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Abstract: In this study, a straightforward methodology was de-
veloped to access quaternary α-trifluoromethylthiolated chloro-
aldehydes. Using the Munavalli reagent as the electrophilic SCF3

source, a base-catalyzed trifluoromethylthiolation reaction with
a panel of α-chloroaldehydes was successfully achieved under
mild reaction conditions. The α-trifluoromethylthiolated chloro-
aldehydes were obtained in moderate to high yields (up to

Introduction

Molecules containing a fluorine atom and a fluorinated group
are ubiquitous in our daily life and more particularly in agro-
chemicals and medicinal chemistry[1] due to their unique fea-
tures.[2] Therefore, organofluorine chemistry is nowadays con-
sidered as a key research field and considerable advances are
continuously made by the organic chemistry community to
provide powerful synthetic tools as original transformations and
newly-designed emergent fluorinated groups.[3] Among these
emergent groups, the SCF3 group[4] features attractive physico-
chemical properties like its high lipophilicity (Hansch hydro-
phobic parameter, π = 1.44)[5] and its electron-withdrawing
character.[6] Moreover, its potential has already been demon-
strated in molecules of interest such as the insecticide Fipronil
or the Toltrazuril, a coccidiostatic drug, commercialized by BASF
and Bayer, respectively.

Therefore, the quest for the introduction of this fluorinated
residue onto molecules inspired the scientific community to de-
velop new strategies, offering a large tool box for the incorpora-
tion of this fluorinated group onto various scaffolds.[7] To date,
the formation of a C(sp2)–SCF3 bond has been intensively stud-
ied involving transition-metal-promoted transformations, or-
ganocatalyzed reactions or radical pathways. Conversely, the
functionalization of C(sp3) centers remains underdeveloped and
further progress has to be made to broaden the access to this
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88 %). This approach demonstrated a good functional-group
tolerance and offered access to highly functionalized quater-
nary trifluoromethylthiolated aldehydes, inaccessible so far. The
development of an enantioselective version was investigated
by using a chiral phase-transfer catalyst, giving the enantio-
enriched product in moderate enantiomeric excess.

class of compounds. So far, most of the strategies relied on
the use of SCF3-containing building blocks to construct more
complex molecules[8] or the direct introduction of the SCF3 resi-

Scheme 1. Trifluoromethylthiolation of aldehydes: state of the art and pro-
posed strategy.
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due onto aliphatic compounds.[9] In the last case, the α-func-
tionalization of a carbonyl group appeared as a privileged and
efficient approach to provide the targeted C–SCF3 bond
(Scheme 1).

The α-trifluoromethylthiolation of carbonyl compounds con-
nected to a tertiary carbon center offers a straightforward ac-
cess to SCF3-substituted quaternary centers. The current meth-
ods relied on the functionalization of highly reactive carbonyl
compounds such as oxindoles, benzofuranones, malonates and
�-keto esters with electrophilic SCF3 sources via 1) organocata-
lyzed,[10] 2) transition-metal-catalyzed[11] and 3) base-pro-
moted[12] trifluoromethylthiolation reactions. Alternatively, the
direct introduction of a SCF3 group onto amides, N-acyl oxaz-
olidinones and ketones was also studied, albeit restricted to a
handful of examples.[10h,13]

In sharp contrast, the construction of a quaternary SCF3–
C(sp3) center on aldehyde derivatives at the α-position is scarce
(Scheme 1). Since the pioneering work by Haas in 1971,[14] few
reports dealt with the synthesis of α-trifluoromethylthiolated
aldehydes. Lu and Shen reported the trifluoromethylthiolation
of hydrocinnamaldehyde derivatives using enamine catalysis
with the morpholine hydrochloride salt in the presence of an
electrophilic SCF3 source.[10a] A similar transformation was then
reported by Shen using the N-trifluoromethylthiosaccharin rea-
gent.[10b] In both cases, only two examples were depicted. Bil-
lard and co-workers reported the trifluoromethylthiolation of
silyl enol ethers and described a single example with an alde-
hyde.[10c] The same group then developed a complementary
approach to access α-trifluoromethylthiolated aldehydes under
acid-catalysis.[15] The next year, Sun depicted the α-trifluoro-
methylthiolation of a wide range of aldehydes using enamine
catalysis, although a single tertiary aldehyde was functional-
ized.[16] It is worth to mention that the methods for the α-
trifluoromethylthiolation of aldehydes are restricted to very few
examples. In addition, the access to α-SCF3-containing quater-
nary centers is even more rare.

Therefore, the development of complementary and more
general approaches to afford aldehydes bearing a α-trifluoro-
methylthiolated quaternary center is an appealing task. In that
context, we turned our attention to the α-chloroaldehydes as a
readily available starting material. Herein, we report the base-
catalyzed trifluoromethylthiolation of α-chloroaldehydes, offer-
ing an original access to new and valuable SCF3-containing
fluorinated building blocks bearing a quaternary C–SCF3 center.

Results and Discussion

At the outset of the study, α-chlorophenylpropanal 1a was se-
lected as the model substrate. When 1a was reacted in the
presence of the Munavalli reagent I and a stoichiometric
amount of K2CO3 as a base at room temperature, the expected
product 2a was observed in 17 % yield (Table 1, entry 1). Using
a catalytic amount of DABCO (15 mol-%), 2a was still detected
albeit in traces (entry 2). Then, other electrophilic sources were
evaluated (entries 3–4), the Haas reagent II being the most effi-
cient one. To further improve the yield, several solvents were
tested, revealing that DMF provided the expected product 2a
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in a higher 72 % yield (entries 5–9). Using the best reaction
conditions and switching the electrophilic source from the Haas
reagent II to the Munavalli one I, 2a was obtained in a slightly
better 19F NMR yield (80 %) and was isolated in 78 % yield (en-
try 10).

Table 1. Optimization of the base-catalyzed trifluoromethylthiolation of the
α-chloroaldehyde 1a.[a]

Entry Base (x mol-%) SCF3
+ reagent Solvent Yield 2a [%][b]

1 K2CO3 (200) I CH2Cl2 17
2 DABCO (15) I CH2Cl2 3
3 DABCO (15) II CH2Cl2 22
4 DABCO (15) III CH2Cl2 NR
5 DABCO (15) II 1,4-dioxane 9
6 DABCO (15) II THF 8
7 DABCO (15) II CH3CN 35
8 DABCO (15) II toluene 4
9 DABCO (15) II DMF 72
10 DABCO (15) I DMF 80 (78)[c]

[a] Reaction conditions: 1a (0.2 mmol), SCF3
+ reagent (0.2 mmol), base (x

mol-%), solvent (2 mL), 20 °C, 15 h, argon. [b] Yields determined by 19F NMR
analysis of the crude reaction mixture using α,α,α-trifluorotoluene as an in-
ternal standard. [c] Yield of isolated product. NR = no reaction.

With the best reaction conditions in hands, the scope of the
transformation was studied (Scheme 2). First, the substitution
on the aryl group of the α-chlorophenylpropanal backbone was
studied. Aryls bearing an electron-donating group (OMe, 2b)
and an electron-withdrawing one (CF3, 2c) were efficiently func-
tionalized; albeit with a somehow lower yield in the case of 2c.
The naphthyl derivative (1d) was also readily converted into 2d
in a decent 78 % yield. The transformation was not restricted
to arylated propanal derivatives since α-chloro nonanal 1e was
trifluoromethylthiolated in a high 77 % yield. The reaction
turned out to be compatible with a chlorine atom as a substitu-
ent, furnishing the expected compound 2f. Various functional
groups were suitable as demonstrated by the functionalization
of benzyl-protected alcohol (1g) and phthalimide (1h) deriva-
tives. Trifluoromethylthiolated aldehydes substituted with azide
(1i) and cyano (1j) groups were efficiently obtained in 64 % and
63 % yields, respectively. From a synthetic point of view, this
functional-group tolerance opened great perspectives in term
of post-functionalization reactions and for the construction of
more complex molecules using these fluorinated chemical plat-
forms. The versatility of this transformation was further demon-
strated by the trifluoromethylthiolation reaction of molecules
of interest such as citronellal (1k) and oleic acid (1l), offering
an access to the corresponding SCF3-containing products in
moderate yields (Scheme 2).
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Scheme 2. Trifluoromethylthiolation of α-chloroaldehydes. Reaction condi-
tions: 1 (0.5 mmol), electrophilic SCF3 reagent I (1 equiv.), DABCO (15 mol-
%), DMF (0.1 M), 20 °C, 15 h, argon. Yields of isolated products were reported.
[a] Reaction performed on 0.2 mmol scale. [b] A diastereoisomeric ratio of
77:23 was obtained.

To showcase the synthetic utility of these functionalized scaf-
folds, post-functionalization reactions were conducted. The al-
dehyde 2a was smoothly reduced with NaBH4 into the corre-
sponding alcohol 3 in 87 % yield. Then, the aldehyde 2a was
efficiently converted in one-step into the corresponding methyl
ester 4 in 76 % yield via NHC catalysis (Scheme 3).[17] This
method afforded a straightforward and functional-group toler-
ant access to α-SCF3 ester derivatives under mild conditions,
which are usually synthesized using a stoichiometric amount of
a strong base (LDA) from the corresponding esters.[10c]

Scheme 3. Post-functionalization reactions. DIPEA = N,N-diisopropylethyl-
amine.

Finally, the catalytic asymmetric trifluoromethylthiolation of
α-chloroaldehydes was studied using 1a and a phase-transfer
catalyst. After extensive investigations, we found that 1-{[4-
(trifluoromethyl)phenyl]methyl}cinchonidinium chloride 5 was
the best catalyst. Using 5 (20 mol-%), Cs2CO3 as a base in tolu-
ene, the enantioenriched aldehyde 2a was isolated in good
yield and moderate enantiomeric excess (79 %, 37 % ee,
Scheme 4).
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Scheme 4. Catalytic enantioselective trifluoromethylthiolation of the α-chlo-
roaldehyde 1a under phase-transfer catalysis.

Conclusions
In summary, a novel synthetic approach was developed for the
synthesis of the highly functionalized quaternary α-trifluoro-
methylthiolated aldehydes. Using a catalytic amount of DABCO,
various aldehydes were functionalized in moderate to good
yields under mild conditions. The transformation showed a
good functional-group tolerance. The enantioselective trifluoro-
methylthiolation reaction was studied by means of phase-trans-
fer catalysis affording the expected aldehyde in good yield and
moderate enantiomeric excess. These original fluorinated build-
ing blocks are of particular interest due to the presence of vari-
ous functional groups (CHO, Cl and SCF3) and would be very
useful to access new value-added SCF3-containing molecules
that have been inaccessible so far.

Experimental Section
In an oven-dried tube equipped with a magnetic stirrer, DABCO
(0.075 mmol, 15 mol-%) was added to a solution of the α-chloro-
aldehyde derivative 1 (0.5 mmol, 1 equiv.) and phthalimide-SCF3

reagent I (0.5 mmol, 1 equiv.) in DMF (5 mL) under argon. The
reaction mixture was stirred at 20 °C for 15 h. Then, brine (15 mL)
was added and the aqueous layer was extracted with Et2O (3 ×
15 mL). Organic layers were combined and washed with brine (2 ×
15 mL), dried with Na2SO4, filtered and concentrated under reduced
pressure at 20 °C under 100 mbar. The residue was purified by flash
column chromatography on silica gel (petroleum ether/dichloro-
methane) to afford the desired trifluoromethylthiolated ester deriv-
ative 2.
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