Electrochemical Radical δ -H Sulfonylation Reaction for the Synthesis of 4-((Aryl,Arylsul fonyl)methylene)-2,5-Cyclohexadiene Derivatives

Lei Dai, Qiuyu Yu, Jinghang Zhang, Fan Wu, Chang Wang,* Jinpeng Zhang,* and Liangce Rong*

INTRODUCTION

regional selectivity.

Sulfone derivatives widely exist in a number of bioactive natural products and pharmaceuticals with various activities. For instance, intepirdine, **PVT-101**, could be used to treat Alzheimer's disease.¹ The indole skeleton containing a sulfone moiety (**K103N–Y181C 150**) is an important anti-HIV drug.² Vismodegib was a recently approved antitumor drug.³ Bicalutamide is always used in treatment of prostate cancer (Figure 1).⁴ Consequently, chemists have paid much attention to the synthesis of sulfone compounds.⁵

Figure 1. Bioactive compounds with a sulfone moiety.

para-Quinone methide (*p*-QM) derivatives are the significant structural motifs present in many naturally occurring compounds with important biological activities,⁶ which were extensively used in lignin biosynthesis,⁷ adrenergic receptors,⁸ enzyme inhibition,⁹ DNA alkylation,¹⁰ and cross-linking reactions.¹¹ In general , *p*-QMs are well applied to organic synthesis with the three main approaches. First, *p*-QMs, as versatile Michael acceptors, are unique feedstocks for 1,6-addition¹² and 1,6-addition cyclization,¹³

and these kinds of reactions are well developed (Scheme 1, previous work a). Second, many examples have been reported about *p*-QMs involving in 1,6-addition—dearomatization reactions (Scheme 1, previous work b).¹⁴ Third, the radical mode 1,6-addition reactions of *p*-QMs were also reported by a few research groups (Scheme 1, previous work c).¹⁵ Recently, the reactions of *p*-QMs with some sulfonation reagents (ArSO₂Na,¹⁶ CF₃SO₂Na,¹⁷ and ArSO₂NHNH2¹⁸) to give corresponding products with a sulfone moiety (except for CF₃SO₂Na) have been reported by the different researchers; however, they were still the 1,6-conjugate addition reaction.

In recent years, organic electrosynthesis has been widely used in organic synthesis to give compounds with molecular diversity.¹⁹ For instance, some vinyl sulfones derivatives were availably obtained via electrochemical synthesis.²⁰ As a part of our current study on the reactions of *p*-QMs,²¹ herein, we developed an electrochemical radical δ -H sulfonylation reaction of *p*-QMs and sodium sulfinates to furnish 4-((aryl,arylsulfonyl)methylene)-2,5-cyclohexadiene derivatives (Scheme 1, this work).

RESULTS AND DISCUSSION

excellent regional selectivity

In order to achieve our assumption, we commenced the study by investigating the electrochemical reaction of 2,6-di*tert*butyl-4-(2-methylbenzylidene)cyclohexa-2,5-dien-1-one **1a** and sodium benzenesulfinate **2a** (Table 1) in the presence of platinum plate as a cathode, the reticulated vitreous carbon

 Received:
 May 24, 2021

 Published:
 July 22, 2021

ACS Publications

© 2021 American Chemical Society

Scheme 1. Previous Work and the Current Reaction

(RVC) as a anode, along with NaI (2 equiv) as a additive in CH₃CN at room temperature under 10 mA current for 3 h. Pleasurably, the desired product 3a was obtained in 26% yield (Table 1, entry 1). Then, other additives, such as KI, NH₄I, TBAI, and LiI, were tested in the reaction, but they all showed poor performance (Table 1, entries 2-5). Additionally, compared with CH₃CN, other aprotic solvents were not suitable for this reaction (Table 1, entries 6-8). To our delight, the reaction was significantly improved in the mixed solvents of CH₃CN and H₂O (entry 9), which prompted us to further investigate the reaction in different ratios of mixed solvents (entries 10-15). The results showed that the highest yield was obtained when the volume ratio of acetonitrile to water was 4:0.25 (entry 14). The amounts of NaI, constant current, and reaction time were all carefully screened (entries 16-23), which showed 2 equiv of NaI, a 5 mA current, and 3 h reaction time were sufficient to ensure the successful completion of the reaction. In addition, it was found that, when the reaction was carried out under a N2 condition (Table 1, entry 24), the yield of the reaction did not change much. The results were summarized in Table 1.

Under the optimized conditions, the reaction scope about the p-QMs and the sodium sulfinates was examined carefully (Table 2). At first, the reaction of various substituted p-QMs and sodium benzensulfinate was tested under optimized conditions. In general, the yields of the electron-donating groups (Me, MeO) on the *ortho*-substituted phenol ring of p-QMs were better than that of electron-withdrawing (Cl) group. For instance, we clearly found that the yields of the p-QMs with 2-Me or 2-MeO groups are better than that of 2-Cl group (3a 89% and 3b 85% vs 3c 74%). The p-QMs with para-substituents have the similar reaction results (3d, 3f, 3g vs 3e, 3h). It also found when the number of electrondonoring groups in p-QMs increased to 2 and 3, and the yields of the reaction improved significantly (3i-31). Next, we studied the reactions of sodium 4-methylbenzenesulfinate with p-QMs bearing different substituted groups, and corresponding products (3m-3p) could be obtained with good yields. In particular, the yields of the reaction increased significantly when electron-donating groups were both available on p-QMs and sodium sulfinate (30, 3p). Subsequently, other electron-donating groups (MeO, *t*-Bu) on sodium phenyl sulfinate could give similar results of sodium 4-methylbenzenesulfinate, in which both electronwithdrawing and electron-donating groups of p-QMs were well tolerated in the reaction condition to afford the corresponding products (3q-3aa) with high yields. We further investigated the reactions of sodium sulfinate with the halogen atom group (F, Cl). It was found that the reactions were worse than that of sodium benzensulfinate (3ab-3ah). The sodium sulfinate with the strong electron-withdrawing group (CF₃, NO₂) could also be used in this synthesis strategy (3ai, 3aj), and sodium 2-naphthalenesulfinate was the efficient sulfonated reagent to give product 3ak with 83% yield. As the isopropyl replaced the tertiary butyl in *p*-QMs, the reactions were carried out smoothly to give correspond-

Table 1. Screening of the Reaction Conditions⁴

entry	additive	solvent	current (mA)	time (h)	yield (% ^b)
1	NaI (2 equiv)	CH ₃ CN	10	3	26
2	KI (2 equiv)	CH ₃ CN	10	3	15
3	NH ₄ I (2 equiv)	CH ₃ CN	10	3	10
4	TBAI (2 equiv)	CH ₃ CN	10	3	trace
5	LiI (2 equiv)	CH ₃ CN	10	3	20
6	NaI (2 equiv)	DMSO	10	3	5
7	NaI (2 equiv)	THF	10	3	10
8	NaI (2 equiv)	toluene	10	3	trace
9	NaI (2 equiv)	$CH_{3}CN/H_{2}O$ (1:1)	10	3	38
10	NaI (2 equiv)	$CH_{3}CN/H_{2}O$ (2:1)	10	3	41
11	NaI (2 equiv)	$CH_{3}CN/H_{2}O$ (3:1)	10	3	53
12	NaI (2 equiv)	$CH_{3}CN/H_{2}O$ (4:1)	10	3	60
13	NaI (2 equiv)	CH_3CN/H_2O (4:0.5)	10	3	71
14	NaI (2 equiv)	CH_3CN/H_2O (4:0.25)	10	3	80
15	NaI (2 equiv)	$CH_{3}CN/H_{2}O$ (4:0.1)	10	3	52
16	NaI (2 equiv)	CH_3CN/H_2O (4:0.25)	5	3	89
17	NaI (2 equiv)	CH ₃ CN/H ₂ O (4:0.25)	20	3	60
18	NaI (1 equiv)	CH_3CN/H_2O (4:0.25)	5	3	42
19	NaI (3 equiv)	CH_3CN/H_2O (4:0.25)	5	3	87
20		CH_3CN/H_2O (4:0.25)	5	3	NR ^c
21	NaI (2 equiv)	$CH_{3}CN/H_{2}O$ (4:0.25)	0	3	NR
22	NaI (2 equiv)	CH_3CN/H_2O (4:0.25)	5	4	88
23	NaI (2 equiv)	CH ₃ CN/H ₂ O (4:0.25)	5	5	87
24	NaI (2 equiv)	CH_3CN/H_2O (4:0.25)	5	4	85 ^d

^{*a*}Undivided cell, RVC anode (100 PPI, 1 cm \times 1 cm \times 1.2 cm), Pt cathode (1 cm \times 1 cm), constant current at 5.0 mA, 1a (0.3 mmol), 2a (0.6 mmol), additive (2.0 equiv), solvent (4–4.25 mL), room temperature, under air. ^{*b*}Isolated yield. ^{*c*}No reaction. ^{*d*}In N₂.

ing products (3al-3ap) with good yields. In addition, the structure of product was confirmed by the X-crystal diffraction analysis of 3l. The results were listed in Table 2.

In order to further study this synthesis, we designed substrate 1' to investigate the regioselectivity of the reaction. It could be found that the reactions were still taken place at the original alkene position, rather than the allyl (4a-4h)and alkyne bond (4i, 4j), which indicated this electrochemical radical δ -H sulfonylation reaction had the high regioselectivity. The obtained crystal structure 4a further confirmed this result (Table 3).

Then, a series of control experiments was performed to study the mechanism. Compounds 1b and 2a were carried out under standard conditions with TEMPO (2 equiv), and the trace 2b could be found. While BHT (2 equiv) was used in the experiment, the reaction was completely inhibited, and the radical capture product 5 was obtained, which confirmed that this reaction was a radical pathway. In addition, the good yield could still be obtained after the substrates were increased 10-fold. The reactions were shown in Scheme 2.

On the basis of the above results and reported literature,²⁰ the possible electrochemical pathways was given in Scheme 3. Initially, iodine is oxidized at the anode to obtain elemental iodine, which reacted with sodium sulfinate to form sulforyl iodide **A**. Then, radical **B** and iodine radical were generated by the homolysis of **A**. The iodine radical generated

elemental iodine and participated in the reaction cycle again. Subsequently, **B** reacted with *p*-QMs **1** produce radical intermediate **C**, which loses an electron to the current to give intermediate **D**. Under the help of iodide, the desired product **3** could be obtained by elimination of a H^+ , and then the H^+ participated in the reduction reaction on the cathode with H_2O to release H_2 .

CONCLUSION

In summary, a novel electrochemical radical δ -H sulfonylation reaction of *p*-QMs and sodium arlysulfinate has been well established with the assistance of NaI under mild conditions. A wide range of substrates are tolerated in this transformation, and various products can be obtained in moderate to good yields. To the best of our knowledge, this is the first example of a radical reaction about *p*-QMs and sodium sulfinates.

EXPERIMENTAL SECTION

General Information. Unless otherwise noted, all reagents were purchased from commercial suppliers without further purification. All reactions were carried out under air conditions using IKA ElectraSyn 2.0 Pro with undivided cell. *para*-Quinone methides^{14,22} and sodium sulfinates²³ were synthesized according to known literature procedures. Melting points were determined on an XT-5 microscopic melting point apparatus and were uncorrected. NMR

Table 2. Substrate Scope of the p-QMs and Sodium Sulfinate^a

^{*a*}Reaction conditions: undivided cell, RVC anode (100 PPI, 1 cm \times 1 cm \times 1.2 cm), Pt cathode (1 cm \times 1 cm), constant current at 5.0 mA, **1a** (0.3 mmol), **2a** (0.6 mmol), NaI (2.0 equiv), CH₃CH/H₂O = 4:0.25 (4.25 mL), room temperature, 3–4 h (monitored by TLC), under air. ^{*b*}Isolated yield.

spectra were recorded on a Bruker 400 spectrometer (¹H, 400 MHz; ¹³C, 100 MHz). Chemical shifts were reported in ppm downfield and referenced as follows: ¹H, residual internal CDCl₃ (δ 7.31 ppm); ¹³C, internal CDCl₃ (δ 77.23 ppm). Coupling constants (J) were quoted in hertz (Hz). The following abbreviations were used to explain the multiplicities: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet). HRMS was obtained on a Bruker micrOTOF-Q 134 instrument; X-ray diffractions were recorded on a Siemens P4 or Simart-1000 diffractometer. All the reactions were monitored by thin-layer chromatography (TLC). Flash chromatography separations were performed on 300–400 mesh silica gel.

General Procedure for the Synthesis of 3 and 4. para-Quinone methides 1 or 1' (0.3 mmol), sodium sulfinates 2 (0.6 mmol, 2 equiv), NaI (0.6 mmol, 2 equiv), and mixed solvents (4.25 mL, CH₃CN/H₂O = 4:0.25) were added in a reaction tube equipped with a reticulated vitreous carbon RVC (100 PPI, 1 cm \times 1 cm \times 1.2 cm) anode and a platinum plate (1 cm \times 1 cm) cathode. The reaction was stirred at 5 mA under room temperature about 3–4 h until TLC revealed the absence of the starting material. Then the reaction was quenched by brine (10 mL), and the resultant mixture was extracted with EtOAc (3 \times 5 mL). The combined extracts were washed sequentially with water (10 mL) and brine (10 mL) and dried over NaSO₄. The extract was concentrated under reduced pressure, and the residue was purified by flash column chromatography (petroleum ether/EtOAc = 10:1–40:1) to yield the corresponding product 3 and 4.

Table 3. Substrate Scope of the Allyl p-QMs and Sodium Sulfinate^a

^{*a*}Reaction conditions: undivided cell, RVC anode (100 PPI, 1 cm × 1 cm × 1.2 cm), Pt cathode (1 cm × 1 cm), constant current at 5.0 mA, 1a (0.3 mmol), 2a (0.6 mmol), NaI (2.0 equiv), CH₃CH/H₂O = 4:0.25 (4.25 mL), room temperature, 3–4 h (monitored by TLC), under air. ^{*b*}Isolated yield.

General Procedure for Radical Trapping Reaction. para-Quinone methide 1b (0.3 mmol), sodium sulfinates 2a (0.6 mmol), sodium iodide (2 equiv, 90 mg), BHT (0.6 mmol, 132 mg), and mixed solvent CH_3CN/H_2O (v/v = 4:0.25, 4.25 mL) were added in a reaction flask. The reaction flask was equipped with an RVC electrode ($1.0 \times 1.0 \times 1.2 \text{ cm}^3$) as an anode and a Pt electrode as a cathode ($1.0 \times 1.0 \text{ cm}^2$). The solution was stirred and electrolyzed at a constant current (5 mA) without a reference electrode for 4 h at room temperature, and the radical capture product 5 was obtained.

2,6-Di-tert-butyl-4-((phenylsulfonyl)(o-tolyl)methylene)cyclohexa-2,5-dien-1-one (**3a**). Yellow solid. Isolated yield: 89% (120 mg) (eluent: petroleum ether/EtOAc = 20:1). Mp: 130–131 °C. ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 8.70 (d, J = 2.8 Hz, 1H), 7.70–7.66 (m, 2H), 7.61–7.55 (m, 1H), 7.47–7.41 (m, 2H), 7.31–7.27 (m, 1H), 7.18–7.12 (m, 2H), 6.97 (d, J = 6.8 Hz, 1H), 6.32 (d, J = 2.4 Hz, 1H), 1.98 (s, 3H), 1.37 (s, 9H), 1.03 (s, 9H). ¹³C{¹H} NMR (100 MHz, CDCl₃) (δ , ppm): 186.1, 151.9, 151.1, 147.2, 140CH₃CN:H₂O.0, 138.6, 136.5, 133.7, 132.1, 131.1, 130.2, 130.1, 129.8, 128.9, 128.7, 126.3, 125.4, 36.1, 35.5, 29.7, 29.3, 20.0. HRMS (ESI-TOF): m/z calcd for C₂₈H₃₂NaO₃S⁺, 471.1970; found [M + Na]⁺, 471.1963.

2,6-Di-tert-butyl-4-((2-methoxyphenyl)(phenylsulfonyl)methylene)cyclohexa-2,5-dien-1-one (**3b**). Yellow solid. Isolated yield: 85% (118 mg) (eluent: petroleum ether/EtOAc = 20:1). Mp: 152–153 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 8.51 (d, J = 2.8 Hz, 1H), 7.75–7.71 (m, 2H), 7.55–7.51 (m, 1H), 7.43–7.38 (m, 2H), 7.38–7.34 (m, 1H), 7.21 (dd, $J_1 = 7.6$ Hz, $J_2 = 1.6$ Hz, 1H), 7.02–6.98 (m, 1H), 6.74 (d, J = 8.0 Hz, 1H), 6.45 (d, J = 2.4 Hz, 1H), 3.53 (s, 3H), 1.33 (s, 9H), 1.06 (s, 9H). ¹³C{¹H} NMR (100 MHz, CDCl₃) (δ , ppm): 186.3, 157.4, 151.1, 150.6, 145.6, 140.8, 136.5, 133.3, 132.3, 131.6, 130.8, 128.5, 128.4, 126.5, 121.4, 120.4, 110.6, 55.3, 36.0, 35.5, 29.7, 29.3. HRMS (ESI-TOF): m/z calcd for C₂₈H₃₂NaO₄S⁺, 487.1919; found [M + Na]⁺, 487.1923.

2,6-Di-tert-butyl-4-((2-chlorophenyl)(phenylsulfonyl)methylene)cyclohexa-2,5-dien-1-one (**3c**). Yellow solid. Isolated yield: 74% (104 mg) (eluent: petroleum ether/EtOAc = 20:1). Mp: 137–138 °C. ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 8.62 (d, J = 2.4 Hz, 1H), 7.74–7.71 (m, 2H), 7.58 (t, J = 7.6 Hz, 1H), 7.44 (t, J = 8.0 Hz, 2H), 7.39–7.36 (m, 1H), 7.36–7.30 (m, 3H), 6.31 (d, J = 2.8 Hz, 1H), 1.36 (s, 9H), 1.06 (s, 9H). ¹³C{¹H} NMR (100 MHz, CDCl₃) (δ , ppm): 186.1, 152.1, 151.5, 144.2, 139.9, 137.3, 135.2, 133.8, 132.9, 131.6, 131.1, 130.1, 129.5, 128.9, 128.7, 126.6, 126.1, 36.2, 35.6, 29.7, 29.3. HRMS (ESI-TOF): m/z calcd for $C_{27}H_{29}CINaO_3S^+$, 491.1424; found $[M + Na]^+$, 491.1420.

2,6-Di-tert-butyl-4-((phenylsulfonyl)(p-tolyl)methylene)cyclohexa-2,5-dien-1-one (**3d**). Yellow solid. Isolated yield: 85% (114 mg) (eluent: petroleum ether/EtOAc = 20:1). Mp: 188–189 °C. ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 8.67 (s, 1H), 7.66 (d, J = 7.6 Hz, 2H), 7.56 (t, J = 6.8 Hz, 1H), 7.44 (t, J = 7.2 Hz, 2H),

Scheme 2. Radical Trapping, Control Reaction, and Scalability

Scheme 3. A Plausible Mechanism

7.14 (d, J = 7.2 Hz, 2H), 7.00 (d, J = 7.2 Hz, 2H), 6.50 (s, 1H), 2.38 (s, 3H), 1.35 (s, 9H), 1.06 (s, 9H). $^{13}C{^{1}H}$ NMR (100 MHz, CDCl₃) (δ , ppm): 186.2, 151.3, 151.0, 147.9, 140.6, 139.7, 136.5, 133.5, 131.5, 130.9, 129.7, 129.0, 128.7, 128.3, 126.7, 36.2, 35.6, 29.8, 29.4, 21.5. HRMS (ESI-TOF): m/z calcd for $C_{28}H_{32}NaO_3S^+$, 471.1970; found [M + Na]⁺, 471.1975.

4-((3,5-Di-tert-butyl-4-oxocyclohexa-2,5-dien-1-ylidene)-(phenylsulfonyl)methyl)benzonitrile (**3e**). Yellow solid. Isolated yield: 75% (103 mg) (eluent: petroleum ether/EtOAc = 20:1). Mp: 209–210 °C. ¹H NMR (400 MHz, CDCl₃) (δ, ppm): 8.71 (d, J = 2.4 Hz, 1H), 7.70 (d, J = 8.0 Hz, 4H), 7.65 (d, J = 8.0 Hz, 1H), 7.53 (t, J = 7.6 Hz, 2H), 7.30 (d, J = 8.0 Hz, 2H), 6.33 (d, J = 2.8Hz, 1H), 1.42 (s, 9H), 1.09 (s, 9H). ¹³C{¹H} NMR (100 MHz, CDCl₃) (δ, ppm): 185.9, 152.6, 152.1, 144.9, 139.9, 137.8, 137.2, 134.2, 132.3, 131.8, 129.6, 129.4, 128.2, 126.1, 118.1, 113.5, 36.3, 35.8, 29.7, 29.3. HRMS (ESI-TOF): m/z calcd for C₂₈H₂₉NNaO₃S⁺, 482.1766; found [M + Na]⁺, 482.1771.

2,6-Di-tert-butyl-4-((4-methoxyphenyl)(phenylsulfonyl)methylene)cyclohexa-2,5-dien-1-one (**3f**). Yellow solid. Isolated yield: 84% (117 mg) (eluent: petroleum ether/EtOAc = 20:1). Mp: 113–114 °C. ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 8.67 (d, J = 2.8 Hz, 1H), 7.67–7.64 (m, 2H), 7.56 (t, J = 7.6 Hz, 1H), 7.44 (t, J = 7.6 Hz, 2H), 7.06 (d, J = 8.8 Hz, 2H), 6.87–6.84 (m, 2H), 6.53 (d, J = 2.8 Hz, 1H), 3.85 (s, 3H), 1.35 (s, 9H), 1.07 (s, 9H). ¹³C{¹H} NMR (100 MHz, CDCl₃) (δ , ppm): 186.2, 160.5, 151.2, 150.9, 147.5, 140.6, 136.6, 133.5, 133.2, 130.9, 129.0, 128.1, 126.7, 124.5, 113.5, 55.4, 36.1, 35.6, 29.7, 29.3. HRMS (ESI-TOF): m/z calcd for C₂₈H₃₂NaO₄S⁺, 487.1919; found [M + Na]⁺, 487.1928.

2,6-Di-tert-butyl-4-((4-(methylthio)phenyl)(phenylsulfonyl)methylene)cyclohexa-2,5-dien-1-one (**3g**). Yellow solid. Isolated yield: 82% (118 mg) (eluent: petroleum ether/EtOAc = 40:1). Mp: 189–190 °C. ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 8.71 (d, J = 2.4 Hz, 1H), 7.71 (d, J = 8.0 Hz, 2H), 7.62 (t, J = 7.2 Hz, 1H), 7.50 (t, J = 7.8 Hz, 2H), 7.23 (d, J = 8.4 Hz, 2H), 7.09 (d, J = 8.0 Hz, 2H), 6.56 (d, J = 2.4 Hz, 1H), 2.56 (s, 3H), 1.40 (s, 9H), 1.12 (s, 9H). ¹³C{¹H} NMR (100 MHz, CDCl₃) (δ , ppm): 186.2, 151.5, 151.1, 147.2, 141.4, 140.5, 136.7, 133.7, 132.0, 130.7, 129.1, 128.8, 128.2, 126.7, 125.0, 36.2, 35.7, 29.7, 29.4, 15.1. HRMS (ESI-TOF): m/z calcd for C₂₈H₃₂NaO₃S₂⁺, 503.1691; found [M + Na]⁺, 503.1695.

4-((4-Bromophenyl)(phenylsulfonyl)methylene)-2,6-di-tert-butylcyclohexa-2,5-dien-1-one (**3h**). Yellow solid. Isolated yield: 78% (120 mg) (eluent: petroleum ether/EtOAc = 20:1). Mp: 140–141 °C. ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 8.68 (d, J = 2.4 Hz, 1H), 7.66 (d, J = 7.2 Hz, 2H), 7.59 (t, J = 7.6 Hz, 1H), 7.51–7.44 (m, 4H), 6.99 (d, J = 8.4 Hz, 2H), 6.42 (d, J = 2.8 Hz, 1H), 1.36 (s, 9H), 1.07 (s, 9H). ¹³C{¹H} NMR (100 MHz, CDCl₃) (δ , ppm): 186.1, 152.0, 151.5, 146.0, 140.2, 136.9, 133.9, 133.1, 131.7, 131.4, 130.2, 129.2, 128.2, 126.4, 124.3, 36.2, 35.8, 29.8, 29.4. HRMS (ESI-TOF): m/z calcd for C₂₇H₂₉BrNaO₃S⁺, 535.0918; found [M + Na]⁺, 535.0905.

2,6-Di-tert-butyl-4-((2,5-dimethoxyphenyl)(phenylsulfonyl)methylene)cyclohexa-2,5-dien-1-one (**3i**). Yellow solid. Isolated yield: 86% (128 mg) (eluent: petroleum ether/EtOAc = 10:1). Mp: 150–151 °C. ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 8.51 (d, *J* = 2.8 Hz, 1H), 7.79–7.74 (m, 2H), 7.56–7.51 (m, 1H), 7.44–7.39 (m, 2H), 6.91 (dd, *J*₁ = 9.2 Hz, *J*₂ = 3.2 Hz, 1H), 6.78 (d, *J* = 3.2 Hz, 1H), 6.67 (d, *J* = 9.2 Hz, 1H), 6.47 (d, *J* = 2.8 Hz, 1H), 3.77 (s, 3H), 3.48 (s, 3H), 1.33 (s, 9H), 1.07 (s, 9H). ¹³C{¹H} NMR (100 MHz, CDCl₃) (δ , ppm): 186.3, 153.1, 151.6, 151.3, 150.7, 145.0, 140.9, 136.7, 133.3, 130.8, 128.5, 126.5, 121.8, 117.3, 117.1, 111.6, 56.0, 55.7, 36.1, 35.6, 29.7, 29.4. HRMS (ESI-TOF): *m/z* calcd for C₂₉H₃₄NaO₅S⁺, 517.2025; found [M + Na]⁺, 517.2010. 4-((5-Bromo-2-methoxyphenyl)(phenylsulfonyl)methylene)-2,6di-tert-butylcyclohexa-2,5-dien-1-one (**3***j*). Yellow solid. Isolated yield: 81% (132 mg) (eluent: petroleum ether/EtOAc = 20:1). Mp: 178–179 °C. ¹H NMR (400 MHz, CDCl₃) (δ, ppm): 8.48 (d, *J* = 2.4 Hz, 1H), 7.77–7.73 (m, 2H), 7.58–7.54 (m, 1H), 7.49–7.43 (m, 3H), 7.32 (d, *J* = 2.4 Hz, 1H), 6.65 (d, *J* = 8.8 Hz, 1H), 6.40 (d, *J* = 2.8 Hz, 1H), 3.54 (s, 3H), 1.32 (s, 9H), 1.08 (s, 9H). ¹³C{¹H} NMR (100 MHz, CDCl₃) (δ, ppm): 186.2, 156.6, 151.7, 151.1, 143.5, 140.7, 137.1, 134.6, 134.2, 133.5, 130.3, 128.7, 128.5, 126.3, 123.5, 112.5, 112.3, 55.7, 36.2, 35.6, 29.7, 29.4. HRMS (ESI-TOF): *m*/*z* calcd for C₂₈H₃₁BrNaO₄S⁺, 565.1024; found [M + Na]⁺, 565.1020.

4-(Benzo[d][1,3]dioxol-5-yl(phenylsulfonyl)methylene)-2,6-ditert-butylcyclohexa-2,5-dien-1-one (**3**k). Yellow solid. Isolated yield: 86% (123 mg) (eluent: petroleum ether/EtOAc = 15:1). Mp: 148–149 °C. ¹H NMR (400 MHz, CDCl₃) (δ, ppm): 8.64 (d, J = 2.4 Hz, 1H), 7.72–7.68 (m, 2H), 7.58 (t, J = 7.6 Hz, 1H), 7.46 (t, J = 7.6 Hz, 2H), 6.77–6.72 (m, 2H), 6.56 (d, J = 2.8 Hz, 1H), 6.47 (dd, $J_1 = 8.0$ Hz, $J_2 = 1.6$ Hz, 1H), 6.04 (d, J = 8.0 Hz, 2H), 1.35 (s, 9H), 1.09 (s, 9H). ¹³C{¹H} NMR (100 MHz, CDCl₃) (δ, ppm): 186.2, 151.4, 151.0, 148.8, 147.5, 147.1, 140.5, 136.8, 133.6, 130.7, 129.0, 128.1, 126.6, 126.2, 125.9, 111.8, 107.8, 101.7, 36.1, 35.6, 29.7, 29.4. HRMS (ESI-TOF): m/z calcd for C₂₈H₃₀NaO₃S⁺, 501.1712; found [M + Na]⁺, 501.1720.

2,6-Di-tert-butyl-4-((phenylsulfonyl)(3,4,5-trimethoxyphenyl)methylene)cyclohexa-2,5-dien-1-one (**3**). Yellow solid. Isolated yield: 88% (138 mg) (eluent: petroleum ether/EtOAc = 10:1). Mp: 144–145 °C. ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 8.72 (d, *J* = 2.8 Hz, 1H), 7.73–7.69 (m, 2H), 7.58 (t, *J* = 7.2 Hz, 1H), 7.46 (t, *J* = 8.4 Hz, 2H), 6.56 (d, *J* = 2.4 Hz, 1H), 6.29 (s, 2H), 3.88 (s, 3H), 3.72 (s, 6H), 1.37 (s, 9H), 1.09 (s, 9H). ¹³C{¹H} NMR (100 MHz, CDCl₃) (δ , ppm): 186.2, 152.7, 151.5, 151.3, 147.2, 140.3, 139.0, 136.5, 133.7, 130.7, 129.0, 128.5, 127.7, 126.5, 109.2, 61.2, 56.3, 36.2, 35.7, 29.8, 29.4. HRMS (ESI-TOF): *m*/*z* calcd for C₃₀H₃₆NaO₆S⁺, 547.2130; found [M + Na]⁺, 547.2132.

2,6-Di-tert-butyl-4-((2-chlorophenyl)(tosyl)methylene)cyclohexa-2,5-dien-1-one (**3m**). Yellow solid. Isolated yield: 80% (116 mg) (eluent: petroleum ether/EtOAc = 20:1). Mp: 156–157 °C. ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 8.62 (d, J = 2.8 Hz, 1H), 7.60 (d, J = 8.4 Hz, 2H), 7.37–7.32 (m, 4H), 7.23 (d, J = 8.0 Hz, 2H), 6.31 (d, J = 2.8 Hz, 1H), 2.41 (s, 3H), 1.36 (s, 9H), 1.06 (s, 9H). ¹³C{¹H} NMR (100 MHz, CDCl₃) (δ , ppm): 186.1, 151.9, 151.4, 145.0, 144.6, 137.1, 137.0, 135.2, 132.9, 131.9, 131.1, 130.2, 129.6, 129.5, 128.8, 126.6, 126.2, 36.2, 35.6, 29.8, 29.3, 21.8. HRMS (ESI-TOF): m/z calcd for C₂₈H₃₁ClNaO₃S⁺, 505.1580; found [M + Na]⁺, 505.1575.

2,6-Di-tert-butyl-4-(p-tolyl(tosyl)methylene)cyclohexa-2,5-dien-1-one (**3n**). Yellow solid. Isolated yield: 82% (114 mg) (eluent: petroleum ether/EtOAc = 20:1). Mp: 188–189 °C. ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 8.67 (d, *J* = 2.8 Hz, 1H), 7.54 (d, *J* = 8.4 Hz, 2H), 7.23 (d, *J* = 8.0 Hz, 2H), 7.14 (d, *J* = 7.6 Hz, 2H), 7.00 (d, *J* = 8.0 Hz, 2H), 6.49 (d, *J* = 2.8 Hz, 1H), 2.40 (s, 3H), 2.39 (s, 3H), 1.35 (s, 9H), 1.05 (s, 9H). ¹³C{¹H} NMR (100 MHz, CDCl₃) (δ , ppm): 186.3, 151.1, 150.8, 148.3, 144.6, 139.6, 137.7, 136.2, 131.5, 131.0, 129.8, 129.7, 128.7, 128.3, 126.8, 36.1, 35.6, 29.8, 29.4, 21.8, 21.5. HRMS (ESI-TOF): *m*/*z* calcd for C₂₉H₃₄NaO₃S⁺, 485.2126; found [M + Na]⁺, 485.2135.

4-((5-Bromo-2-methoxyphenyl)(tosyl)methylene)-2,6-di-tert-butylcyclohexa-2,5-dien-1-one (**30**). Yellow solid; solated yield: 86% (143 mg) (eluent: petroleum ether/EtOAc = 20:1). Mp: 207–208 °C. ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 8.49 (s, 1H), 7.62 (d, J = 7.6 Hz, 2H), 7.47 (d, J = 8.4 Hz, 1H), 7.29–7.22 (m, 3H), 6.68 (d, J = 8.8 Hz, 1H), 6.40 (s, 1H), 3.57 (s, 3H), 2.40 (s, 3H), 1.33 (s, 9H), 1.07 (s, 9H). ¹³C{¹H} NMR (100 MHz, CDCl₃) (δ , ppm): 186.2, 156.7, 151.5, 150.9, 144.6, 144.0, 137.8, 136.8, 134.6, 134.1, 130.4, 129.3, 128.5, 126.4, 123.7, 112.4, 55.8, 36.1, 35.6, 29.7, 29.4, 21.7. HRMS (ESI-TOF): *m*/*z* calcd for C₂₉H₃₃BrNaO₄S⁺, 579.1181; found [M + Na]⁺, 579.1172.

2,6-Di-tert-butyl-4-(tosyl(3,4,5-trimethoxyphenyl)methylene)cyclohexa-2,5-dien-1-one (**3p**). Yellow solid. Isolated yield: 90% (145 mg) (eluent: petroleum ether/EtOAc = 10:1). Mp: 155–156 °C. ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 8.70 (d, J = 2.0 Hz, 1H), 7.58 (d, J = 7.6 Hz, 2H), 7.25 (d, J = 8.0 Hz, 2H), 6.55 (d, J = 2.0 Hz, 1H), 6.29 (s, 2H), 3.88 (s, 3H), 3.73 (s, 6H), 2.40 (s, 3H), 1.36 (s, 9H), 1.08 (s, 9H). ¹³C{¹H} NMR (100 MHz, CDCl₃) (δ , ppm): 186.2, 152.6, 151.3, 151.1, 147.7, 144.8, 138.9, 137.4, 136.1, 130.8, 129.5, 128.5, 127.9, 126.6, 109.1, 61.1, 56.3, 36.1, 35.6, 29.7, 29.4, 21.6. HRMS (ESI-TOF): m/z calcd for C₃₁H₃₈NaO₆S⁺, 561.2287; found [M + Na]⁺, 561.2276.

2,6-Di-tert-butyl-4-((2-methoxyphenyl)((4-methoxyphenyl)sulfonyl)methylene)cyclohexa-2,5-dien-1-one (**3q**). Yellow solid. Isolated yield: 83% (123 mg) (eluent: petroleum ether/EtOAc = 15:1). Mp: 179–180 °C. ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 8.57 (d, *J* = 2.4 Hz, 1H), 7.65–7.61 (m, 2H), 7.39–7.34 (m, 1H), 7.18 (dd, *J*₁ = 7.6 Hz, *J*₂ = 1.6 Hz, 1H), 6.99 (td, *J*₁ = 7.2 Hz, *J*₂ = 0.8 Hz, 1H), 6.87–6.84 (m, 2H), 6.76 (d, *J* = 8.0 Hz, 1H), 6.43 (d, *J* = 2.4 Hz, 1H), 3.84 (s, 3H), 3.56 (s, 3H), 1.35 (s, 9H), 1.05 (s, 9H). ¹³C{¹H} NMR (100 MHz, CDCl₃) (δ , ppm): 186.3, 163.5, 157.3, 150.9, 150.4, 146.2, 135.9, 132.3, 132.2, 131.5, 130.9, 130.8, 126.6, 121.7, 120.3, 113.6, 110.5, 55.7, 55.3, 36.0, 35.4, 29.7, 29.3. HRMS (ESI-TOF): *m/z* calcd for C₂₉H₃₄NaO₅S⁺, 517.2025; found [M + Na]⁺, 517.2036.

2,6-Di-tert-butyl-4-((4-methoxyphenyl)((4-methoxyphenyl)sulfonyl)methylene)cyclohexa-2,5-dien-1-one (**3r**). Yellow solid. Isolated yield: 81% (120 mg) (eluent: petroleum ether/EtOAc = 20:1). Mp: 171–172 °C. ¹H NMR (400 MHz, DMSO- d_6) (δ , ppm) 8.61 (d, J = 2.4 Hz, 1H), 7.56 (d, J = 8.8 Hz, 2H), 7.11 (dd, $J_1 = 8.8$ Hz, $J_2 = 5.6$ Hz, 4H), 6.99 (s, 1H), 6.96 (s, 1H) 6.52 (d, J = 2.4 Hz, 1H), 3.83 (s, 3H), 3.80 (s, 3H), 1.30 (s, 9H), 1.02 (s, 9H). ¹³C{¹H} NMR (100 MHz, DMSO- d_6) (δ , ppm) 185.9, 164.0, 160.7, 150.4, 150.1, 150.0, 134.9, 133.4, 131.7, 131.5, 130.5, 127.1, 124.4, 115.4, 114.0, 56.5, 55.9, 36.2, 35.7, 29.9, 29.4. HRMS (ESI-TOF): m/z calcd for C₂₉H₃₄NaO₅S⁺, 517.2025; found [M + Na]⁺, 517.2020.

2,6-Di-tert-butyl-4-(((4-methoxyphenyl)sulfonyl)(3,4,5trimethoxyphenyl)methylene)cyclohexa-2,5-dien-1-one (**3s**). Yellow solid. Isolated yield: 90% (150 mg) (eluent: petroleum ether/ EtOAc = 10:1). Mp: 144–145 °C. ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 8.73 (d, *J* = 2.8 Hz, 1H), 7.61 (d, *J* = 8.8 Hz, 2H), 6.90 (d, *J* = 9.2 Hz, 2H), 6.54 (d, *J* = 2.8 Hz, 1H), 6.30 (s, 2H), 3.88 (s, 3H), 3.84 (s, 3H), 3.73 (s, 6H), 1.37 (s, 9H), 1.08 (s, 9H). ¹³C{¹H} NMR (100 MHz, CDCl₃) (δ , ppm): 186.3, 163.8, 152.6, 151.3, 151.1, 147.9, 139.0, 135.8, 131.8, 130.9, 130.8, 128.1, 126.7, 114.2, 109.2, 61.2, 56.4, 55.8, 36.2, 35.6, 29.8, 29.4. HRMS (ESI-TOF): m/ z calcd for C₃₁H₃₈NaO₇S⁺, 577.2236; found [M + Na]⁺, 577.2243.

2,6-Di-tert-butyl-4-(((4-(tert-butyl)phenyl)sulfonyl)(2methoxyphenyl)methylene)cyclohexa-2,5-dien-1-one (**3t**). Yellow solid. Isolated yield: 87% (136 mg) (eluent: petroleum ether/EtOAc = 20:1). Mp: 164–165 °C. ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 8.48 (d, J = 2.4 Hz, 1H), 7.66–7.63 (m, 2H), 7.43–7.40 (m, 2H), 7.39–7.35 (m, 1H), 7.20 (dd, J_1 = 7.6 Hz, J_2 = 2.0 Hz, 1H), 7.00 (td, J_1 = 7.6 Hz, J_2 = 0.8 Hz, 1H), 6.75 (d, J = 8.4 Hz, 1H), 6.45 (d, J = 2.4 Hz, 1H), 3.53 (s, 3H), 1.32 (s, 9H), 1.31 (s, 9H), 1.05 (s, 9H). ¹³C{¹H} NMR (100 MHz, CDCl₃) (δ , ppm): 186.4, 157.4, 157.2, 151.0, 150.5, 146.1, 137.9, 136.2, 132.3, 131.5, 130.9, 128.3, 126.7, 125.5, 121.6, 120.4, 110.5, 55.3, 36.0, 35.4, 35.2, 31.1, 29.7, 29.3. HRMS (ESI-TOF): *m*/z calcd for C₃₂H₄₀NaO₄S⁺, 543.2545; found [M + Na]⁺, 543.2534.

2,6-Di-tert-butyl-4-(((4-(tert-butyl)phenyl)sulfonyl)(p-tolyl)methylene)cyclohexa-2,5-dien-1-one (**3u**). Yellow solid. Isolated yield: 83% (126 mg) (eluent: petroleum ether/EtOAc = 20:1). Mp: 155–156 °C. ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 8.67 (d, *J* = 2.8 Hz, 1H), 7.64 (d, *J* = 8.8 Hz, 2H), 7.49 (d, *J* = 8.8 Hz, 2H), 7.19 (d, *J* = 8.0 Hz, 2H), 7.06 (d, *J* = 8.4 Hz, 2H), 6.56 (d, *J* = 2.4 Hz, 1H), 2.44 (s, 3H), 1.40 (s, 9H), 1.36 (s, 9H), 1.11 (s, 9H). ¹³C{¹H} NMR (100 MHz, CDCl₃) (δ , ppm): 186.3, 157.6, 151.1, 150.8, 148.5, 139.6, 137.6, 136.1, 131.3, 131.0, 129.8, 128.7, 128.1, 126.9, 126.0, 36.1, 35.6, 35.3, 31.1, 29.7, 29.3, 21.5. HRMS (ESI-TOF): *m*/*z* calcd for C₃₂H₄₀NaO₃S⁺, 527.2596; found [M + Na]⁺, 527.2587.

The Journal of Organic Chemistry

2,6-Di-tert-butyl-4-(((4-(tert-butyl)phenyl)sulfonyl)(4methoxyphenyl)methylene)cyclohexa-2,5-dien-1-one (**3v**). Yellow solid. Isolated yield: 88% (137 mg) (eluent: petroleum ether/EtOAc = 20:1). Mp: 140–141 °C. ¹H NMR (400 MHz, DMSO-d₆) (δ , ppm) 8.42 (d, *J* = 2.8 Hz, 1H), 7.65–7.60 (m, 4H), 7.18–7.13 (m, 2H), 7.01–6.97 (m, 2H), 6.56 (d, *J* = 2.4 Hz, 1H), 3.81 (s, 3H), 1.28 (s, 9H), 1.25 (s, 9H), 1.02 (s, 9H). ¹³C{¹H} NMR (100 MHz, DMSO-d₆) (δ , ppm) 185.9, 160.7, 157.9, 150.5, 150.1, 149.9, 137.9, 135.2, 133.4, 131.3, 127.8, 127.0, 124.2, 114.0, 55.8, 36.1, 35.6, 35.5, 31.1, 29.7, 29.3. HRMS (ESI-TOF): *m*/*z* calcd for C₃₂H₄₀NaO₄S⁺, 543.2545; found [M + Na]⁺, 543.2557.

4-((4-Bromophenyl)((4-(tert-butyl)phenyl)sulfonyl)methylene)-2,6-di-tert-butylcyclohexa-2,5-dien-1-one (**3w**). Yellow solid. Isolated yield: 80% (136 mg) (eluent: petroleum ether/EtOAc = 20:1). Mp: 150–151 °C. ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 8.63 (d, J = 2.4 Hz, 1H), 7.57 (d, J = 8.8 Hz, 2H), 7.50–7.45 (m, 4H), 7.00 (d, J = 8.4 Hz, 2H), 6.43 (d, J = 2.8 Hz, 1H), 1.35 (s, 9H), 1.32 (s, 9H), 1.07 (s, 9H). ¹³C{¹H} NMR (100 MHz, CDCl₃) (δ , ppm): 186.1, 158.0, 151.7, 151.3, 146.7, 137.2, 136.5, 133.0, 131.8, 131.3, 130.3, 128.1, 126.5, 126.2, 124.2, 36.1, 35.7, 35.4, 31.1, 29.7, 29.3. HRMS (ESI-TOF): m/z calcd for C₃₁H₃₇BrNaO₃S⁺, 591.1544; found [M + Na]⁺, 591.1534.

2,6-Di-tert-butyl-4-(((4-(tert-butyl)phenyl)sulfonyl)(2,5dimethoxyphenyl)methylene)cyclohexa-2,5-dien-1-one (**3x**). Yellow solid. Isolated yield: 86% (142 mg) (eluent: petroleum ether/ EtOAc = 10:1). Mp: 170–161 °C. ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 8.48 (d, *J* = 2.4 Hz, 1H), 7.67 (d, *J* = 8.8 Hz, 2H), 7.42 (d, *J* = 8.4 Hz, 2H), 6.91 (dd, *J*₁ = 8.8 Hz, *J*₂ = 3.2 Hz, 1H), 6.76 (d, *J* = 3.2 Hz, 1H), 6.68 (d, *J* = 8.8 Hz, 1H), 6.47 (d, *J* = 2.4 Hz, 1H), 3.76 (s, 3H), 3.48 (s, 3H), 1.32 (s, 9H), 1.31 (s, 9H), 1.07 (s, 9H). ¹³C{¹H} NMR (100 MHz, CDCl₃) (δ , ppm): 186.4, 157.3, 153.0, 151.7, 151.2, 150.6, 145.7, 137.9, 136.4, 130.9, 128.4, 126.6, 125.5, 122.0, 117.3, 117.0, 111.5, 56.0, 55.7, 36.1, 35.5, 35.3, 31.1, 29.7, 29.4. HRMS (ESI-TOF): *m/z* calcd for C₃₃H₄₂NaO₅S⁺, 573.2651; found [M + Na]⁺, 573.2653.

4-((*5*-Bromo-2-methoxyphenyl)/((4-(tert-butyl)phenyl)sulfonyl)methylene)-2,6-di-tert-butylcyclohexa-2,5-dien-1-one (**3y**). Yellow solid. Isolated yield: 84% (151 mg) (eluent: petroleum ether/EtOAc = 20:1). Mp: 120–121 °C. ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 8.47 (d, *J* = 2.8 Hz, 1H), 7.66 (d, *J* = 8.8 Hz, 2H), 7.48–7.44 (m, 3H), 7.26 (s, 1H), 6.66 (d, *J* = 8.8 Hz, 1H), 6.40 (d, *J* = 2.8 Hz, 1H), 3.55 (s, 3H), 1.32 (s, 9H), 1.31 (s, 9H), 1.08 (s, 9H). ¹³C{¹H} NMR (100 MHz, CDCl₃) (δ , ppm): 186.2, 157.6, 156.7, 151.6, 150.9, 144.0, 137.6, 136.7, 134.6, 134.1, 130.4, 128.4, 126.4, 125.7, 123.7, 112.4, 112.3, 55.7, 36.1, 35.6, 35.4, 31.1, 29.7, 29.4. HRMS (ESI-TOF): *m*/*z* calcd for C₃₂H₃₉BrNaO₄S⁺, 621.1650; found [M + Na]⁺, 621.1646.

4-(Benzo[d][1,3]dioxol-5-yl((4-(tert-butyl)phenyl)sulfonyl)methylene)-2,6-di-tert-butylcyclohexa-2,5-dien-1-one (**3**z). Yellow solid. Isolated yield: 87% (139 mg) (eluent: petroleum ether/EtOAc = 15:1). Mp: 165–166 °C. ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 8.60 (d, *J* = 2.4 Hz, 1H), 7.62 (d, *J* = 8.4 Hz, 2H), 7.47 (d, *J* = 8.8 Hz, 2H), 6.75 (d, *J* = 8.0 Hz, 1H), 6.73 (d, *J* = 1.6 Hz, 1H), 6.57 (d, *J* = 2.4 Hz, 1H), 6.50 (dd, *J*₁ = 8.0 Hz, *J*₂ = 1.6 Hz, 1H), 6.03 (d, *J* = 12.4 Hz, 2H), 1.34 (s, 9H), 1.32 (s, 9H), 1.09 (s, 9H). ¹³C{¹H} NMR (100 MHz, CDCl₃) (δ , ppm): 186.2, 157.7, 151.2, 150.9, 148.8, 147.8, 147.5, 137.6, 136.5, 130.9, 128.1, 126.8, 126.2, 126.1, 111.8, 107.8, 101.7, 36.2, 35.7, 35.4, 31.1, 29.8, 29.4. HRMS (ESI-TOF): *m*/*z* calcd for C₃₂H₃₈NaO₅S⁺, 557.2338; found [M + Na]⁺, 557.2331.

2,6-Di-tert-butyl-4-(((4-(tert-butyl)phenyl)sulfonyl)(3,4,5rimethoxyphenyl)methylene)cyclohexa-2,5-dien-1-one (**3aa**). Yellow solid. Isolated yield: 89% (155 mg) (eluent: petroleum ether/ EtOAc = 10:1). Mp: 170–171 °C. ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 8.71 (d, J = 2.4 Hz, 1H), 7.61 (d, J = 8.8 Hz, 2H), 7.47– 7.43 (m, 2H), 6.55 (d, J = 2.4 Hz, 1H), 6.27 (s, 2H), 3.87 (s, 3H), 3.71 (s, 6H), 1.36 (s, 9H), 1.31 (s, 9H), 1.08 (s, 9H). ¹³C{¹H} NMR (100 MHz, CDCl₃) (δ , ppm): 186.3, 157.8, 152.6, 151.4, 151.1, 147.7, 138.9, 137.2, 136.0, 130.8, 128.4, 127.9, 126.6, 125.9, 109.0, 61.1, 56.2, 36.1, 35.6, 35.3, 31.1, 29.7, 29.4. HRMS (ESI- TOF): m/z calcd for $C_{34}H_{44}NaO_6S^+$, 603.2756; found $[M + Na]^+$, 603.2765.

2, 6-Di-tert-butyl-4-(((4-fluorophenyl)sulfonyl)(4methoxyphenyl)methylene)cyclohexa-2,5-dien-1-one (**3ab**). Yellow solid. Isolated yield: 75% (108 mg) (eluent: petroleum ether/ EtOAc = 20:1). Mp: 180–181 °C. ¹H NMR (400 MHz, DMSO-d₆) (δ , ppm) 8.57 (s, 1H), 7.71 (s, 2H), 7.44 (t, J = 8.4 Hz, 2H), 7.12 (d, J = 8.4 Hz, 2H), 6.97 (d, J = 8.4 Hz, 2H), 6.53 (s, 1H), 3.79 (s, 3H), 1.29 (s, 9H), 1.03 (s, 9H). ¹³C{¹H} NMR (100 MHz, DMSO-d₆) (δ , ppm) 185.9, 165.6 (d, J_{C-F} = 252.8 Hz), 160.8, 150.7, 150.4, 148.9, 136.5 (d, J_{C-F} = 2.3 Hz), 135.6, 133.5, 131.5, 131.3 (d, J_{C-F} = 5.7 Hz), 126.8, 124.0, 117.4 (d, J_{C-F} = 23.0 Hz), 114.1, 55.9, 36.2, 35.7, 29.8, 29.4. HRMS (ESI-TOF): m/z calcd for C₂₈H₃₁FNaO₄S⁺, 505.1825; found [M + Na]⁺, 505.1834.

4-((5-Bromo-2-methoxyphenyl)((4-fluorophenyl)sulfonyl)methylene)-2,6-di-tert-butylcyclohexa-2,5-dien-1-one (**3ac**). Yellow solid. Isolated yield: 75% (126 mg) (eluent: petroleum ether/ EtOAc = 20:1). Mp: 189–190 °C. ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 8.50 (d, J = 2.8 Hz, 1H), 7.76–7.70 (m, 2H), 7.48 (dd, $J_1 =$ 8.8 Hz, $J_2 = 2.4$ Hz, 1H), 7.35 (d, J = 2.4 Hz, 1H), 7.10 (t, J = 8.4Hz, 2H), 6.65 (d, J = 9.2 Hz, 1H), 6.37 (d, J = 2.4 Hz, 1H), 3.54 (s, 3H), 1.34 (s, 9H), 1.08 (s, 9H). ¹³C{¹H} NMR (100 MHz, CDCl₃) (δ , ppm): 186.1, 156.5, 151.9, 151.3, 142.8, 137.2, 136.5(d, $J_{C-F} = 2.7$ Hz), 134.8, 134.4, 131.4 (d, $J_{C-F} = 9.6$ Hz), 130.2, 126.1, 123.4, 115.9 (d, $J_{C-F} = 22.6$ Hz), 112.6, 112.3, 55.7, 36.2, 35.6, 29.7, 29.4. HRMS (ESI-TOF): m/z calcd for C₂₈H₃₀BrFNaO₄S⁺, 583.0930; found [M + Na]⁺, 583.0919.

4-(Benzo[d][1,3]dioxol-5-yl((4-fluorophenyl)sulfonyl)methylene)-2,6-di-tert-butylcyclohexa-2,5-dien-1-one (**3ad**). Yellow solid. Isolated yield: 80% (119 mg) (eluent: petroleum ether/EtOAc = 15:1). Mp: 174–175 °C. ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 8.71 (d, J = 2.4 Hz, 1H), 7.76–7.71 (m, 2H), 7.18 (t, J = 8.8 Hz, 2H), 6.80 (d, J = 2.0 Hz, 1H), 6.78 (d, J = 4.0 Hz, 1H), 6.59 (d, J = 2.4 Hz, 1H), 6.50 (dd, $J_1 = 8.0$ Hz, $J_2 = 1.6$ Hz, 1H), 6.69 (d, J = 6.4 Hz, 2H), 1.41 (s, 9H), 1.14 (s, 9H). ¹³C{¹H} NMR (100 MHz, CDCl₃) (δ , ppm): 186.1, 165.7 (d, $J_{C-F} = 255.6$ Hz), 151.6, 151.3, 148.9, 147.6, 146.6, 136.9, 136.4(d, $J_{C-F} = 2.8$ Hz), 131.1 (d, $J_{C-F} = 9.6$ Hz), 130.6, 126.4, 126.2, 125.8, 116.4 (d, $J_{C-F} = 22.4$ Hz), 111.8, 107.9, 101.8, 36.2, 35.7, 29.8, 29.4. HRMS (ESI-TOF): m/z calcd for C₂₈H₂₉FNaO₅S⁺, 519.1617; found [M + Na]⁺, 519.1612.

2,6-Di-tert-butyl-4-(((4-fluorophenyl)sulfonyl)(3,4,5trimethoxyphenyl)methylene)cyclohexa-2,5-dien-1-one (**3ae**). Yellow solid. Isolated yield: 83% (135 mg) (eluent: petroleum ether/ EtOAc = 10:1). Mp: 162–163 °C. ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 8.71 (d, *J* = 2.8 Hz, 1H), 7.73–7.67 (m, 2H), 7.12 (t, *J* = 8.4 Hz, 2H), 6.55 (d, *J* = 2.4 Hz, 1H), 6.30 (s, 2H), 3.88 (s, 3H), 3.74 (s, 6H), 1.37 (s, 9H), 1.09 (s, 9H). ¹³C{¹H} NMR (100 MHz, CDCl₃) (δ , ppm): 186.1, 165.7 (d, *J*_{C-F} = 255.8 Hz), 152.7, 151.7, 151.5, 146.7, 139.1, 136.5, 136.2 (d, *J*_{C-F} = 3.1 Hz), 131.3 (d, *J*_{C-F} = 9.5 Hz), 130.6, 127.5, 126.3, 116.2 (d, *J*_{C-F} = 22.5 Hz), 109.2, 61.1, 56.3, 36.1, 35.6, 29.7, 29.4. HRMS (ESI-TOF): *m*/*z* calcd for C₃₀H₃₅FNaO₆S, 565.2036; found [M + Na]⁺, 565.2028.

2,6-Di-tert-butyl-4-(((4-chlorophenyl)sulfonyl)(2,5dimethoxyphenyl)methylene)cyclohexa-2,5-dien-1-one (**3af**). Yellow solid. Isolated yield: 80% (127 mg) (eluent: petroleum ether/ EtOAc = 10:1). Mp: 186–187 °C. ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 8.51 (d, J = 2.8 Hz, 1H), 7.66 (d, J = 8.4 Hz, 2H), 7.37 (d, J = 8.8 Hz, 2H), 6.92 (dd, $J_1 = 9.2$ Hz, $J_2 = 3.2$ Hz, 1H), 6.80 (d, J = 2.8 Hz, 1H), 6.67 (d, J = 8.8 Hz, 1H), 6.44 (d, J = 2.8 Hz, 1H), 3.78 (s, 3H), 3.48 (s, 3H), 1.34 (s, 9H), 1.07 (s, 9H). ¹³C{¹H} NMR (100 MHz, CDCl₃) (δ , ppm): 186.2, 153.2, 151.5, 151.4, 151.0, 144.1, 140.1, 139.1, 137.0, 130.7, 130.0, 128.7, 126.3, 121.6, 117.4, 117.2, 111.5, 56.0, 55.6, 36.1, 35.6, 29.7, 29.4. HRMS (ESI-TOF): m/z calcd for C₂₉H₃₃ClNaO₅S⁺, 551.1635; found [M + Na]⁺, 551.1627.

4-((5-Bromo-2-methoxyphenyl)((4-chlorophenyl)sulfonyl)methylene)-2,6-di-tert-butylcyclohexa-2,5-dien-1-one (**3ag**). Yellow solid. Isolated yield: 81% (140 mg) (eluent: petroleum ether/ EtOAc = 15:1). Mp: 175–176 °C. ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 8.48 (d, J = 2.8 Hz, 1H), 7.66 (d, J = 8.4 Hz, 2H), 7.49 (dd, $J_1 = 8.8 \text{ Hz}, J_2 = 2.4 \text{ Hz}, 1\text{H}), 7.41 \text{ (d, } J = 8.4 \text{ Hz}, 2\text{H}), 7.35 \text{ (d, } J = 2.4 \text{ Hz}, 1\text{H}), 6.66 \text{ (d, } J = 8.8 \text{ Hz}, 1\text{H}), 6.37 \text{ (d, } J = 2.4 \text{ Hz}, 1\text{H}), 3.54 \text{ (s, 3H)}, 1.33 \text{ (s, 9H)}, 1.08 \text{ (s, 9H)}. {}^{13}\text{C}{}^{1}\text{H} \text{ NMR (100 MHz}, \text{CDCl}_3) \text{ (d, } ppm): 186.1, 156.5, 151.9, 151.4, 142.6, 139.0, 137.4, 134.7, 134.4, 130.2, 130.0, 128.9, 126.0, 123.2, 112.6, 112.3, 55.7, 36.2, 35.7, 29.7, 29.4. HRMS (ESI-TOF): <math>m/z$ calcd for $C_{28}H_{30}\text{BrClNaO}_4\text{S}^+$, 599.0634; found $[\text{M + Na}]^+$, 599.0646.

2,6-Di-tert-butyl-4-(((4-chlorophenyl)sulfonyl)(3,4,5trimethoxyphenyl)methylene)cyclohexa-2,5-dien-1-one (**3ah**). Yellow solid. Isolated yield: 85% (142 mg) (eluent: petroleum ether/ EtOAc = 10:1). Mp: 147–148 °C. ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 8.68 (d, *J* = 2.4 Hz, 1H), 7.62 (d, *J* = 8.4 Hz, 2H), 7.42 (d, *J* = 8.4 Hz, 2H), 6.55 (d, *J* = 2.4 Hz, 1H), 6.29 (s, 2H), 3.89 (s, 3H), 3.74 (s, 6H), 1.37 (s, 9H), 1.09 (s, 9H). ¹³C{¹H} NMR (100 MHz, CDCl₃) (δ , ppm): 186.1, 152.7, 151.7, 151.5, 146.5, 140.5, 139.2, 138.7, 136.7, 130.5, 129.9, 129.2, 127.4, 126.3, 109.2, 61.1, 56.3, 36.2, 35.6, 29.7, 29.4. HRMS (ESI-TOF): *m*/*z* calcd for C₃₀H₃₅ClNaO₆S⁺, 581.1741; found [M + Na]⁺, 581.1726.

2,6-Di-tert-butyl-4-((4-methoxyphenyl)((4-trifluoromethyl)phenyl)sulfonyl)methylene)cyclohexa-2,5-dien-1-one (**3a**i). Yellow solid. Isolated yield: 70% (112 mg) (eluent: petroleum ether/EtOAc = 20:1). Mp: 147–148 °C. ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 8.70 (d, *J* = 2.4 Hz, 1H), 7.81 (d, *J* = 8.4 Hz, 2H), 7.75 (d, *J* = 8.4 Hz, 2H), 7.11 (d, *J* = 8.8 Hz, 2H), 6.91 (d, *J* = 8.8 Hz, 2H), 6.58 (d, *J* = 2.4 Hz, 1H), 3.90 (s, 3H), 1.41 (s, 9H), 1.12 (s, 9H). ¹³C{¹H} NMR (100 MHz, CDCl₃) (δ , ppm): 186.2, 160.8, 151.8, 151.5, 146.1, 144.1, 137.5, 133.3, 130.7, 128.7, 126.3, 126.1 (d, *J*_{C-F} = 3.0 Hz), 125.7 (q, *J*_{C-F} = 195.2 Hz)124.1, 113.7, 55.5, 36.2, 35.7, 30.4, 29.7, 29.4. HRMS (ESI-TOF): *m*/*z* calcd for C₂₉H₃₁F₃NaO₄S⁺, 555.1793; found [M + Na]⁺, 555.1780.

2,6-Di-tert-butyl-4-((4-methoxyphenyl)((4-nitrophenyl)sulfonyl)methylene)cyclohexa-2,5-dien-1-one (**3a**j). Yellow solid. Isolated yield: 73% (112 mg) (eluent: petroleum ether/EtOAc = 10:1). Mp: 139–140 °C. ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 8.72 (d, *J* = 2.4 Hz, 1H), 8.31 (d, *J* = 8.8 Hz, 2H), 7.86 (d, *J* = 8.8 Hz, 2H), 7.11 (d, *J* = 8.4 Hz, 2H), 6.91 (d, *J* = 8.4 Hz, 2H), 6.58 (d, *J* = 2.8 Hz, 1H), 3.90 (s, 3H), 1.42 (s, 9H), 1.13 (s, 9H). ¹³C{¹H} NMR (100 MHz, CDCl₃) (δ , ppm): 186.1, 160.9, 152.1, 151.8, 146.1, 145.3, 138.0, 133.4, 130.5, 129.5, 126.1, 124.1, 123.7, 113.9, 55.5, 36.3, 35.8, 29.8, 29.4. HRMS (ESI-TOF): *m*/*z* calcd for C₂₈H₃₁NNaO₆S⁺, 532.1770; found [M + Na]⁺, 532.1753.

2, δ -Di-tert-butyl-4-((4-methoxyphenyl)(naphthalen-2ylsulfonyl)methylene)cyclohexa-2,5-dien-1-one (**3***ak*). Yellow solid. Isolated yield: 83% (128 mg) (eluent: petroleum ether/EtOAc = 20:1). Mp: 189–190 °C. ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 8.81 (d, J = 2.4 Hz, 1H), 8.31 (s, 1H), 7.96–7.91 (m, 3H), 7.71 (t, J = 7.6 Hz, 1H), 7.65 (t, J = 7.6 Hz, 2H), 7.13 (d, J = 8.8 Hz, 2H), 6.89 (d, J = 8.8 Hz, 2H), 6.59 (d, J = 2.4 Hz, 1H), 3.88 (s, 3H), 1.42 (s, 9H), 1.11 (s, 9H). ¹³C{¹H} NMR (100 MHz, CDCl₃) (δ , ppm): 186.3, 160.7, 151.3, 151.0, 147.7, 137.6, 136.7, 135.2, 133.3, 132.1, 131.0, 130.0, 129.5, 129.4, 129.3, 128.1, 127.8, 126.9, 124.7, 123.0, 113.6, 55.4, 36.2, 35.7, 29.8, 29.4. HRMS (ESI-TOF): m/zcalcd for C₃₂H₃₄NaO₄S⁺, 537.2075; found [M + Na]⁺, 537.2078.

2,6-Diisopropyl-4-((2-methoxyphenyl)(phenylsulfonyl)methylene)cyclohexa-2,5-dien-1-one (**3a**). Yellow solid. Isolated yield: 80% (105 mg) (eluent: petroleum ether/EtOAc = 30:1). Mp: 181–182 °C. ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 8.51 (d, *J* = 1.6 Hz, 1H), 7.73 (d, *J* = 7.6 Hz, 2H), 7.53 (t, *J* = 7.2 Hz, 1H), 7.44–7.35 (m, 3H), 7.22 (d, *J* = 7.2 Hz, 1H), 7.01 (t, *J* = 7.2 Hz, 1H), 6.74 (d, *J* = 8.4 Hz, 1H), 6.40 (d, *J* = 2.4 Hz, 1H), 3.52 (s, 3H), 3.18–3.10 (m, 1H), 3.03–2.94 (m, 1H), 1.18 (t, *J* = 6.0 Hz, 6H), 0.88 (dd, *J* = 6.8, 2.0 Hz, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃) (δ , ppm): 185.2, 157.5, 149.1, 148.5, 145.8, 140.9, 136.4, 133.3, 132.4, 131.7, 130.7, 128.6, 128.5, 126.4, 121.4, 120.5, 110.6, 55.3, 27.5, 27.1, 22.1, 21.9, 21.7. HRMS (ESI-TOF): *m*/*z* calcd for C₂₆H₂₈NaO₄S, 459.1606; found [M + Na]⁺, 459.1608.

2,6-Diisopropyl-4-((2-methoxyphenyl)(tosyl)methylene)cyclohexa-2,5-dien-1-one (**3am**). Yellow solid. Isolated yield: 82% (111 mg) (eluent: petroleum ether/EtOAc = 30:1). Mp: 175–176 °C. ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 8.50 (d, J = 2.8 Hz, 1H), 7.61 (d, J = 8.0 Hz, 2H), 7.41–7.37 (m, 1H), 7.23–7.17 (m, 3H), 7.01 (t, J = 7.2 Hz, 1H), 6.78 (d, J = 8.4 Hz, 1H), 6.40 (d, J = 2.8 Hz, 1H), 3.55 (s, 3H), 3.18–3.11 (m, 1H), 3.03–2.93 (m, 1H), 2.39 (s, 3H), 1.19 (dd, J = 7.2, 4.8 Hz, 6H), 0.88 (dd, J = 6.8, 1.6 Hz, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃) (δ , ppm): 185.2, 157.5, 148.9, 148.4, 146.3, 144.4, 138.0, 136.2, 132.3, 131.7, 130.8, 129.2, 128.6, 126.5, 121.6, 120.4, 110.7, 55.4, 27.5, 27.1, 23.6, 22.2, 21.9, 21.7. HRMS (ESI-TOF): m/z calcd for C₂₇H₃₀NaO₄S, 473.1762; found [M + Na]⁺, 473.1755.

4-(((4-Chlorophenyl)sulfonyl)(2-methoxyphenyl)methylene)-2,6diisopropylcyclohexa-2,5-dien-1-one (**3an**). Yellow solid. Isolated yield: 75% (106 mg) (eluent: petroleum ether/EtOAc = 30:1). Mp: 183–184 °C. ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 8.51 (d, *J* = 2.4 Hz, 1H), 7.63 (d, *J* = 8.4 Hz, 2H), 7.43–7.34 (m, 3H), 7.24 (dd, *J* = 7.2, 1.6 Hz, 1H), 7.03 (t, *J* = 7.6 Hz, 1H), 6.75 (d, *J* = 8.4 Hz, 1H), 6.38 (d, *J* = 2.8 Hz, 1H), 3.52 (s, 3H), 3.20–3.12 (m, 1H), 3.03–2.95 (m, 1H), 1.20 (t, *J* = 6.4 Hz, 6H), 0.88 (dd, *J* = 6.8, 2.0 Hz, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃) (δ , ppm): 185.1, 157.3, 149.3, 148.8, 144.9, 140.1, 139.1, 136.7, 132.5, 132.0, 130.5, 130.1, 128.7, 126.1, 121.1, 120.6, 110.6, 55.3, 27.5, 27.1, 22.2, 21.9, 21.7. HRMS (ESI-TOF): *m*/z calcd for C₂₆H₂₇ClNaO₄S, 493.1216; found [M + Na]⁺, 493.1218.

2,6-Diisopropyl-4-((2-methoxyphenyl)((4-methoxyphenyl)sulfonyl)methylene)cyclohexa-2,5-dien-1-one (**3ao**). Yellow solid. Isolated yield: 85% (119 mg) (eluent: petroleum ether/EtOAc = 30:1). Mp: 170–171 °C. ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 8.56 (d, *J* = 2.8 Hz, 1H), 7.63 (d, *J* = 8.4 Hz, 2H), 7.38 (t, *J* = 7.2 Hz, 1H), 7.19 (d, *J* = 7.2 Hz, 1H), 7.00 (t, *J* = 7.2 Hz, 1H), 6.85 (d, *J* = 8.4 Hz, 2H), 6.76 (d, *J* = 8.4 Hz, 1H), 6.39 (d, *J* = 2.8 Hz, 1H), 3.83 (s, 3H), 3.54 (s, 3H), 3.20–3.12 (m, 1H), 3.02–2.94 (m, 1H), 1.20 (t, *J* = 6.4 Hz, 6H), 0.88 (d, *J* = 6.8 Hz, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃) (δ , ppm): 185.2, 163.6, 157.4, 148.9, 148.3, 146.5, 135.8, 132.3, 132.2, 131.6, 130.9, 130.8, 126.5, 121.7, 120.4, 113.7, 110.6, 55.8, 55.4, 27.5, 27.1, 22.2, 22.0, 21.7. HRMS (ESI-TOF): *m*/*z* calcd for C₂₇H₃₀NaO₅S, 489.1712; found [M + Na], 489.1710.

4-(((4-(tert-Butyl)phenyl)sulfonyl)(2-methoxyphenyl)methylene)-2,6-diisopropylcyclohexa-2,5-dien-1-one (**3ap**). Yellow solid. Isolated yield: 82% (121 mg) (eluent: petroleum ether/EtOAc = 30:1). Mp: 173–174 °C. ¹H NMR (400 MHz, CDCl₃) (δ, ppm): 8.52 (d, J = 2.4 Hz, 1H), 7.69 (d, J = 8.8 Hz, 2H), 7.48–7.42 (m, 3H), 7.26 (dd, J = 7.2, 1.2 Hz, 1H), 7.06 (t, J = 7.6 Hz, 1H), 6.80 (d, J = 8.0Hz, 1H), 6.45 (d, J = 2.4 Hz, 1H), 3.56 (s, 3H), 3.22–3.15 (m, 1H), 3.06–2.99 (m, 1H), 1.35 (s, 9H), 1.22 (d, J = 3.2 Hz, 3H), 1.21 (d, J = 3.2 Hz, 3H), 0.93 (d, J = 2.4 Hz, 3H), 0.92 (d, J = 2.4Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) (δ, ppm): 185.2, 157.5, 157.4, 148.9, 148.4, 146.4, 137.9, 136.1, 132.4, 131.6, 130.8, 128.4, 126.6, 125.5, 121.6, 120.4, 110.6, 55.3, 35.3, 31.1, 27.4, 27.1, 22.2, 22.0, 21.7. HRMS (ESI-TOF): m/z calcd for C₃₀H₃₆NaO₄S, 515.2232; found $[M + Na]^+$, 515.2236.

4-((2-(Allyloxy)phenyl)(phenylsulfonyl)methylene)-2,6-di-tert-butylcyclohexa-2,5-dien-1-one (**4a**). Yellow solid. Isolated yield: 86% (127 mg) (eluent: petroleum ether/EtOAc = 20:1). Mp: 94–95 °C. ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 8.55 (d, J = 2.4 Hz, 1H), 7.79 (d, J = 0.8 Hz, 1H), 7.77 (d, J = 1.2 Hz, 1H), 7.59–7.54 (m, 1H), 7.43 (d, J = 8.4 Hz, 2H), 7.41–7.37 (m, 1H), 7.33–7.30 (m, 1H), 7.06 (td, J_1 = 7.6 Hz, J_2 = 0.8 Hz, 1H), 6.78 (d, J = 8.4 Hz, 1H), 6.52 (d, J = 2.4 Hz, 1H), 5.93–5.80 (m, 1H), 5.27–5.22 (m, 1H), 5.22–5.19 (m, 1H), 4.41–4.34 (m, 1H), 4.28–4.21 (m, 1H), 1.38 (s, 9H), 1.10 (s, 9H). ¹³C{¹H} NMR (100 MHz, CDCl₃) (δ , ppm): 186.3, 156.3, 151.0, 150.6, 145.1, 141.0, 136.7, 133.2, 132.6, 132.4, 131.5, 130.9, 128.5, 128.4, 126.5, 121.6, 120.5, 117.1, 111.7, 68.6, 36.0, 35.5, 29.7, 29.3. HRMS (ESI-TOF): m/z calcd for C₃₀H₃₄NaO₄S⁺, 513.2075; found [M + Na]⁺, 513.2087.

4-((2-(Allyloxy)phenyl)(tosyl)methylene)-2,6-di-tert-butylcyclohexa-2,5-dien-1-one (**4b**). Yellow solid. Isolated yield: 85% (129 mg) (eluent: petroleum ether/EtOAc = 20:1). Mp: 137–138 °C. ¹H NMR (400 MHz, CDCl₃) (δ, ppm): 8.56 (d, J = 2.4 Hz, 1H), 7.66 (d, J = 8.0 Hz, 2H), 7.43–7.38 (m, 1H), 7.28 (dd, $J_1 = 7.6$ Hz, $J_2 = 1.6$ Hz, 1H), 7.23 (d, J = 8.0 Hz, 2H), 7.06 (t, J = 7.2 Hz, 1H), 6.81 (d, J = 8.4 Hz, 1H), 6.51 (d, J = 2.8 Hz, 1H), 5.92–5.82 (m, 1H), 5.24 (dd, $J_1 = 11.2$ Hz, $J_2 = 1.6$ Hz, 1H), 5.22–5.19 (m, 1H), 4.43–4.37 (m, 1H), 4.31–4.25 (m, 1H), 2.43 (s, 3H), 1.38 (s, 9H), 1.10 (s, 9H). $^{13}C{^{1}H}$ NMR (100 MHz, CDCl₃) (δ , ppm): 186.3, 156.4, 150.9, 150.4, 145.6, 144.2, 138.1, 136.4, 132.6, 132.3, 131.4, 131.0, 129.1, 128.4, 126.6, 121.8, 120.5, 117.0, 111.8, 68.7, 36.0, 35.4, 29.7, 29.3, 21.6. HRMS (ESI-TOF): m/z calcd for $C_{31}H_{36}NaO_4S^+$, 527.2232; found $[M + Na]^+$, 527.2220.

4-((2-(Allyloxy)phenyl)((4-fluorophenyl)sulfonyl)methylene)-2,6di-tert-butylcyclohexa-2,5-dien-1-one (4c). Yellow solid. Isolated yield: 81% (124 mg) (eluent: petroleum ether/EtOAc = 20:1). Mp: 107–108 °C. ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 8.59 (d, J = 2.4 Hz, 1H), 7.78–7.23 (m, 2H), 7.42–7.38 (m, 1H), 7.33 (dd, J_1 = 7.6 Hz, J_2 = 1.6 Hz, 1H), 7.11–7.05 (m, 3H), 6.77 (d, J = 8.0 Hz, 1H), 6.49 (d, J = 2.4 Hz, 1H), 5.91–5.81 (m, 1H), 5.24 (dd, J_1 = 4 Hz, J_2 = 1.6 Hz, 1H), 5.21 (dd, J_1 = 3.2 Hz, J_2 = 1.6 Hz, 1H), 4.40–4.34 (m, 1H), 4.26–4.21 (m, 1H), 1.39 (s, 9H), 1.10 (s, 9H). ¹³C{¹H} NMR (100 MHz, CDCl₃) (δ , ppm): 186.2, 156.1, 151.2, 150.8, 144.5, 136.7, 132.4 (d, J_{C-F} = 2.1 Hz), 131.4 (d, J_{C-F} = 9.5 Hz), 131.3, 130.8, 126.3, 121.4, 120.6, 117.2, 115.6 (d, J_{C-F} = 22.4 Hz), 111.6, 68.5, 36.1, 35.5, 29.7, 29.3. HRMS (ESI-TOF): m/zcalcd for C₃₀H₃₃FNaO₄S⁺, 531.1981; found [M + Na]⁺, 531.1969.

4-((2-(Allyloxy)phenyl)((4-chlorophenyl)sulfonyl)methylene)-2,6di-tert-butylcyclohexa-2,5-dien-1-one (**4d**). Yellow solid. Isolated yield: 78% (123 mg) (eluent: petroleum ether/EtOAc = 20:1). Mp: 90–91 °C. ¹H NMR (400 MHz, CDCl₃) (δ, ppm): 8.57 (d, *J* = 2.4 Hz, 1H), 7.70–7.65 (m, 2H), 7.44–7.36 (m, 3H), 7.33 (dd, *J*₁ = 7.6 Hz, *J*₂ = 1.6 Hz, 1H), 7.07 (t, *J* = 7.6 Hz, 1H), 6.78 (d, *J* = 8.4 Hz, 1H), 6.50 (d, *J* = 2.4 Hz, 1H), 5.90–5.80 (m, 1H), 5.24 (s, 1H), 5.21 (dd, *J*₁ = 6.4 Hz, *J*₂ = 1.6 Hz, 1H), 4.40–4.34 (m, 1H), 4.26– 4.20 (m, 1H), 1.39 (s, 9H), 1.10 (s, 9H). ¹³C{¹H} NMR (100 MHz, CDCl₃) (δ, ppm): 186.2, 156.1, 151.3, 150.9, 144.2, 140.0, 139.2, 137.0, 132.5, 132.4, 131.7, 130.8, 129.9, 128.7, 126.3, 121.3, 120.6, 117.2, 111.6, 68.6, 36.1, 35.5, 29.7, 29.3. HRMS (ESI-TOF): *m*/*z* calcd for C₃₀H₃₃ClNaO₄S⁺, 547.1686; found [M + Na]⁺, 547.1675.

4-((2-(Allyloxy)-5-methylphenyl)(phenylsulfonyl)methylene)-2,6di-tert-butylcyclohexa-2,5-dien-1-one (**4e**). Yellow solid. Isolated yield: 84% (127 mg) (eluent: petroleum ether/EtOAc = 20:1). Mp: 88–89 °C. ¹H NMR (400 MHz, CDCl₃) (δ, ppm): 8.52 (d, *J* = 2.8 Hz, 1H), 7.80 (d, *J* = 7.2 Hz, 2H), 7.56 (t, *J* = 7.2 Hz, 1H), 7.44 (t, *J* = 8.0 Hz, 2H), 7.18 (dd, *J*₁ = 8.4 Hz, *J*₂ = 1.6 Hz, 1H), 7.13 (d, *J* = 1.8 Hz, 1H), 6.68 (d, *J* = 8.4 Hz, 1H), 6.54 (d, *J* = 2.0 Hz, 1H), 5.90–5.80 (m, 1H), 5.21 (dd, *J*₁ = 9.6 Hz, *J*₂ = 1.6 Hz, 1H), 5.18 (d, *J* = 1.2 Hz, 1H), 4.34 (dd, *J*₁ = 13.6 Hz, *J*₂ = 4.8 Hz, 1H), 4.22 (dd, *J*₁ = 13.2 Hz, *J*₂ = 4.4 Hz, 1H), 2.36 (s, 3H), 1.36 (s, 9H), 1.11 (s, 9H). ¹³C{¹H} NMR (100 MHz, CDCl₃) (δ, ppm): 186.4, 154.2, 150.6, 141.2, 133.2, 132.9, 131.9, 131.1, 129.8, 128.5, 126.7, 121.3, 117.0, 111.6, 68.7, 36.1, 35.5, 29.8, 29.4, 20.5. HRMS (ESI-TOF): *m*/z calcd for C₃₁H₃₆NaO₄S⁺, 527.2232; found [M + Na]⁺, 527.2218.

4-((2-(Allyloxy)-5-methylphenyl)(tosyl)methylene)-2,6-di-tert-butylcyclohexa-2,5-dien-1-one (**4f**). Yellow solid. Isolated yield: 86% (134 mg) (eluent: petroleum ether/EtOAc = 20:1). Mp: 145–146 °C. ¹H NMR (400 MHz, CDCl₃) (δ, ppm): 8.53 (d, *J* = 2.8 Hz, 1H), 7.68 (d, *J* = 8.0 Hz, 2H), 7.23 (d, *J* = 8.4 Hz, 2H), 7.19 (dd, *J*₁ = 8.4 Hz, *J*₂ = 2.0 Hz, 1H), 7.10 (d, *J* = 2.0 Hz, 1H), 6.70 (d, *J* = 8.4 Hz, 1H), 6.54 (d, *J* = 2.8 Hz, 1H), 5.90–5.80 (m, 1H), 5.21 (dd, *J*₁ = 9.2 Hz, *J*₂ = 1.6 Hz, 1H), 5.17 (d, *J* = 1.2 Hz, 1H), 4.39– 4.33 (m, 1H), 4.27–4.22 (m, 1H), 2.43 (s, 3H), 2.36 (s, 3H), 1.37 (s, 9H), 1.11 (s, 9H). ¹³C{¹H} NMR (100 MHz, CDCl₃) (δ, ppm): 186.3, 154.3, 150.8, 150.4, 145.8, 144.2, 138.4, 136.4, 132.9, 132.8, 131.8, 131.2, 129.7, 129.1, 128.5, 126.7, 121.5, 116.9, 111.7, 68.8, 36.1, 35.5, 29.8, 29.4, 21.7, 20.5. HRMS (ESI-TOF): *m*/z calcd for C₃₂H₃₈NaO₄S⁺, 541.2389; found [M + Na]⁺, 541.2373.

4-((2-(Allyloxy)-5-methylphenyl)((4-fluorophenyl)sulfonyl)methylene)-2,6-di-tert-utylcyclohexa-2,5-dien-1-one (**4g**). Yellow solid. Isolated yield: 79% (124 mg) (eluent: petroleum ether/ EtOAc = 20:1). Mp: 108–109 °C. ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 8.56 (d, J = 2.4 Hz, 1H), 7.81–7.74 (m, 2H), 7.19 (dd, J₁ = 8.4 Hz, $J_2 = 2.0$ Hz, 1H), 7.15 (d, J = 2.0 Hz, 1H), 7.11–7.05 (m, 2H), 6.66 (d, J = 8.4 Hz, 1H), 6.51 (d, J = 2.8 Hz, 1H), 5.88–5.79 (m, 1H), 5.22 (s, 1H), 5.20–5.16 (m, 1H), 4.36–4.30 (m, 1H), 4.23–4.17 (m, 1H), 2.37 (s, 3H), 1.38 (s, 9H), 1.11 (s, 9H). ¹³C{¹H} NMR (100 MHz, CDCl₃) (δ , ppm): 186.2, 165.5 (d, $J_{C-F} = 253.5$ Hz), 154.0, 151.1, 150.8, 144.7, 136.7, 132.8, 132.7, 132.1, 131.4 (d, $J_{C-F} = 9.4$ Hz), 131.0, 130.0, 126.4, 121.1, 117.0, 115.6 (d, $J_{C-F} = 22.4$ Hz), 111.5, 68.6, 36.1, 35.5, 29.7, 29.4, 20.5. HRMS (ESI-TOF): m/z calcd for C₃₁H₃₅FNaO₄S⁺, 545.2138; found [M + Na]⁺, 545.2127.

4-((2-(Allyloxy)-5-chlorophenyl)(tosyl)methylene)-2,6-di-tert-butylcyclohexa-2,5-dien-1-one (**4h**). Yellow solid. Isolated yield: 73% (118 mg) (eluent: petroleum ether/EtOAc = 20:1). Mp: 152–153 °C. ¹H NMR (400 MHz, CDCl₃) (δ, ppm): 8.54 (d, J = 2.4 Hz, 1H), 7.70–7.64 (m, 2H), 7.36 (dd, $J_1 = 8.8$ Hz, $J_2 = 2.8$ Hz, 1H), 7.29–7.24 (m, 3H), 6.76 (d, J = 8.8 Hz, 1H), 6.47 (d, J = 2.4 Hz, 1H), 5.88–5.78 (m, 1H), 5.23 (dd, $J_1 = 3.6$ Hz, $J_2 = 1.6$ Hz, 1H), 5.22–5.18 (m, 1H), 4.41–4.35 (m, 1H), 4.31–4.25 (m, 1H), 2.44 (s, 3H), 1.37 (s, 9H), 1.12 (s, 9H). ¹³C{¹H} NMR (100 MHz, CDCl₃) (δ, ppm): 186.2, 155.1, 151.4, 150.9, 144.6, 143.7, 137.9, 136.9, 132.2, 131.9, 131.1, 130.5, 129.4, 128.5, 126.4, 125.5, 123.4, 117.4, 113.1, 69.2, 36.1, 35.6, 29.7, 29.4, 21.7. HRMS (ESI-TOF): m/z calcd for C₃₁H₃₅ClNaO₄S⁺, 561.1842; found [M + Na]⁺, 561.1830.

2,6-Di-tert-butyl-4-((2-(phenylethynyl)phenyl)(phenylsulfonyl)methylene)cyclohexa-2,5-dien-1-one (**4i**). Yellow solid. Isolated yield: 76% (122 mg) (eluent: petroleum ether/EtOAc = 20:1). Mp: 140–141 °C. ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 8.76 (d, *J* = 2.4 Hz, 1H), 7.74 (d, *J* = 8.0 Hz, 2H), 7.66 (d, *J* = 7.6 Hz, 1H), 7.50–7.42 (m, 4H), 7.33 (s, 1H), 7.31–7.28 (m, 2H), 7.25 (t, *J* = 7.6 Hz, 2H), 7.07 (d, *J* = 7.2 Hz, 2H), 6.58 (d, *J* = 2.4 Hz, 1H), 1.43 (s, 9H), 1.06 (s, 9H). ¹³C{¹H} NMR (100 MHz, CDCl₃) (δ , ppm): 186.2, 151.5, 151.4, 145.6, 140.4, 137.6, 135.0, 133.6, 131.9, 131.4, 131.3, 129.8, 128.8, 128.7, 128.4, 128.3, 128.0, 126.6, 125.3, 122.5, 94.4, 87.4, 36.3, 35.6, 29.8, 29.3. HRMS (ESI-TOF): *m/z* calcd for C₃₅H₃₄NaO₃S⁺, 557.2126; found [M + Na]⁺, 557.2139.

2,6-Di-tert-butyl-4-((2-((4-chlorophenyl)ethynyl)phenyl)-(phenylsulfonyl)methylene)cyclohexa-2,5-dien-1-one (**4***j*). Yellow solid. Isolated yield: 72% (123 mg) (eluent: petroleum ether/EtOAc = 20:1). Mp: 149–150 °C. ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 8.74 (d, *J* = 2.8 Hz, 1H), 7.74 (d, *J* = 7.6 Hz, 2H), 7.63 (d, *J* = 7.6 Hz, 1H), 7.52–7.43 (m, 4H), 7.35–7.31 (m, 2H), 7.23 (d, *J* = 8.0 Hz, 2H), 7.00 (d, *J* = 8.4 Hz, 2H), 6.55 (d, *J* = 2.4 Hz, 1H), 1.43 (s, 9H), 1.06 (s, 9H). ¹³C{¹H} NMR (100 MHz, CDCl₃) (δ , ppm): 186.2, 151.5, 151.4, 145.6, 140.5, 137.6, 135.0, 134.8, 133.6, 132.6, 131.9, 131.5, 131.2, 129.8, 128.9, 128.7, 128.4, 128.3, 126.5, 125.0, 121.0, 93.0, 88.3, 36.3, 35.6, 29.9, 29.3. HRMS (ESI-TOF): *m/z* calcd for C₃₅H₃₃ClNaO₃S⁺, 591.1737; found [M + Na]⁺, 591.1729.

2,6-Di-tert-butyl-4-((phenylsulfonyl))methyl)phenol (5). White solid. Mp: 110–112 °C. ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 7.63 (d, *J* = 8.0 Hz, 3H), 7.48 (t, *J* = 7.6 Hz, 2H), 6.80 (s, 2H), 5.31 (s, 1H), 4.27 (s, 2H), 1.37 (s, 18H). ¹³C{¹H} NMR (100 MHz, CDCl₃) (δ , ppm): 154.3, 137.9, 136.1, 133.4, 128.9, 128.7, 127.7, 118.8, 63.2, 34.2, 30.1.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.joc.1c01213.

¹H and ¹³C{¹H} NMR spectra for all products and X-ray crystallographic data (PDF)

Accession Codes

CCDC 1980583–1980584 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre,

The Journal of Organic Chemistry

12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

AUTHOR INFORMATION

Corresponding Authors

- Liangce Rong Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People's Republic of China; orcid.org/ 0000-0003-0561-1137; Email: lcrong@jsnu.edu.cn
- Jinpeng Zhang Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, People's Republic of China; Email: xiaopangpeng@126.com
- Chang Wang Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People's Republic of China; Email: wangchangacdm@jsnu.edu.cn

Authors

- Lei Dai Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People's Republic of China
- **Qiuyu Yu** Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People's Republic of China
- Jinghang Zhang Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People's Republic of China
- Fan Wu Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People's Republic of China

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.joc.1c01213

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We are grateful to the National Natural Science Foundation of China (NSFC) (81872647) and the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (18KJA150004), and this work was also sponsored by TAPP.

REFERENCES

(1) Codony, X.; Vela, J. M.; Ramírez, M. J. 5-HT6 receptor and cognition. *Curr. Opin. Pharmacol.* 2011, 11, 94.

(2) Famiglini, V.; La Regina, G.; Coluccia, A.; Pelliccia, S.; Brancale, A.; Maga, G.; Crespan, E.; Badia, R.; Riveira-Muñoz, E.; Esté, J. A.; Ferretti, R.; Cirilli, R.; Zamperini, C.; Botta, M.; Schols, D.; Limongelli, V.; Agostino, B.; Novellino, E.; Silvestri, R. Indolylarylsulfones Carrying a Heterocyclic Tail as Very Potent and Broad Spectrum HIV-1 Non-nucleoside Reverse Transcriptase Inhibitors. J. Med. Chem. 2014, 57, 9945.

(3) Angelaud, R.; Reynolds, M.; Venkatramani, C.; Savage, S.; Trafelet, H.; Landmesser, T.; Demel, P.; Levis, M.; Ruha, O.; Rueckert, B.; Jaeggi, H. Manufacturing Development and Genotoxic Impurity Control Strategy of the Hedgehog Pathway Inhibitor Vismodegib. Org. Process Res. Dev. 2016, 20, 1509.

(4) Parent, E. E.; Dence, C. S.; Jenks, C.; Sharp, T. L.; Welch, M. J.; Katzenellenbogen, J. A. Katzenellenbogen, Synthesis and Biological Evaluation of [18F]Bicalutamide, 4-[76Br]-Bromobicalutamide, and 4-[⁷⁶Br]Bromo-thiobicalutamide as Non-Steroidal Androgens for Prostate Cancer Imaging. *J. Med. Chem.* **2007**, *50*, 1028.

(5) (a) Jiang, Y.; Loh, T.-P. Catalytic and direct methyl sulfonylation of alkenes and alkynes using a methyl sulfonyl radical generated from a DMSO, dioxygen and copper system. Chem. Sci. 2014, 5, 4939. (b) Xu, Y.-H.; Wang, M.; Lu, P.; Loh, T.-P. Palladium-catalyzed alkenyl CeH bond sulfonylation reaction usingorganosulfonyl chlorides. Tetrahedron 2013, 69, 4403. (c) Meesin, J.; Katrun, P.; Pareseecharoen, C.; Pohmakotr, M.; Reutrakul, V.; Soorukram, D.; Kuhakarn, C. Iodine-catalyzed Sulfonylation of Arylacetylenic Acids and Arylacetylenes with Sodium Sulfinates: Synthesis of Arylacetylenic Sulfones. J. Org. Chem. 2016, 81, 2744. (d) Wang, K.; Wang, G.; Duan, G.; Xia, C. Cobalt(II)-catalyzed remote C5-selective C-H sulfonylation of quinolines via insertion of sulfur dioxide. RSC Adv. 2017, 7, 51313. (e) Zheng, D.; Mao, R.; Li, Z.; Wu, J. A copper(I)-catalyzed three-component reaction of triethoxysilanes, sulfur dioxide, and alkyl halides. Org. Chem. Front. 2016, 3, 359.

(6) (a) Takao, K.-I.; Sasaki, T.; Kozaki, T.; Yanagisawa, Y.; Tadano, K.-I.; Kawashima, A.; Shinonaga, H. Syntheses and Absolute Stereochemistries of UPA0043 and UPA0044, Cytotoxic Antibiotics Having a p-Quinone-methide Structure. Org. Lett. 2001, 3, 4291. (b) Jansen, R.; Gerth, K.; Steinmetz, H.; Reinecke, S.; Kessler, W.; Kirschning, A.; Muller, R. Elansolid A3, a Unique p-Quinone Methide Antibiotic from Chitinophaga sancti. Chem. - Eur. J. 2011, 17, 7739. (c) Yuan, Y.; Men, H.; Lee, C. Total Synthesis of Kendomycin: A Macro-C-Glycosidation Approach. J. Am. Chem. Soc. 2004, 126, 14720. (d) Smith, A. B.; Mesaros, E. F.; Meyer, E. A. Evolution of a Total Synthesis of (-)-Kendomycin Exploiting a Petasis-Ferrier Rearrangement/Ring-Closing Olefin Metathesis Strategy. J. Am. Chem. Soc. 2006, 128, 5292. (e) Kupchan, S. M.; Karim, A.; Marcks, C. Tumor inhibitors. XXXIV. Taxodione and taxodone, two novel diterpenoid quinone methide tumor inhibitors from Taxodium. J. Am. Chem. Soc. 1968, 90, 5923.

(7) Leary, G. J. Quinone methides and the structure of lignin. Wood Sci. Technol. **1980**, 14, 21.

(8) Larsen, A. A. Catecholamine Chemical Species at the Adrenergic Receptors. *Nature* **1969**, *224*, 25.

(9) (a) Hamels, D.; Dansette, P. M.; Hillard, E. A.; Top, S.; Vessieres, A.; Herson, P.; Jaouen, G.; Mansuy, D. Ferrocenyl Quinone Methides as Strong Antiprolife rative Agents: Formation by Metabolic and Chemical Oxidation of Ferrocenyl Phenols. *Angew. Chem., Int. Ed.* **2009**, *48*, 9124. (b) Messiano, G. B.; da Silva, T.; Nascimento, I. R.; Lopes, L. M. Biosynthesis of antimalarial lignans from Holostylis reniformis. *Phytochemistry* **2009**, *70*, 590.

(10) Zhou, Q.; Qu, Y.; Mangrum, J. B.; Wang, X. DNA Alkylation with N-Methylquinolinium Quinone Methide to N2-dG Adducts Resulting in Extensive Stops in Primer Extension with DNA Polymerases and Subsequent Suppression of GFP Expression in A549 Cells. *Chem. Res. Toxicol.* **2011**, *24*, 402.

(11) Wang, P.; Song, Y.; Zhang, L.; He, H.; Zhou, X. Quinone methide derivatives: Important intermediates to DNA alkylating and DNA cross-linking actions. *Curr. Med. Chem.* **2005**, *12*, 2893.

(12) For selected examples of 1,6-conjugate addition reactions from *p*-QMs, see: (a) Goswami, P.; Sharma, S.; Singh, G.; Vijaya Anand, R. Bis(amino)cyclopropenylidene Catalyzed Rauhut–Currier Reaction between α,β -Unsaturated Carbonyl Compounds and para-Quinone Methides. J. Org. Chem. **2018**, 83, 4213. (b) Shirsath, S. R.; Shinde, G. H.; Shaikh, A. C.; Muthukrishnan, M. Accessing α -Arylated Nitriles via BF₃·OEt₂ Catalyzed Cyanation of para-Quinone Methides Using tert-Butyl Isocyanide as a Cyanide Source. J. Org. Chem. **2018**, 83, 12305. (c) Goswami, P.; Singh, G.; Vijaya Anand, R. Anand, N-Heterocyclic Carbene Catalyzed 1,6-Conjugate

pubs.acs.org/joc

The Journal of Organic Chemistry

Addition of Me3Si-CN to para-Quinone Methides and Fuchsones: Access to α -Arylated Nitriles. Org. Lett. **2017**, 19, 1982. (d) Li, R.; Chen, Y.; Jiang, K.; Wang, F.; Lu, C.; Nie, J.; Chen, Z.; Yang, G.; Chen, Y.-C.; Zhao, Y.; Ma, C. B(C₆F₅)₃-Catalyzed redox-neutral β alkylation of tertiary amines using p-quinone methides via borrowing hydrogen. Chem. Commun. **2019**, 55, 1217. (e) Eitzinger, A.; Winter, M.; Schörgenhumer, J.; Waser, M. Quaternary β 2,2-amino acid derivatives by asymmetric addition of isoxazolidin-5-ones to paraquinone methides. Chem. Commun. **2020**, 56, 579.

(13) For selected examples of 1,6-addition cyclization about p-QMs, see: (a) Singh, G.; Goswami, P.; Sharma, S.; Anand, R. V. A One-Pot Approach to 2,3-Diarylbenzo[b]furans through N-Heterocyclic Carbene-Catalyzed 1,6-Conjugate Addition Followed by Acid Mediated Dehydrative Annulation. J. Org. Chem. 2018, 83, 10546. (b) Jadhav, A. S.; Pankhade, Y. A.; Hazra, R.; Anand, R. V. 1,6-Hydroolefination and Cascade Cyclization of p-Quinone Methides with Styrenes: Total Synthesis of (±)-Isopaucifloral F. J. Org. Chem. 2018, 83, 10107. (c) Ma, C.; Huang, Y.; Zhao, Y. Stereoselective 1,6-Conjugate Addition/Annulation of para-Quinone Methides with Vinyl Epoxides/Cyclopropanes. ACS Catal. 2016, 6, 6408. (d) Singh, G.; Kumar, S.; Chowdhury, A.; Vijaya Anand, R. Base-Mediated One-pot Synthesis of Oxygen-Based Heterocycles from 2-Hydroxyphenyl-Substituted para-Quinone Methides. J. Org. Chem. 2019, 84, 15978. (e) Liou, Y.-C.; Karanam, P.; Jang, Y.-J.; Lin, W. Synthesis of Functionalized Benzofurans from para-Quinone Methides via Phospha-1,6-Addition/O-Acylation/Wittig Pathway. Org. Lett. 2019, 21, 8008.

(14) For selected examples of spiro-cyclization using p-QMs, see: (a) Roiser, L.; Waser, M. Enantioselective Spirocyclopropanation of para-Quinone Methides Using Ammonium Ylides. Org. Lett. 2017, 19, 2338. (b) Zhang, X.-Z.; Deng, Y.-H.; Gan, K.-J.; Yan, X.; Yu, K.-Y.; Wang, F.-X.; Fan, C.-A. Tandem Spirocyclopro panation/ Rearrangement Reaction of Vinyl p-Quinone Methides with Sulfonium Salts: Synthesis of Spirocyclopentenyl p-Dienones. Org. Lett. 2017, 19, 1752. (c) Su, Y.; Zhao, Y.; Chang, B.; Zhao, X.; Zhang, R.; Liu, X.; Huang, D.; Wang, K.-H.; Huo, C.; Hu, Y. [3 + 2] Cycloaddition of para-Quinone Methides with Nitrile Imines: Approach to Spiro-pyrazoline-cyclohexadienones. J. Org. Chem. 2019, 84, 6719. (d) Kale, S. B.; Jori, P. K.; Thatikonda, T.; Gonnade, R. G.; Das, U. 1,6-Conjugate-Addition-Induced [2 + 1] Annulation of para-Quinone Methides and Pyrazolones: Synthesis of Bis-Spiro Compounds with Contiguous Quaternary Spiro-Centers. Org. Lett. 2019, 21, 7736.

(15) For radical 1,6-addition reactions about *p*-QMs, see: (a) Hu, L.; Zhang, Y.; Zhu, H.; Liu, J.; Li, H.; Li, X.-N.; Sun, W.; Zeng, J.; Xue, Y.; Zhang, Y. Filicinic Acid Based Meroterpenoids with Anti-Epstein–Barr Virus Activities from Hypericum japonicum. Org. Lett. **2016**, 18, 2272. (b) Ke, M.; Song, Q. Copper-Catalyzed 1,6-Hydrodifluoroacetylation of para-Quinone Methides at Ambient Temperature with Bis(pinacolato)diboron as Reductant. Adv. Synth. Catal. **2017**, 359, 384. (c) Yu, J.; Sheng, H.-X.; Wang, S.-W.; Xu, Z.-H.; Tang, S.; Chen, S.-L. Copper-catalyzed radical cascades of paraquinone methides with AIBN and H₂O via α -cyanoalkylation by C– C bond cleavage: new access to benzofuran-2(3H)-ones. Chem. Commun. **2019**, 55, 4578. (d) More, S. G.; Suryavanshi, G. Metalfree, radical 1,6-conjugated addition of cyclic ethers with paraquinone methides (*p*-QMs). Org. Biomol. Chem. **2019**, 17, 3239.

(16) Guan, X.-Y.; Zhang, L.-D.; You, P.-S.; Liu, S.-S.; Liu, Z.-Q. 1,6-Conjugate sulfonylation of para-quinone methides: An expedient approach to unsymmetrical gem-diarylmethyl sulfones. *Tetrahedron Lett.* **2019**, *60*, 244.

(17) Wu, Q.-Y.; Ao, G.-Z.; Liu, F. Redox-neutral tri-/ difluoromethylation of para-quinone methides with sodium sulfinates. *Org. Chem. Front.* **2018**, *5*, 2061.

(18) (a) Liu, T.; Liu, J.; Xia, S.; Meng, J.; Shen, X.; Zhu, X.; Chen, W.; Sun, C.; Cheng, F. Catalyst-Free 1,6-Conjugate Addition/ Aromatization/Sulfonylation of para-Quinone Methides: Facile Access to Diarylmethyl Sulfones. *ACS Omega* **2018**, *3*, 1409. (b) Liu, Z.-Q.; You, P.-S.; Zhang, L.-D.; Liu, D.-Q.; Liu, S.-S.; Guan, X.-Y. TBAB-Catalyzed 1,6-Conjugate Sulfonylation of para-Quinone Methides: A Highly Efficient Approach to Unsymmetrical gem-Diarylmethyl Sulfones in Water. *Molecules* **2020**, *25*, 539.

(19) For selected books and reviews on electrochemical synthesis, see: (a) Sperry, J. B.; Wright, D. L. The application of cathodic reductions and anodic oxidations in the synthesis of complex molecules. *Chem. Soc. Rev.* **2006**, *35*, 605. (b) Yan, M.; Kawamata, Y.; Baran, P. S. Synthetic Organic Electrochemical Methods Since 2000: On the Verge of a Renaissance. *Chem. Rev.* **2017**, *117*, 13230. (c) Kärkäs, M. D. Electrochemical strategies for C-H functionalization and C-N bond formation. *Chem. Soc. Rev.* **2018**, *47*, 5786. (d) Xiong, P.; Xu, H.-C. Chemistry with Electrochemically Generated N-Centered Radicals. *Acc. Chem. Res.* **2019**, *52*, 3339. (e) Kingston, C.; Palkowitz, M. D.; Takahira, Y.; Vantourout, J. C.; Peters, B. K.; Kawamata, Y.; Baran, P. S. A Survival Guide for the "Electro-curious. *Acc. Chem. Res.* **2020**, *53*, 72. (f) Chen, N.; Xu, H.-C. Electrochemical generation of nitrogen-centered radicals for organic synthesis. *Green Synth. Catal.* **2021**, *2*, 165.

(20) (a) Wang, P. L.; Gao, H.; Jiang, Z. S.; Li, C.; Tian, Z. A.; Li, P. H. Electrochemical Synthesis of Vinyl Sulfones by Sulfonylation of Styrenes with a Catalytic Amount of Potassium Iodide. *Synlett* **2020**, *31*, 1720. (b) Qian, P.; Bi, M.; Su, J.; Zha, Z.; Wang, Z. Electrosynthesis of (E)-Vinyl Sulfones Directly from Cinnamic Acids and Sodium Sulfinates via Decarboxylative Sulfono Functionalization. *J. Org. Chem.* **2016**, *81*, 4876. (c) Luo, Y.-C.; Pan, X.-J.; Yuan, G.-Q. An efficient electrochemical synthesis of vinyl sulfones from sodium sulfinates and olefins. *Tetrahedron* **2015**, *71*, 2119.

(21) Dai, L.; Mao, K.; Zhang, G.; Wang, C.; Liu, Y.; Rong, L.; Zhang, J. Ru-Catalyzed δ -Arylation of para-Quninone Methides with Aryl Diazonium Salts to Synthesize Fuchsones. *J. Org. Chem.* **2020**, 85, 7238.

(22) Chu, W.-D.; Zhang, L.-F.; Bao, X.; Zhao, X.-H.; Zeng, C.; Du, J.-Y.; Zhang, G.-B.; Wang, F.-X.; Ma, X.-Y.; Fan, C.-A. Asymmetric Catalytic 1,6-Conjugate Addition/Aromatization of para-Quinone Methides: Enantioselective Introduction of Functionalized Diary-Imethine Stereogenic Centers. *Angew. Chem., Int. Ed.* **2013**, *52*, 9229. (23) (a) Ji, Y.-Z.; Li, H.-J.; Zhang, J.-Y.; Wu, Y.-C. Switchable regioselection of C-H thiolation of indoles using different TMS counterions. *Chem. Commun.* **2019**, *55*, 11864. (b) Du, B.; Qian, P.; Wang, Y.; Mei, H.; Han, J.; Pan, Y. Cu-Catalyzed Deoxygenative C2-Sulfonylation Reaction of Quinoline N-Oxides with Sodium Sulfinate. *Org. Lett.* **2016**, *18*, 4144. (c) Zhou, X.; Luo, J.; Liu, J.; Peng, S.; Deng, G.-J. Pd-Catalyzed Desulfitative Heck Coupling with Dioxygen as the Terminal Oxidant. *Org. Lett.* **2011**, *13*, 1432.