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gates between the chiral lithium amide and !-lithio-2-alkyl 

pyridines, supporting a hypothesis for the origin of enantio-

control. 

To identify the optimal reagent for the enantioselective al-

kylation, several chiral amines were screened first (Table 1).  

C2-Symmetrical amines (R)-1TA-3TA that gave excellent 

enantioselectivity in enediolate alkylation provided only 

moderate level of enantiocontrol (entries 1-3). In contrast, 

diamines such as (R)-1DA-4DA showed an improved enanti-

omeric ratio (er), with N-tert-butyl-substituted amine (R)-
1DA being the best (entries 5-8). Given the importance of 

additives for aggregation states of organolithium com-

pounds,12 we screened the effect of common lithium ligands. 

HMPA displayed an enhancement in both conversion (from 

22% to 55%) and er (from 87:13 to 97:3, entries 5,10). 

While LiBr also produced an increased er, the conversion was 

suppressed due to incomplete lithiation of the substrate. We 

found that in general, lithiation of 1a was inhibited by lithi-

um compounds, including n-BuLi itself. Toluene proved to 

be the optimal solvent; ethereal solvents (THF, Et2O, 1,4-
dioxane, 1,2-dimethoxyethane) resulted in no enantioselec-

tivity, while the use of hydrocarbon solvents (hexane, cyclo-

hexane) encountered solubility problem. 

Table 1. Identification of the optimal reaction conditions for 
benzylation of 2-butylpyridine.a 

 

entry amine additive yield(%) er, 2a 

1 (R)-1TAb - 31 74:26 

2 (R)-2TAb - 45 78:22 

3 (R)-3TAb - 20 53:47 

4 (R)-2TAb HMPA 65 65:35 

5 (R)-1DA - 22 87:13 

6 (R)-2DA - 25 64:36 

7 (R)-3DA - 21 73:27 

8 (R)-4DA - 32 79:21 

9 (R)-1DA LiBr 11 91:9 

10 (R)-1DA HMPA 55 97:3 

11 (R)-1DA DMPU 25 80:20 

12 (R)-1DA TMEDA 70 50:50 

aReaction conditions: 0.44 mmol butyl pyridine, 0.90 mmol 
n-BuLi, 0.45 mmol amine, 0.22 mmol additive, 0.53 mmol 
BnBr, toluene (5.0 mL), see the Supporting Information for 
details. Isolated yields are shown. Enantiomeric ratios (er) were 

determined by HPLC analysis. b3.03 equiv of n-BuLi were used. 

Table 2. Scope of alkyl halide 

 

aReaction conditions: All reactions were carried out on a 0.44 
mmol scale unless otherwise noted. Isolated yields are shown. 
Results are normalized to bases with the R configuration, enan-
tiomeric ratios (er) measured by HPLC analysis. b0.5 equiv of 
HMPA and 1.0 equiv of (R)-1DA were used. 

High enantioselectivity was obtained upon reaction of 1a 

with a range of activated electrophiles (Table 2). Methylation 

proceeded with enantiomer ratio of 93:7 (2a). Allyl bromide 

and methallyl bromide afforded alkylation products in 94:6 

er and 87:13 er, respectively (2b, 2c). High enantioselectivi-

ty was observed for a variety of benzylic bromides (2d-2i). 

Highly reactive heteroaromatic benzylic bromides proved to 

be effective alkylating agents. 2-Thienyl bromide and 2-
(bromomethyl)pyridine reacted rapidly to form 2j in 93:7 er 

and 2k in 99:1 er. Despite attempted additional refinement 

of reaction conditions, alkylation with 2-(bromomethyl)-1,3-
benzothiazole afforded 2l in 80:20 er. 

The scope of 2-alkylpyridines was investigated by enanti-

oselective benzylation employing the conditions developed 

for 1a; however, for several substrates improved results were 

achieved by modifying the stoichiometry of HMPA and the 

chiral lithium amide (Table 3). Increasing the length of the 
alkyl chain (3b) produced results similar to those observed 

during benzylation of 1a. Benzylation of 2-ethylpyridine 

(1c) occurred in similar yield (76%) but diminished er 

(85:15) compared to 1a. When the stoichiometry of the chi-
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ral amine and HMPA was reduced, the reaction proceeded 

with greater er (92:8) and somewhat reduced yield (58%). 

Table 3. Scope of 2-alkyl pyridines. 

 

aReaction conditions: All reactions were performed on a 0.44 
mmol scale unless otherwise noted. Isolated yields are shown. 
Results are normalized to bases with the R configuration, enan-
tiomeric ratios (er) measured by HPLC analysis. b0.5 equiv of 
HMPA and 1.0 equiv of (R)-1DA were used. c1.0 equiv of (R)-
1DA and 1.25 equiv of HMPA. d1.4 equiv of (R)-1DA and 1.0 
equiv of HMPA. LDA used instead of n-BuLi. e1.0 equiv of (R)-
1DA and no HMPA. 

Alkylation of tetrahydroquinoline 3d proceeded smoothly 

in very good yield and enantioselectivity. Branching at the !-
position of the C-2 alkyl chain (3e, 3f) had a detrimental 

impact on enantioselectivity under the standard conditions; 

however, when the amount of HMPA and chiral lithium am-

ide was reduced, excellent enantioselectivity was observed 

with only slightly diminished conversion.  

     Substrates containing "-branching (3g, 3h) were initially 

alkylated in poor er (<3:1) under the original procedure, but 

good results were observed by adjusting the quantity of 

HMPA to 1.25 equiv while lowering the amount of (R)-1DA 

to 1.0 equiv. Substrates with ",#-unsaturation were alkylated 

with poor er (<2:1), but #,$- and $,%-unsaturation was toler-

ated furnishing 3i and 3j with good enantioselectivity. Pyri-

dine 3k gave results identical to those observed for benzyla-

tion of 2-ethylpyridine, 3c. Quinolines are useful compounds 

in medicinal chemistry.17
,26

 Quinoline 3l was accessed with 

very good enantioselectivity by this protocol. Halogen sub-

stitution at the 6-position resulted in moderate erosion of 

enantioselectivity (3m, 3n). In contrast, C6-substitution 

with a methoxy group enhanced enantioselectivity, furnish-

ing 3o in 98:2 er. The presence of a morpholine group was 

detrimental, resulting in racemic product under the original 

conditions. Remarkably, in the absence of HMPA, a strong 

boost in er to 89:11 was observed (3p), potentially due to 

internal chelation.  

     When an ether or ketal are present at the #-position, an 

exceptional increase in enantioselectivity is observed (3q, 3r, 

3s). Benzylation of 1q also proceeded in very good yield 

(80%) and excellent er (97:3) in the absence of HMPA when 

(R)-1DA was replaced with the chiral amide (R)-3TA. Nota-

bly, no enhancement was observed upon alkylation of the 

1,3-dioxane 3t, in which no internal chelation by the !-alkoxy 

group is feasible.  

Table 4. Enantioselective alkylation of 2-(3-methoxy-1-
propyl)pyridine (1r). 

 

aReaction conditions: Reactions were performed on a 0.44 
mmol scale unless otherwise noted. Isolated yields are shown. 
Results are normalized to bases with the R configuration, enan-
tiomeric ratios, determined by HPLC analysis. 

We explored this intriguing enhancement of enantioselec-

tivity by the !-alkoxy substituents in greater detail, testing 

additional electrophiles with 1r (Table 4). Methylation oc-

curred in very good yield and excellent enantioselectivity 

(4a, er 99:1). Alkylation was also successful with less reactive 

electrophiles. Ethylation of 1a resulted in only 14% conver-

sion, however, under identical conditions 1r reacted with 
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aggregates involved in the alkylation reactions and allow for a 

structure-based design of new lithium amide reagents for 

expanded applications in the future. 
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