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SUBSTRATE SPECIFICITY OF THYMIDINE PHOSPHORYLASE

OF E. COLI: ROLE OF HYDROXYL GROUPS

Natalya G. Panova, Cyril S. Alexeev, Konstantin M. Polyakov,

Sergei A. Gavryushov, Anatoliy M. Kritzyn, and Sergey N. Mikhailov

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia

� Substrate specificity of E. coli thymidine phosphorylase to pyrimidine nucleoside modified at 5 ′-,
3 ′-, and 2 ′-positions of sugar moiety has been studied. Equilibrium (Keq) and kinetics constants
of phosphorolysis reaction of nucleosides were measured. The most important hydrogen bonds in
enzyme-substrate complex have been determined.

Keywords Thymidine phosphorlase; substrate specificity; thymidine derivatives

INTRODUCTION

Thymidine phosphorylase (TP) belongs to a class of nucleoside phos-
phorylases, which are involved in the processes of nucleoside methabolism
in cell. It catalyzes the reversible reaction of phosphorolysis of 2′-
deoxypyrimidines to heterocyclic base and 2′-deoxy-α-D-ribose-1-phosphate
and normally the equilibrium shifts to nucleoside:[1,2] Thd + Pi ↔ Thy +
dRib-P.

Thus TP participates in the salvage way of nucleoside synthesis and main-
tains the thymidine pool in cell. TPs were found in all live organisms and
it appeared that their homology is nearly 40%.[1] The three-dimensional
structures of TPs from different sources were determined and a key role for
highly conserved amino acids and their hydrogen bonds with pyrimidine
base was found.[3] On the bases of the structure of bacterial TP and molec-
ular dynamic simulations it has been shown that substrate binding starts a
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domain movement, which leads to the “closed” conformation of the active
site and initiates phosphorolysis.[4] The level of nucleoside phosphorylases
is higher in numerous cancers than in normal cells.[5] Efficient inhibitors
of these enzymes are promising as potential anticancer drugs, suitable not
only for direct treatment of cancer, but also for prolonging the effect of
other drugs.

RESULTS AND DISCUSSION

Nucleoside phosphorylases are widely used in industry for synthesis of
drugs and commercially important nucleosides.[6,7] The aim of this work
was to study substrate and inhibitory properties of thymidine derivatives in
the reactions catalyzed by recombinant E. coli TP.[8] Substrate properties
of a series of sugar modified nucleosides were investigated (Figure 1).
5′-Deoxythymidine (2) showed good substrate properties according to its
kinetic constants, while replacement of the 5′-OH with bulky substituents
(3–6) or an amino group (7), or the introduction of methyl (8, 9) or
methylene (10) groups did not hinder binding but led to a significant
reduction in the reaction rate (Table 1).

Modification of the 3′-OH dramatically influenced the binding of nu-
cleosides to TP. Nucleosides 11–13 were not substrates but inhibited TP
activity with a KI close to the KM of the natural substrate. On the bases of
the “closed structure” of active site (model structure was obtained using
molecular dynamic simulation)[9] we concluded that the 3′-hydroxyl group

TABLE 1 Kinetic constantsa of modified nucleosides in phosphorolysis reaction catalyzed by TP

Nucleoside K eq(1/K eq) K M(KI) · 10−6 M kcat, s−1 kcat/KM

1 0.07(14.3) 300 198 0.66
2 0.05 (20) 400 260 0.64
3 0.07(14.3) 300 1.7 0.006
4 (400)
5 (400)
6 (>1000)
7 400 0.58 0.0015
8 0.14 (7) 330 0.1 0.0003
9 0.10 (10) 350 0.45 0.0013
10 0.068(14.6) 300 0.6 0.002
11 (850)
12 (600)
13 (450)
14 ND 350 0.4 0.0011

aThe kinetic parameters for phosphorolysis of thymidine analogs in the presence of TP were
determined spectrophotometrically.[8] The equilibrium constants were measure using HPLC at pH 6.5
and 37◦C.[8]
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FIGURE 1 Structure of thymidine derivatives.

formed a hydrogen bond with Thr123 and due to this bond nucleoside was
moved into a position suitable for nucleophilic attack by phosphate.

In conclusion, the absence of a 5′-hydroxyl group leads to no significant
differences in binding constants and reaction rate, but introduction of
bulky groups can hinder the domain movement because of their close
proximity to the Gly88 residue, thereby lessening the reaction rate, while
the 3′-hydroxyl group is essential for phosphorolysis reaction.
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