cosubstrate-supported
P450–ADH cascade on an analytical scale. Indeed, addition of
either of the cosubstrates to the reaction resulted in double
the concentration of C2-oxidized products (sum of 2 and 3) in
comparison with the control reaction without cosubstrate (Fig-
ure 1 A and Supporting Information, section 2.5). In reactions
with either BM3-AI or BM3-VV intermediate alcohol 2 was com-

pletely oxidized to 3 in the 2-butanol system, and was detecta-
ble only in very low amounts in the 2-pentanol system (Sup-
porting Information, section 2.7).

As the C2 selectivity of BM3-AI (up to 97 %) was higher than
that of BM3-VV (up to 86 %) in the systems with cosubstrates
(Supporting Information, section 2.7), BM3-AI was selected for
reaction scale-up and optimization experiments at higher sub-
strate concentrations (up to second phase formation at 10 mm

1).
Monitoring of the NADH concentration during the reactions

revealed that the presence of a cosubstrate clearly induced co-
factor regeneration compared to the reactions without cosub-
strate (Supporting Information, section 2.6). As expected from
the determined activities of ADH-21, the cofactor regeneration
was higher with 2-pentanol than with 2-butanol.

Unexpectedly, during optimization of the individual cosub-
strate concentrations the highest concentration of 3 amount-
ing to 1.2 mm was achieved with 100 mm 2-butanol, whereas
at an optimized 2-pentanol concentration (20 mm) only
0.7 mm of 3 was produced (Figure 1 B). Further increase of 2-
butanol or 2-pentanol concentrations led to reduced amounts
of 3. Although 2-pentanol initially seemed to be the better co-
substrate for ADH-21 (Supporting Information, sections 2.4 and
2.6), conversions with 2-butanol yielded higher concentrations
of 3 (Figure 1 B). This could be explained by a negative effect
of 2-pentanol on either protein stability or activity, demonstrat-
ing the importance of careful cosubstrate choice in the devel-
opment of P450–ADH cascades.

The developed P450–ADH cascade with 2-butanol as cosub-
strate was scaled up linearly (Table 1). Similarly to the results
from using a reaction volume of 1 mL, 1.0 mm (221 mg L

�1) of
3 was obtained in 20 mL (Table 1, entry 3). Strikingly, in any of
the reactions, 2 a and 2 b were detected in traces only, again

Figure 1. Cosubstrate-supported BM3-AI–ADH-21 cascade for (+)-nootka-
tone synthesis. A) Formation of C2-oxidized products (sum of 2 and 3)
versus time. Conditions: 500 mL, 25 8C, Tris-HCl buffer (50 mm, pH 7.5 with
2 mm MgCl2), DMSO (2 % v/v), substrate 1 (200 mm), cosubstrate (20 mm),
NADH (400 mm), BM3-AI (1 mm), ADH-21 (100 mU mL�1), catalase
(1200 U mL�1). Reaction without cosubstrate (w/o CS) served as control.
B) Influence of cosubstrate concentration on formation of 3. Conditions:
1 mL, 25 8C, 20 h, Tris-HCl buffer (50 mm, pH 7.5 with 2 mm MgCl2), DMSO
(2 % v/v), substrate 1 (10 mm), cosubstrate (as indicated), NADH (400 mm),
BM3-AI (5 mm), ADH-21 (500 mU mL�1), catalase (600 U mL�1). Where error
bars are not recognizable, they are smaller than symbols or bar lines.
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demonstrating a very efficient applicability of ADH-21 for the
oxidation of both nootkatol (2) isomers.

To increase the solubility of 1, a cyclodextrin (CD) was added
instead of DMSO. CDs enhance the solubility of hydrophobic
compounds in aqueous solution and have been applied for
biocatalytic conversions of steroids,[10] lipophilic ketones,[11]

fatty acids,[12] and others. Indeed, in the presence of methyl-b-
CD, the concentration of 3 could be increased up to 1.65 mm

(360 mg L
�1; Table 1, entry 4). It should be noted, however, that

reactions containing methyl-b-CD displayed a residual 17 % of
the intermediate 2, which is presumably because of complexa-
tion of 2 by CD.

The space-time yields of 17–18 mg L
�1 h�1 achieved with the

optimized cascade were higher than those previously reported
for oxygenase systems (13 mg L

�1 h�1),[13] whereas the achieved
(+)-nootkatone concentrations were comparable (317–
320 mg L

�1 for Pleurotus sapidus cells or recombinant Pichia
pastoris cells in 24 h).[13] The presented cascade offers the clear
advantage of rapid production of the biocatalysts in E. coli (1–
2 days), and their direct application as cleared cell lysates with-
out further purification. Future work will be focused on optimi-
zation of P450 BM3 by protein engineering with the goal to
obtain higher product concentrations in shorter reaction times.
In this regard, preliminary data indicate that the coupling effi-
ciency seems to be a more important factor than high enzyme
activity alone for the successful establishment of P450–ADH
cascades.

The described dual-functional mode of an ADH that cata-
lyzes the second oxidation step and simultaneously utilizes
a cosubstrate for cofactor regeneration represents a valuable
concept that generally could extend the applicability of P450–
ADH cascades.[14] Thereby, the careful choice of a “low activity”
cosubstrate was demonstrated to be key for the successful de-
velopment of such a system.

Experimental Section

Chemicals were purchased from Sigma–Aldrich, AppliChem,
GERBU, and VWR (all Germany) with a purity of �98 %, except for

1, which was obtained in technical grade (>70 %) from Sigma–Al-
drich. Catalase (from bovine liver) was from Sigma–Aldrich. Lyophi-
lized enzyme preparations of ADH-21 are commercially available
from c-LEcta GmbH (Germany). Enzyme production in E. coli BL21
(DE3), measurements of enzyme concentrations and activity assays
are described in the Supporting Information. All enzymes were ap-
plied as cleared cell lysates without any further purification steps
(except for coupling measurements). Chemical synthesis and analy-
sis of 2 was performed as described previously.[5c] Reaction condi-
tions are specified in Figure and Table captions. Analytical proce-
dures are described in the Supporting Information. Data are given
as means with errors representing absolute deviations (n�2).
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Table 1. (+)-Nootkatone titers achieved with the BM3-AI–ADH-21
enzyme cascade under optimized reaction conditions.

Entry Scale[a] Cosolvent/additive (+)-Nootkatone (3) Nootkatol (2)[b]

[mL] [mM] [mg L�1] [%]

1[c] control DMSO (2 %) 0.22 48 28
2[d] 1 DMSO (2 %) 1.03 225 <2
3 20 DMSO (2 %) 1.01 221 <1
4[e] 1 methyl-b-CD (4 %) 1.54[f] 336 17

[a] Conditions: 25 8C, 20–21 h, Tris-HCl buffer (50 mm, pH 7.5 with 2 mm

MgCl2), DMSO (2 % v/v) or methyl-b-CD (4 % w/v), substrate 1 (10 mm), 2-
butanol (100 mm), NADH (400 mm), BM3-AI (5 mm), ADH-21 (500 mU mL�1),
catalase (600 U mL�1). [b] Percentage of 2 of formed C2-oxidized products
(estimated from GC peak areas). [c] Control (1 mL) without ADH-21.
[d] Reactions with either NADH or NAD+ showed similar results. [e] NAD+

was applied as cofactor. [f] Value represents the average of three inde-
pendent experiments. The maximal value observed in a single experiment
was 1.65 mm (360 mg L

�1). Errors are <10 %.
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