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The installation of the biphenyl fragment via cross-coupling 
reactions has become a staple of drug design1,2. Due to the 
pivotal role of aromatic non-covalent interactions in protein–

ligand recognition3, the placement of aryl motifs in drug candidates 
can lead to derivatives with higher activities4–7. Although during 
the past years some statistical studies have tried to start to ratio-
nalize the impact of aromatic ring count on drug developability8–10, 
it is widely acknowledged that only a small portion of the avail-
able chemical space has been explored and that safe compounds 
can be identified outside the conventional drug-like chemical 
space8,11,12. Consequently, the development of reliable C–H aryla-
tion technologies would provide a more sustainable alternative to 
cross-coupling reactions13 and grant access to a rapid and valuable 
exploration of the structural diversity via late-stage C–H arylation14–17,  
which would make them extremely desirable within drug discovery 
and development.

The vast majority of drugs contain several polar functionalities, 
often as part of oxygen, nitrogen and sulfur heterocycles18–20, that 
are essential to maximize the drug–target interaction and main-
tain acceptable levels of pharmacokinetics and toxicity21. However, 
despite the need to manipulate polar functionalities in medicinal 
chemistry, a statistical analysis revealed that “the more polar prod-
ucts in an array tended to systematically fail more often in synthesis”, 
which may correlate with the crisis of productivity of the drug-dis-
covery process22. Specifically, polar groups are often problematic in 
C–H activation as the presence of Lewis basic heteroatoms can pro-
mote catalyst poisoning or substrate decomposition23–25. Moreover, 
in directed C–H activation reactions, strongly coordinating moi-
eties add a further challenge as they can outcompete the directing 
group (DG) for catalyst binding, and thus prevent its approach into 
the proximity of the targeted C–H bond26. Nonetheless, despite the 
historical bias towards para-substitution observed in medicinal 
chemistry, which favours the synthesis of ‘flat’ products27, ortho-
directed C–H activation protocols have the capability of expanding 
the chemical space. Due to the twisting and disruption of the planar 
structure, ortho regioisomers have different physicochemical prop-
erties relative to para and meta ones, and they may prove themselves 

valuable when exploring new target classes that necessitate different 
spatial arrangements to bind and attain the desired effect2.

In the context of ortho-directed C–H arylation reactions with 
aryl (pseudo)halides, whereas palladium-catalysed processes are by 
far the most studied13,28–33, the use of ruthenium often brings several 
benefits. In addition to being more than 15 times cheaper than pal-
ladium, electrophiles such as aryl chlorides, triflates and bromides 
can be coupled by ruthenium with similar levels of efficiency13,34. 
Since the pioneering work on the Ru(ii)-catalysed C–H arylation 
of DG-containing arenes with aryl halides in 200135, tremendous 
efforts have been dedicated towards the establishment of more 
general and efficient reaction conditions13,34,36–40. However, state-of-
the-art methodologies still require high temperatures and often a 
several-fold excess of the aryl (pseudo)halide (Fig. 1a). Furthermore, 
the exceptional binding affinity of the Ru(ii) metal centre to sp2 
nitrogen atoms—widespread in ortho DGs—has not flourished 
as an in-built selection device able to discriminate between sp2 
nitrogens over other heteroatoms or functional groups that pos-
sess lesser coordinating abilities. Thus, directed Ru(ii)-catalysed 
C–H activation reactions have yet to be shown to withstand polar 
sensitive groups, which are ubiquitous in pharmaceuticals and 
natural products. This is probably because the harsh working 
conditions commonly required in these methodologies facilitate  
detrimental reaction paths, either by preventing the desired DG–
catalyst interaction or by initiating thermal decomposition of these 
delicate functionalities.

Here we report the discovery of a key catalytic species in the 
mechanism of the Ru(ii)-catalysed C–H arylation of DG-containing 
arenes with aryl (pseudo)halides. For nearly two decades, this reac-
tion has been proposed to operate via a catalytic cycle (Fig. 1b) that 
involves an initial C–H activation step to form cycloruthenated spe-
cies I, which undergoes oxidative addition with the aryl halide to 
generate the Ru(iv) intermediate II. The latter, after the reductive 
elimination step, will then release the biaryl product, which restarts 
the cycle13,34,41,42. We speculate that this oversimplified mechanism 
has, to date, prevented the discovery of truly reactive catalysts. 
Contrary to previous postulations, our mechanistic investigations 
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revealed that a second C–H activation event is required to form the 
bis-cyclometallated Ru(ii) complex III, prior to the oxidative addi-
tion step that leads to the Ru(iv) species IV (Fig. 1c). The detection 

and characterization of the bis-cycloruthenated intermediate III 
was made possible by kinetic studies, which allowed us to hypoth-
esize its fundamental role in the catalytic cycle. Furthermore, our 
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Fig. 2 | Kinetic evidence that supports the involvement of a bis-cycloruthenated intermediate in the Ru-catalysed C–H arylation of DG-containing 
arenes with aryl (pseudo)halides. Reaction kinetic profiles for the stoichiometric arylation of Ru1​ (i and iii) and Ru2​ (ii and iv) with 5-iodo-m-xylene 2​ 
in the absence (i and ii) or in the presence (iii and iv) of 0.2 equiv. of 2-(o-tolyl)pyridine 1​ show the evolution of free 3​ (fuchsia triangles), free 1​ (orange 
rhombi) and biaryl product 4​ (blue dots). The reactions were analysed by gas chromatography–flame ionization detection (GC–FID) using hexadecane as 
the internal standard.
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studies reveal that cycloruthenated complexes like I (Fig. 1d, RuB) 
are able to catalyse the C–H arylation at remarkably low tempera-
tures, with equimolar amounts of the aryl (pseudo)halide. Owing 
to the commercial and competitive aspects of drug discovery, 

robust and established methodologies are relentlessly preferred. 
Consequently, the uptake of new synthetic methods in medicinal 
chemistry is a function of the extents of the substrate scope pre-
sented in the methodology43,44. Therefore, with the aim to provide a 
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Fig. 3 | Detection, isolation and reactivity of the bis-cycloruthenated complex Ru5. In situ 1H and 19F NMR monitoring of the reaction between Ru3​ and 
5​ that generated Ru5​ is shown in the light blue box. In situ 1H and 19F NMR monitoring of the reaction between Ru5​ and 2​ that produced 6​, Ru6 and Ru4 
is shown in the light yellow box. 1H and 19F NMR spectra of: Ru3​ in CD3CN (i); a freshly prepared sample of Ru3​ in C6D6/NMP that reveals the formation 
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truthful and solid platform to evaluate the possibility of implement-
ing our technology in the synthesis of drug-like compounds, we 
targeted heavily functionalized molecules by performing late-stage 
arylation on pharmaceuticals, agrochemicals, natural products and 
organic electronic materials.

Results and discussion
Kinetic evidence that supports the involvement of a bis-cyclo-
ruthenated intermediate. Recently, we described the first Ru(ii)-
catalysed C–H arylation methodology for ‘simple’ electron-deficient 
arenes45. During the development of this methodology, we discov-
ered that, contrary to previous hypotheses41, the p-cymene ligand 
present in state-of-the-art ruthenium catalysts (Fig. 1a, RuA) is an 
inhibitor in the reaction. This disparity prompted a more thorough 
investigation of the general mechanism of Ru(ii)-catalysed C–H 
arylation. We began our investigation by examining the mechanism 
of the directed arylation of 2-(o-tolyl)pyridine 1​ with 5-iodo-m-xy-
lene 2​ to form 4​ (Fig. 2). We assessed the reactivity of two proposed 
catalytic intermediates, Ru1​ and Ru2​ (corresponding to complex I 
in Fig. 1b,c), in their stoichiometric reaction with aryl iodide 2​ in 
the presence of KOAc in NMP (N-methyl-2-pyrrolidone) at 90 °C 
(Fig. 2). Surprisingly, both Ru1​ and Ru2​ reacted sluggishly with 2​, 
which suggests that a more complex mechanism than that depicted 
in Fig. 1b was in operation. Specifically, the reaction profile of Ru1​ 
revealed: (1) a fast release of p-cymene 3​, (2) a rapid build-up of 
decomplexed 2-(o-tolyl)pyridine 1​, which then decreased over 
time, and (3) an induction period in the formation of biaryl 4​ that 
correlated with the evolution of free 1​ (Fig. 2, graph i). p-Cymene-
free Ru2​ displayed a similar behaviour, albeit with a much faster 
arylation rate (Fig. 2, graph ii), which confirms the inhibitory role 
of the p-cymene ligand in this directed arylation. Importantly, the 
observed formation and consumption of free 1​ is consistent with 

kinetics in which this species is a reaction intermediate in the ary-
lation process. Thus, we hypothesized that a C–H activation step 
between an η​6-arene-free cycloruthenated species, such as Ru2​ and 1​,  
must happen before reaction with iodoarene 2​ (for example, I to III 
in Fig. 1c). Indeed, when the concentration profiles for the aryla-
tion reactions of Ru1​ and Ru2​ were monitored after the addition 
of 0.2 equiv. of 2-(o-tolyl)pyridine 1​, a fast consumption of 1​ and 
a significant increase in the arylation rate were observed (Fig.  2, 
graphs iii and iv). Furthermore, in agreement with the generation of 
a bis-cyclometallated complex like III (Fig. 1c), the omission of the 
base required for C–H activation, KOAc, substantially reduced the 
arylation rate46 (Supplementary Section 3).

Detection and reactivity of the bis-cycloruthenated intermedi-
ate. To validate further this mechanistic hypothesis, we followed 
the reaction of cyclometallated complex Ru3​ with 2-arylpyridine 5​ 
(Fig. 3, light blue shading) by 1H and 19F NMR spectroscopy. A rapid 
ligand exchange took place at room temperature between the aceto-
nitrile ligands of Ru3​ and NMP to produce Ru4 (Fig. 3, spectra i–
iii). After 180 minutes at 80 °C, Ru3​/Ru4 had quantitatively reacted 
with 5​ to form the predicted bis-cyclometallated Ru(ii) species Ru5​,  
whose structure was confirmed by X-ray analysis. Then, iodoarene 
2​ was added and the reaction was monitored at 25 °C (Fig. 3, light 
yellow shading). Over 600 minutes, Ru5​ quantitatively reacted with 
2​ to form the arylated product 6​, along with the cyclometallated 
complexes Ru6 and Ru4 derived from reductive elimination. This 
experiment is fully consistent with our mechanistic hypothesis, and 
provides strong evidence that the catalytic cycle reported in Fig. 1c 
is, indeed, operating.

Monocycloruthenated complexes as a superior class of catalysts. 
Having discovered evidence for the intermediacy of a bis-cycloru-

Ru(MeCN)4Me

N

(PF6)

N

Me

Me

I

N

Xyl

N

XylXyl Me

N

Xyl

Ru
O

O

Me

iPr

OCOMe
Me

Ru
O

O

Me

iPr

O
Me

Me

Me

O

Me

Me Me

Ru(MeCN)4

N
Me

Me

(PF6)

N N

NMe2 NMe2

Me

Me

Me

Me

Me

Me

Me

Me

Me

Me

Me

Me

a

+ Xyl

[Ru] (10 mol%)
KOAc (0 or 20 mol%)

K2CO3 (3 equiv.)

NMP, 35 °C
With time

7 (1 equiv.) 2 (2 equiv.) 8 9 4

[Ru]

Ru2 (    ,    ) Ru7 (    ) Ru8 (   ) 

b

N

Me

Me

I+
Ru9 (10 mol%)

KOAc (30 mol%)
K2CO3, NMP (1M),  

35 °C, 24 h 

7 (1 equiv.) 2 (2 equiv.) Standard optimized
conditions

+ + +

8, 0% 9, 96% 10, 0% 11, 0%

+ +

0

20

40

60

80

100

0 100 200 300 400

8 
+

 9
, 4

 (
%

)

Time (min)

Time = 420 min 

8 + 9 (Ru7)
4
8 + 9

8 + 9 (Ru8)

(Ru2 + 20 mol% KOAc)  

8 + 9 (<1%)
4 (8%)  
8 + 9 (89%)

8 + 9 (<1%)

Fig. 4 | Cycloruthenated complexes as a superior class of catalysts for the C–H arylation of DG-containing arenes with aryl (pseudo)halides. a, 
Comparison of the catalytic activity of the system constituted by Ru2​ and KOAc with respect to Ru7​ and Ru8​. The reactions were analysed by GC–FID 
using hexadecane as the internal standard. b, Establishment of Ru9​ as the catalyst of choice for the Ru(ii)-catalysed directed C–H arylation. The reactions 
were analysed by 1H NMR spectroscopy using 1,3,5-trimethoxybenzene as the internal standard.

Nature Chemistry | VOL 10 | JULY 2018 | 724–731 | www.nature.com/naturechemistry 727

http://www.nature.com/naturechemistry


© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. © 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

Articles NATuRe CHemisTRy

a

OH

H

H

ArN

H

Me

OF

N OH

Me
N

N

HN

N

O H
N

Me
N

ArN

ArN

O Me

N

O
S
O

Me

O

H
N

O

ArN

HO

O

Me ArN

O

O

O
MeMe

O Me

OMe

O

MeO

N

ArNO

O

Me

O

O

NH
O

PhO

N

N

ArN

N

N

N

O O

N

N

N

ArN

N

N

O

Me

Me
N
H

ArN

ArN

OMe

O

O

HO
H N

H

O

H
N O

O

H
N

S

ArN

MeO

O

N
H

HO
O

HO

OH

OH

O

ArN

Me Me
ArN

ArN
Me

O
Me

Me

Me

N
H Me

N

NH

S

N

N N Me

O
Me

HN

F

ArNHN
O

N
O

N

Me O

N Me

Me

ArN ArN

N N

O

ArN

N
NNMe

S
O O

N

N
H

Me

O OEt

N

N

ArN

S

NMe2

NMe2

N
H

O

F

OH

N
O

ArN

F

N

Me2N

Me

N

ArN

ArN

OMe
O

ArN

ArN

ArN

NH2

N

Me H

N

O

O

H

H
H

H

N

O

OMe

ArN

Me
Me

Me

Me

Me

Me

Me HH

H

NMe2

Me

Me

Me
Me

Me

Me
Me

Me

Ru(MeCN)4

N

Me

Me

(PF6)

N

MeX

X = Cl, Br, I, OTf

X1–X34 (1 equiv.)1 (1 equiv.)

+ Ru9 (10 mol%)

KOAc (30 mol%)
K2CO3, NMP (1 M),  35 °C, 24 h

A1–A34

ArN

b

c

e

d

A1, 90%a

From bezafibrate: lipid lowering
A2, 90%

From fenofibrate: lipid lowering
A3, 92%

From indometacin:
NSAID

A4, 93%
From chlormezanone:

anxiolytic

A5, 92%
From chlorpropham:

herbicide

A6, 91%a

From diazoxide:
vasodilatator

A7, 91%b

From azelastine:
antihistamine

A8, 92%
From nefazodone:

antidepressant

A9, 93%c

From trazodone:
antidepressant

A10, 92%a

From haloperidol:
neuroleptic

A11, 83%c

From bupropion:
antidepressant

A12, 97%
From clomipramine: antidepressant

A12, 95%a,d

(10 g scale with 3 mol% Ru9)
A13, 96%a

From clozapine: neuroleptic
A14, 85%a,c

From prochlorperazine: neuroleptic

A15, 90%a

From chlorprothixene: antipsychotic

A16, 90%c

From meclizine:
antihistamine

A17, 81%b,c,e

From chlorpheniramine:
antihistamine

A18, 56%b,c,f

From loratadine:
antihistamine

A19, 78%b,c,g,h

From glyburide:
antidiabetic

A20, 91%a

From strychnine (from
Strychnos nux-vomica)

A21, 69%b,c,e

From bromhexine: mucolytic
A22, 94% from pharmaceutical formulation

From ladasten (bromantane): immunostimulant, Parkinson's disease
A23, 84%

From trametinib: antineoplastic

A24, 90%
From δ-tocopherol (from vitamin E) A27, 97%

From oestradiol: HRT

A30, 71%a

From naltrexone:
opioid antagonist

A33, 91%
From ezetimibe: lipid lowering

A25, 71%b

From capsaicin (from chilli pepper)

A28, 92%a,c,g

From hymecromone: 
choleretic

A31, 78%b

From bufotenin
(from psychoactive toad)

A26, 84%b,c,g,h

From γ-oryzanol: antioxidant
A29, 62%b,g,h

From vanillin: flavouring agent
A32, 70%a,c

From harmol: antineoplastic
A34, 88%a

From arbutin (from bearberry)

ArN

ArN

ArN

ArN ArN

ArN

ArN

ArN

ArN

Fig. 5 | Substrate scope of the C–H arylation with respect to the aryl (pseudo)halide-containing drugs. The 2-(o-tolyl)pyridine 1​ component (ArN) 
is shown in light blue and the aryl (pseudo)halide-containing drug part is shown in green. a, C–H arylation coupling of 1​ with aryl (pseudo)halides. b, 
Coupling with chloride-containing drugs X1, X2, X4 and X6–X19, chloride-containing drug derivative X3​ and chloride-containing agrochemical X5. c, 
Coupling with bromide-containing drugs X21 and X22 and bromide-containing natural product derivative X20​. d, Coupling with iodide-containing drug 
X23. e, Coupling with triflate-containing drug derivatives X27​, X28​, X30​ and X33​ and triflate-containing natural product derivatives X24​–X26​, X29​, X31, 
X32​ and X34​. All of the yields are isolated yields. Reaction conditions: Ru9​ (10 mol%), KOAc (30 mol%), 1​ (1 equiv.), X1–X34​ (1 equiv.), K2CO3 (2–4 equiv. 
(Supplementary Information)), NMP (1 M), 35 °C, Ar atmosphere, 24 h. a48 h. b72 h. c50 °C. dX12 (1 equiv.), 1​ (1.03 equiv.), Ru9​ (3 mol%). e1​ (2 equiv). f1​ 
(3 equiv). gKOBz used in replacement of KOAc. hNMP (0.5 M). HRT, hormone replacement therapy; NSAID, non-steroidal anti-inflammatory drug.

Nature Chemistry | VOL 10 | JULY 2018 | 724–731 | www.nature.com/naturechemistry728

http://www.nature.com/naturechemistry


© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. © 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

ArticlesNATuRe CHemisTRy

thenated complex, we compared the rate of the reaction catalysed by 
Ru2​ and KOAc to the rates with Ru7​ and Ru8​, which are the most 
widely employed state-of-the-art ruthenium catalysts13,34,46,47 (Fig. 4a). 

Thus, the C–H arylation of 2-phenylpyridine 7​ with 5-iodo-m-xylene 
2​ was monitored over time at 35 °C. Remarkably, although the cyclo-
metallated Ru2​ catalyst afforded a combined yield of 89% of mono  
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(8​) and diarylated (9​) adducts in 420 minutes, Ru7​ and Ru8​ were 
essentially inactive. These results demonstrate that catalysts based 
on on-cycle intermediates, such as I (RuB in Fig. 1d), possess a far 
superior catalytic activity than the commonly employed Ru(ii) spe-
cies (RuA in Fig.  1a), which enables reactivity to occur at unprec-
edentedly low temperatures. However, 8% of biaryl 4​, derived from 
arylation of the cyclometallating ligand in Ru2​, was also formed. A 
similar scenario was also observed with other aryl (pseudo)halides 
(Supplementary Section 6). It was hypothesized that this was due to 
the non-selective reductive elimination from a Ru(iv) complex that 
featured two different cyclometallated arenes, which implies that 
catalysts such as Ru2​ still suffered from a major drawback. In an 
attempt to overcome this limitation, we tested cycloruthenated com-
plexes that featured different nitrogen ligands. Gratifyingly, the N,N-
dimethylbenzylamine-containing Ru9​ provided diarylated adduct 9​ 
in 96% yield and suppressed the undesired ‘catalyst arylation’ degrada-
tion pathway that produces 10​ and 11​ (Fig. 4b).

Investigation of the scope of the reaction with respect to the aryl 
(pseudo)halide coupling partners. Having identified Ru9​ as an 
ideal catalyst able to couple equimolar amounts of DG-containing 
arenes with aryl (pseudo)halides under exceptionally mild reaction 
conditions, we decided to demonstrate the synthetic utility of this 
catalytic system. Towards this aim, pharmaceuticals and natural 
products that possess an aromatic chloride, bromide, iodide or a 
phenol moiety transformed into its triflate derivative (X1–X34​),  
were selected as coupling partners for the C–H arylation of 
2-(o-tolyl)pyridine 1​ (Fig. 5). The scope of the reaction is striking; 
many ubiquitous heterocycles and functional groups in medicinal 
chemistry18–20 were well tolerated and provided good-to-excellent 
yields (A1​–A34​). O-, N-, S- and C-containing (hetero)cycles, 
such as piperidine (A10​ and A18​), pyridine (A17​, A18​ and A32​),  
piperazine (A8​, A9​, A13​, A14​ and A16​), azepane (A7​), indole (A3​ 
and A31​), carbazole (A32​), phenothiazine (A14​), dihydrodiben-
zoazepine (A12​), dibenzodiazepine (A13​), thioxanthene (A15​), 
triazolone (A8​ and A9​), pyrimidinedione (A23​), pyridone (A23​), 
morphinan (A30​), steroid (A26​ and A27​), β​-lactam (A33​), glucose 
(A34​), coumarin (A28​), chromane (A24​), phtalazinone (A7​), ben-
zothiadiazine (A6​) and thiazinane (A4​), were shown to be compat-
ible with our system. More specifically, sensitive functional groups, 
which included tertiary (A12​, A15​, A17​, A20​, A21​ and A31​) and 
secondary amines (A11​), carbamates (A5​ and A18​), a sulfonylurea 
(A19​), alkenes (A15​, A18​, A20​, A25​ and A26​), acryloyl groups 
(A26​ and A28​), benzylic (A10​, A33​), tertiary (A10​ and A30​), sec-
ondary (A27​ and A34​) and primary alcohols (A34​), an acetal (A34​),  
a thiohemiaminal derivative (A4​), amidine derivatives (A6​ and 
A13​), cyclopropyl groups (A23​, A26​ and A30​), an aniline (A21​), 
a carboxylic acid (A1​), an aldehyde (A29​), amides (A1​, A19​, A23​ 
and A25​), esters (A2​, A3​ and A26​), an α​-amino ketone (A11​) and 
ketones (A2​ and A30​) were all tolerated. The efficiency of this cata-
lytic system was also demonstrated by conducting the reaction with 
clomipramine X12 on a 10 g scale with the catalyst loading lowered 
to 3 mol%. The corresponding product, A12​, was yielded in 95% 
after a simple aqueous work-up. To highlight further the robustness 
of our method, bromantane could be used in its pharmaceutical for-
mulation of Ladasten, X22, to provide A22​ in 94% yield despite the 
presence of possibly interfering excipients.

Investigation of the scope of the reaction with respect to the 
DG-containing arene coupling partners. We then turned our 
attention to the generality of this reaction with respect to the 
DG-containing coupling partner (Fig.  6a). Towards this purpose, 
we tested the 2-phenylpyridine derivative atazanavir N1, a peptido-
mimetic human immunodeficiency virus-1 protease inhibitor that 
features a complex azadipeptide isoester, which provided B1​ in 80% 
yield. This methodology is not limited to 2-arylpyridine analogues:  

other heterocycles with a sp2-nitrogen DG, which include imid-
azopyridines (zolimidine to give B2​ and zolpidem to give B3​),  
dihydrodibenzoazepin-2-ones (diazepam to B4​ and flurazepam 
to B5​), purine (to B6), oxazole (oxaprozin to B7), pyrazole (sul-
faphenazole to B8​) and 1,2,4-triazole (TAZ (3-(biphenyl-4-yl)-
5-(4-t-butylphenyl)-4-phenyl-4H-1,2,4-triazole) to B9) gave 
good-to-excellent yields of the corresponding ortho-arylated func-
tional molecules (B2​–B9). Consequently, more sensitive moieties, 
such as sulfonyl (B2​), the hemiaminal ether of the purine riboside 
B6, sulfonamide (B8​) and chloride (B4​ and B5​) were also tolerated. 
Remarkably, the diazepam derivative C1​ was obtained in 95% yield 
in a one-pot fashion simply by the sequential addition of iodoarene 
2​ and 2-(o-tolyl)pyridine 1​. To illustrate further the power of our 
catalytic system, the coupling between two highly functionalized 
drugs was achieved (Fig. 6b). Atazanavir N1, zolpidem N3, fluraz-
epam N5 and sulfaphenazole N8 were, respectively, reacted with 
trametinib X23, clozapine X13, hymecromone derivative X28​ and 
Br-strychnine X20​ and provided superb yields of the targeted com-
pounds (D1​–D4​). Conversely, when the current state-of-the-art 
Ru(ii) catalysts Ru7​ and Ru8​ were tested, neither catalyst afforded 
D1​–D4​ in synthetically useful yields (Fig. 6b, bottom right).

Conclusion
Our study highlights the factors that promote oxidative addition at 
Ru(ii) centres in C–H arylation processes of N–chelating substrates 
with aryl (pseudo)halides and demonstrates how comprehensive 
mechanistic studies can inform the development of more-efficient 
catalysts. In particular, we identified a bis-cycloruthenated species 
as the key intermediate that is required for the oxidative addition 
step to occur. Based on this knowledge, we designed a more-robust 
catalytic system capable of performing late-stage arylation on com-
plex functionalized molecules and that tolerates functional groups 
generally considered incompatible with C–H arylation.

According to the PubChem database, there are 6.4 million (het-
ero)aromatic compounds with a sp2 nitrogen suitable for ortho-
ruthenation via a five-membered intermediate, and 22 million 
(hetero)aromatic chlorides, bromides, iodides and phenols that 
have biological activity. Owing to this impressive pool of potential 
coupling partners that bear diverse functionalities, our efficient and 
cost-effective technology promises to be a powerful and reliable tool 
for drug discovery and development. Finally, we anticipate that the 
presented mechanistic discovery could be extended to other C–H 
activation transformations under current development.

Methods
General procedure for C–H arylation. All of the liquid reagents and solvents 
were dried over 4 Å molecular sieves and degassed with three freeze–pump–thaw 
cycles prior to use. KOAc and K2CO3 were dried at 140 °C in a vacuum oven for 
48 h prior to use. Unless otherwise indicated, in a glovebox, an oven-dried crimp-
cap microwave vial equipped with a magnetic stirring bar was charged with Ru9​ 
(10 mol%), KOAc (30 mol%), K2CO3 (2–4 equiv.), the appropriate DG-containing 
arene (1 equiv.) and aryl (pseudo)halide (1 equiv.) and NMP (1 M). The vial was 
capped and stirred at 35 °C for 24 h. Upon completion, the vial was transferred out 
of the glovebox and the crude mixture was loaded onto a silica gel column and 
purified by flash chromatography.

Data availability. The data reported in this paper are available in 
the Supplementary Information. Metrical parameters for the structure of bis-
cyclometallated complex Ru5​ are available free of charge from the Cambridge 
Crystallographic Data Centre (https://www.ccdc.cam.ac.uk/data_request/cif) 
under reference number CCDC 1567316.
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