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Enantioselective Total Synthesis of Borrelidin
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Borrelidin (1) is a structurally uniqgue macrolide first isolated = Scheme 1

from Streptomyces roch@i 1949 by Berger and co-worketghe - oF BusSnH R P 6a6b
originally investigated antibiotic activity of borrelidin was ultimately \ PdCIy(PPhs), N> Bussn OP nom 12
found to arise from inhibition of threonyl-tRNA syntheteke; _ B N0 =N \ Ao 141
however, further development of the compound was abandoned R;=Pe"ty' R2 ¢ 5 Hs R?

when it was found to be a potent sensitizeén addition to its Rpery! +regioiso":ner (o)

recently described CDK inhibitory activity borrelidin has re-

emerged as a potent angiogenesis inhibitor with ag ®€0.8 nM, Scheme 2 @
which is lower than its I for tRNA synthetase inhibitioh.This \)OLOME EtoMeSiH oH o TBSO
result implies an alternate biological target for borrelidin, which PMBO \)j\ 1 mol% Ir(2) pMBOMOM af PMBO z
may have implications for anticancer therapy. The gross structure 2
of borrelidin was first described in 1967and the absolute 3
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configuration was determined by Anderson et al. through crystal é G%ytelg

structure analysis of a chiral solvat&he structure of borrelidin 61 dr; >90% e

is characterized by an 18-membered macrolactone carrying a 2TBSOTf, 2,6-lutidine (90%); (b) DIBAL (79%); (c) DessMartin

cyclopentane carboxylic acid and a unique conjugated cyanodlenelf’e”od'”’ﬂme (92%); (d) CBr PP (94%); () BuLi, Mel (97%); (f) (i)

(Figure 1). The structural novelty and relevant biological activity Cpe2rHC, (i) 12 (89%)-

of borrelidin present an exciting challenge for chemical synthesis Scheme 3 @
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Figure 1. Structure of borrelidin and retrosynthetic disconnections. a(a) TBSOTf, 2,6-lutidine (99%); (b) DIBAL (94%); (c) PBH2 (96%);

’ ) ! o 2\
Our strategy for the synthesis dffocused on the use of an I(S)(gg%fjoephed”ne propionamide, LDA (93%); (€) LAB (93%); (1) £Ph

iridium-indanepybox2)-catalyzed enantioselective reductive aldol
reaction to establish the stereogenic centers at C3, C4, C10, andolarization of the alkyne by the €0 dipole might cause the
C11? This represents the first example of the use of this hydride to preferentially add to the more electron-deficient end of
transformation in the context of complex natural product synthesis. the alkyne. This study revealed that by increasing the electron-
From a retrosynthetic perspective, disconnections of borrelidin at withdrawing ability of the hydroxyl protecting group, the desired
the C1 macrolactone and C2814 linkage led to two fragments,  isomer6a could be obtainealbeit only by a small margif#1°
alkyne 3 and vinyl iodide4, respectively (Figure 1). With a method for stereoselective introduction of the cyanodiene
For the construction of the cyanodiene functionality, we sought delineated, the synthesis of borrelidin commenced with reductive
to develop a method for the regio- and stereoselective introduction aldol coupling of methyl acrylate argmethoxybenzyloxyacetal-
of the nitrile group at C12. While hydrostannylation of alkynes is dehyde to provide aldol addudt with excellent enantio- and
frequently used for the synthesis of vinylstannalfeshich may diastereocontrol (Scheme 2). After protectiorvpthe methyl ester
be precursors to vinyl nitrile, this method suffers from the lack  was converted to an aldehyde by a reduction/oxidation sequence,
of regiocontrol in the addition of tin hydride to internal unsym- and the aldehyde was then converted to a terminal alkyne by a
metrical alkynes. Recent studies have established that branehing Corey—Fuchs reaction. Hydro-zirconation/iodination of the alkyne
to the hydroxyl position of enynols promotes the formation of the gave vinyl iodide8.
distal vinylstannané*13 To address the regiochemistry of the Alkyl iodide 12 was prepared by a second reductive aldol
requisite hydrostannylation, we examined the reaction of model coupling between methyl acrylate and benzyloxyacetaldehyde to
enyne5 (Scheme 1). Varying the catalyst as well as reaction afford propionated (Scheme 3). Compoundl was converted to
conditions had little effect on the regioisomer ratio of the reaction iodide 10, which was then utilized in a Myers’ asymmetric
with the unprotected substrate (data not shown), and the undesiredhlkylation to properly set the C8 methyl stereocentet 16 The
isomer6b was the major product. We then examined the impact auxiliary was reductively removed to give the primary alcohol,
of hydroxyl protecting groups because we suspected that electronicwhich was subsequently converted to alkyl iodidz
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a(a) (i) t-BuLi, ZnCly, (ii) Pd(PPh)4, 8 (58%); (b) TBAF (87%); (c) H
(600 psi), 30 mol % Rh[(nbd)dppb]BR86%); (d,e) see the Supporting
R=(+)-menthyl

Information for these details.
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a(a) KOH, H0,, MeOH (73%); (b) (COCH; (c) H> (60 psi), 10% Pd/
C, 2,6-lutidine (74%, two steps); (d}-j-Ipc.B(allyl) (82%); (8 1 N NaOH,
MeOH (99%); (f) Mel, NaHCQ (92%); (g) TIPSOTTf, 2,6-lutidine (96%);
(h) OsQ, NMO, then NalQ (93%); (i) CrCh, CHIs (83%).
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a(a) Pd(PPHs Cul, TEA (94%); (b) AeO, DMAP (94%); (c)
PdChL(PPh),, BusSnH; (d) b (97%, two steps, 1:1 regioisomer mixture);
(e) KoCO3, MeOH, —25 °C (66%); (f) BuSNCN, Cul, Pd(PP)y (97%);
(9) (MeOXCHy, P,0s (85%); (h) TASF (77%); (i3 M NaOH, THF (84%);
() 2,4,6-trichlorobenzoyl chloride, TEA, DMAP; (k) MBBr, —78 °C

(36%, two steps).

Coupling of 8 and 12 ultimately allowed for synthesis a3
(Scheme 4). In this approach, alkyl iodidi2 was converted to the
mixed dialkyl zinc and used in a modified Negishi coupling with
vinyl iodide 8 to give 13.17 After deprotection of the silyl ethers,

cocatalys¥ followed by MOM protection of the secondary alcohols,
remova?# of the TIPS ether, and saponification of the methyl esters
provided a single stereoisomer of vinyl nitril20. Selective
macrolactonization of diaci@0 was subsequently performed by
carboxyl activation with trichlorobenzoyl chloridé Final depro-
tection of the MOM ethers produced synthetic borrelidin, whose
spectral datald, 1°C, and HRMS) are in agreement with the
reported values fot.

In conclusion, we have reported the first total synthesis of
borrelidin, which relied on our ability to execute large-scale
asymmetric reductive aldol reactions and also required introduction
of methods for reversing the usual regioselection in hydrostannyl-
ation of propargyl alcohols. Our synthesis sequence allows for late
stage derivatization of the cyanodiene core, which may allow for
discovery of nontoxic analogues of the natural product. These efforts
are currently underway.
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