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ABSTRACT: The meta-CAr–H bond formylation of arenes has been achieved using CHBr3 as a formyl source in the presence
of [Ru(p-cym)(OAc)2] as catalyst. This method provides efficient access to the preparation of various meta-substituted
aromatic compounds, such as alcohols, ethers, amines, nitriles, alkenes, halogens, carboxylic acids, and their derivatives,
through transformation of the versatile formyl group. Furthermore, mechanism studies show that the key active species is a
pentagonal ruthenacycle complex.

Aromatic aldehydes are essential compounds, with their
versatile formyl groups employed for further
transformations into various other functional groups, such
as alcohols, carboxylic acids, amines, nitriles, and halogens,
that are widely present in bioactive natural molecules,
pharmaceuticals, agrochemicals, and many functional
materials.1 To date, numerous methods for the synthesis of
aromatic aldehydes have been reported. The most efficient
methods involve direct installation of a formyl group on
the aromatic ring. Conventional electrophilic aromatic
formylations, such as the Gattermann–Koch reaction,2 Duff
reaction,3 Reimer–Tiemann reaction,4 Rieche formylation,5
and Vilsmeier–Haack reaction,6 are perfectly suited to this
goal, avoiding prefunctionalization before formylation.
However, these transformations are not suitable for
electron-deficient aromatic substrates. Furthermore, the
functional group tolerance is low. With the development of
transition-metal (TM)-catalyzed C-H bond
functionalization in recent years, aromatic aldehydes have
been efficiently obtained by directing-group-assisted CAr–H
formylation in the presence of TMs.7 However, regardless
of whether electrophilic aromatic formylation or TM-
catalyzed aromatic C – H bond formylation is used, these
methods are limited to formylation at the ortho/para-

position relative to substituents. Accordingly, the efficient
meta-CAr–H formylation of arenes remains challenging.
In recent years, various TM-catalyzed meta-CAr – H bond
functionalizations have been achieved in the literature
using alternative strategies.8 Ruthenium complexes are
inexpensive, highly active, and distinctive catalysts that
can not only catalyze ortho-CAr–H bond activation,9 but also
meta-CAr – H bond activation through the Ru – CAr bond
ortho/para-directing effect.10 Herein, we have achieved the
meta-CAr–H bond formylation of arenes using CHBr3 as the
formyl source in the present of a ruthenium catalyst.
Initially, we selected readily available 2-phenylpyridine
and CHBr3 as representative reactants to explore favorable
conditions for the meta-CAr–H bond formylation of arenes
catalyzed by a ruthenium complex. The transformation
was conducted in a thick-walled Schlenk reaction tube at
120 ℃ for 24 h under an inert atmosphere (N2 gas), as
shown in Table 1. The target product was provided in 16%
yield in acetonitrile when [Ru(p-cym)(OAc)2], prepared in
our laboratory, and common K2CO3 were employed as
catalyst and base, respectively (Table 1, entry 1). Usually,
carboxylic acids are popular and efficient promoters of Ru-
catalyzed CAr – H bond activation.10d Carboxylic acid
screening showed that the formylation process was
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promoted by Ac-Leu-OH, providing the desired product in
a 53% isolated yield (entry 2). Other carboxylic acids, such
as 2,4,6-trimethylbenzoic acid and 1-adamantane
carboxylic acid, showed inferior performance (entries 3
and 4). Formylation also proceeded in 1,4-dioxane and
THF as solvents, but lower yields were obtained (entries 5
and 6). No products were obtained in toluene and DMF
(entries 7 and 8). Na2CO3, KOAc, and Cs2CO3 were also
tested as bases in the formylation. The results

Table 1. Condition Optimization of the Ru-Catalyzed
meta-CAr–H Formylation

Entry formyl source catalyst base ligand solvent yield (%)

1 CHBr3 [Ru(p-cym)(OAc)2] K2CO3 － CH3CN 16

2 CHBr3 [Ru(p-cym)(OAc)2] K2CO3 Ac-Leu-OH CH3CN 53
3 CHBr3 [Ru(p-cym)(OAc)2] K2CO3 MesCOOH CH3CN 8
4 CHBr3 [Ru(p-cym)(OAc)2] K2CO3 1-AdCOOH CH3CN 14
5 CHBr3 [Ru(p-cym)(OAc)2] K2CO3 Ac-Leu-OH 1,4-Dioxane 28
6 CHBr3 [Ru(p-cym)(OAc)2] K2CO3 Ac-Leu-OH THF 18
7 CHBr3 [Ru(p-cym)(OAc)2] K2CO3 Ac-Leu-OH toluene 0
8 CHBr3 [Ru(p-cym)(OAc)2] K2CO3 Ac-Leu-OH DMF 0
9 CHBr3 [Ru(p-cym)(OAc)2] Na2CO3 Ac-Leu-OH CH3CN 0
10 CHBr3 [Ru(p-cym)(OAc)2] KOAc Ac-Leu-OH CH3CN 11
11 CHBr3 [Ru(p-cym)(OAc)2] Cs2CO3 Ac-Leu-OH CH3CN 26
12 CHI3 [Ru(p-cym)(OAc)2] K2CO3 Ac-Leu-OH CH3CN 51
13 CHCl3 [Ru(p-cym)(OAc)2] K2CO3 Ac-Leu-OH CH3CN 21
14 CHBr3 [Ru(p-cym)(OAc)2] K2CO3 Ac-Leu-OH CH3CN 32
15 CHBr3 RuCl3 K2CO3 Ac-Leu-OH CH3CN 19
16 CHBr3 Ru3(CO)12 K2CO3 Ac-Leu-OH CH3CN 0
17 CHBr3 Pd(OAc)2 K2CO3 Ac-Leu-OH CH3CN 0

18 CHBr3 － K2CO3 Ac-Leu-OH CH3CN 0

showed that the Na2CO3 was not compatible (Table 1,
entry 9), while KOAc and Cs2CO3 were effective, but gave
poor yields (entries 10 and 11). An examination of other
formylation reagents showed that CHI3 also provided the
target product in 51% yield (entry 12), while CHCl3
showed low efficiency (entry 13). [Ru(p-cym)Cl2]2 and
RuCl3 were also efficient catalysts for C – H bond
formylation (entries 14 and 15), although the yields were
inferior to those obtained using [Ru(p-cym)(OAc)2]. When
Ru3(CO)12, Pd(OAc)2, and no transition metal were
employed as catalysts in the process, no desired product
was obtained (entries 16–18).
Under the optimized conditions, the generality of meta-
CAr – H bond formylation catalyzed by the ruthenium
complex was investigated using various 2-phenylpyridine
derivatives as substrates, as shown in Scheme 1. Initially,
several 2-phenylpyridines bearing various groups on the
phenyl ring were employed as reactants. 2-
Phenylpyridines bearing alkyl or aryl groups reacted
successfully, providing the target products in moderate
yields (3b, 3c, 3i). Halogen substituents were also

compatible with the transformation, offering potential
active sites for further functionalization (3d, 3e, 3j). The
electronic nature of the phenyl ring was also found to
influence the transformation efficiency. An electron-
donating substituent ( –OCH3, 3f) on the phenyl ring was
more favorable for formylation than an electron-
withdrawing ( – CF3, 3g) functional group. When 7,8-
benzoquinoline and 2-(2-naphthyl)pyridine were used as
substrates, the corresponding products were successfully
obtained (3k, 3l). An investigation of nitrogen-containing
chelating groups showed that pyrimidine was a leading
directing group, with good isolated yields obtained (3h–j).
The desired products were also obtained when pyridines
bearing a methyl group (3m), quinoline (3n), isoquinoline
(3o), and pyrazole (3p–r) were used as directing groups.
Notably, the ruthenium-catalyzed meta-CAr–H formylation
was also suitable for phenyl ring meta-position
modification and the functionalization of 6-phenyl purine
nucleobases as bioactive molecule (3s).

Scheme 1. Substrate Scope of the meta-CAr − H
Formylation Catalyzed by Ruthenium.

To illustrate the versatile synthetic potential of the
arylaldehyde products, different transformations were
performed, as shown in Scheme 2. For example, carboxylic
acid11 and benzyl alcohol12 were synthesized from
arylaldehyde by a simple redox reaction (4, 5). Benzyl
alcohol reacts further with HCl to give benzyl chloride
(6).13 By means of the famous Wittig reaction, the reaction
of arylaldehydes with diethyl benzylphosphonate provided
olefins in excellent yields (7).14 The structure of product
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7b was confirmed by single-crystal X-ray diffraction.
Furthermore, benzonitrile was obtained by reacting
arylaldehydes with ammonium acetate (8).15

Scheme 2. Synthetic Utility of the Formylation.

To gain insight into the Ru(II)-catalyzed meta-CAr – H
formylation mechanism, some test reactions were
performed, as shown in Scheme 4. First, under the
optimized conditions, 2-(2,6-dimethylphenyl)pyridine, in
which the two ortho-positions relative to the directing
group were occupied by two methyl groups, did not react
with CHBr3 (Scheme 3a).

Scheme 3. Preliminary Mechanistic Probes.

This supported that ortho-CAr–H metalation was
necessary in the ruthenium-catalyzed formylation. Next,
pentagonal ruthenacycle I was prepared by the reaction of
2-phenylpyridine with [Ru(p-cym)OAc2] in CH2Cl2 at room
temperature for 18 h. This experiment indicated that the
meta-CAr–H formylation was promoted by ruthenacycle
complex I to give product 3a in 56% isolated yield

(Scheme 3b). These results indicated that pentagonal
ruthenacycle I was a key active species in the formylation
process. Furthermore, when radical scavengers, such as
TEMPO (2,2,6,6-tetramethylpiperidin-1-yl)oxyl) and BQ
(1,4-benzoquinone), were added to the standard reaction,
no product was obtained, indicating that the formylation
involved a single-electron transfer process (Scheme 3c).
Next, to study the impact of electronic properties on the
formylation, a scrambling test of 2-(4-
methoxyphenyl)pyridine and 2-(4-
(trifluoromethyl)phenyl)pyridine, bearing electron-
donating (–OCH3) and electron-withdrawing (–CF3) groups,
respectively, reacted with CHBr3 under the optimized
conditions to provide product 3f predominantly (Scheme
3d). This result indicated that the ruthenium-catalyzed
CAr–H formylation was an electrophilic substitution
process. Finally, after the reaction was complete, the gas
from the reaction system caused clarified lime water to
become turbid, showing that CO2 was a byproduct of the
process (Scheme 3e).

Scheme 4. Proposed Catalytic Mechanism.

From the aforementioned experimental results and
literature relating to ruthenium-catalyzed CAr–H bond
activation,9 a plausible mechanism was proposed for the
meta-CAr–H formylation process, as shown in Scheme 4.
Ortho-CAr–H bond metalation of 2-phenylpyridine by
[Ru(p-cym)OAc2] generates key pentagonal ruthenacycle
species A. The dibromomethyl radical, formed by a
ruthenium-complex-mediated single-electron transfer,
attacks active intermediate A at the pyridyl meta-position,
producing intermediate B. The deprotonation of active
intermediate B, aided by ruthenium and K2CO3, provides
complex C. Finally, complex C undergoes ligand exchange
with 2-phenylpyridine to give the recycled active catalyst
species and the meta-dibromomethylated product, which
further reacts with K2CO3 to give the final product, and KBr
and CO2 as byproducts.
In conclusion, we have achieved Ru-catalyzed meta-CAr–H
formylation using CHBr3 as the formyl source. Mechanistic
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studies showed that a radical intermediate might be
involved in this process, and that a pentagonal
ruthenacycle was the key active species. This provides an
efficient method for the synthesis of various meta-
substituted aromatic compounds via an active formyl
group, and allows further transformation to obtain many
other functional groups.

EXPERIMENTAL SECTION

Materials and Methods. All commercial reagents and
solvents were used directly without additional purification.
Column chromatography were performed on silica gel 200-
300 mesh. 1H NMR and 13C NMR spectra were registered on a
Bruker AscendTM 400 spectrometer (Germany). Chemical
shifts were reported in units (ppm) referenced to 0.0 ppm of
TMS in the 1H spectrum and 77.0 ppm of CDCl3 in the 13C
spectrum. All coupling constants were reported in Hertz (Hz).
HRMS data were obtained using Tof ESI-MS instrument on a
Waters LCT PremierxeTM (USA). Crystal (7b) grows in
CH2Cl2/PE system at room temperature. Single-crystal X-ray
crystallography was carried out on a Bruker Smart Apex II
diffractometer system. The pyridine derivatives were
prepared via Suzuki coupling of the corresponding
arylboronic acids and 2-bromopyridine according to literature
report.16
Typical Experimental Procedure of ruthenium-catalyzed
meta-selective C-H bond formylation of Arenes: 2-
Phenylpyridine (0.2 mmol), CHBr3 (0.6 mmol, 3.0 equiv.),
[Ru(p-cymene)(OAc)2], (0.01 mmol, 10 mol %), K2CO3 (0.4
mmol, 2.0 equiv), Ac-Leu-OH (30 mmol %), dry acetonitrile (1
mL) were charged into a pre-dried 30-mL pressure tube
sealed with rubber plugs under N2 atmosphere. The reaction
mixture was stirred at 120 °C oil bath for 24 h. The reaction
was cooled down to room temperature. The mixture was
passed through a short pad of celite, washing with a mixture
of EtOAc. The organic layer was concentrated under reduced
pressure to give a crude oil, which was purified by column
chromatography (PE/EtOAc as eluent) on silica gel to afford
the desired products.
1 mmol Scale Experimental Procedure of ruthenium-
catalyzed meta-selective C-H bond formylation of Arenes:
2-Phenylpyridine or 2-(4-methoxyphenyl)pyridine (1 mmol),
CHBr3 (3 mmol, 3.0 equiv.), [Ru(p-cymene)(OAc)2], (0.05
mmol, 10 mol %), K2CO3 (2 mmol, 2.0 equiv), Ac-Leu-OH (30
mmol %), dry acetonitrile (3 mL) were charged into a pre-
dried 75-mL pressure tube sealed with rubber plugs under N2

atmosphere. The reaction mixture was stirred at 120 °C oil
bath for 36 h. The reaction was cooled down to room
temperature. The mixture was passed through a short pad of
celite, washing with a mixture of EtOAc. The organic layer was
concentrated under reduced pressure to give a crude oil,
which was purified by column chromatography (PE/EtOAc as
eluent) on silica gel to afford the 3a and 3f products in 42%
(76.9 mg) and 48% (102.3 mg) isolated yields respectively.
Preparation of [Ru(p-cymene)(OAc)2]: [Ru(p-
cymene)(OAc)2] were prepared from [Ru(p-cymene)Cl2]2 and
KOAc according to literature report.17

Preparation of Complex I: Complex I were prepared from
[Ru(p-cymene)(OAc)2] and 2-phenylpyridine according to
literature report.17

3-(pyridin-2-yl)benzaldehyde (3a, colorless oil, PE/EtOAc = 3:1
as eluent, 19.4mg, 53% yield): 1H NMR (400 MHz, CDCl3) δ
10.09 (s, 1H), 8.70 (d, J = 4.4 Hz, 1H), 8.49 (s, 1H), 8.27 (d, J =
7.7 Hz, 1H), 7.91 (d, J = 7.5 Hz, 1H), 7.81–7.73 (m, 2H), 7.62 (t,
J = 7.6 Hz, 1H), 7.27 (m, 1H).13C{1H} NMR (101 MHz, CDCl3)δ
192.2, 155.8, 149.8, 140.3, 137.0 (d), 132.7, 129.7, 129.5,
128.4, 122.8, 120.6. HRMS (ESI) m/z: [M+H]+ Calcd for
C12H10NO 184.0757; Found 184.0752.
2-methyl-5-(pyridin-2-yl)benzaldehyde (3b, yellow oil,
PE/EtOAc = 3:1 as eluent, 20.5mg, 52% yield): 1H NMR (400
MHz, CDCl3) δ 10.32 (s, 1H), 8.69 (d, J = 4.2 Hz, 1H), 8.42 (s,
1H), 8.12 (d, J = 7.9 Hz, 1H), 7.76 (d, J = 3.6 Hz, 2H), 7.35 (d, J =
7.9 Hz, 1H), 7.30– 7.19 (m, 1H), 2.70 (s, 3H). 13C{1H} NMR
(101 MHz, CDCl3) δ 192.8, 155.9, 149.8, 141.2, 137.0, 134.4,
132.4, 131.6, 130.7, 122.5, 120.2, 19.5. HRMS (ESI) m/z:
[M+H]+ Calcd for C13H12NO 198.0914; Found 198.0913.
4-(pyridin-2-yl)-[1,1'-biphenyl]-2-carbaldehyde (3c, yellow oil,
PE/EtOAc = 3:1 as eluent, 26mg, 56% yield): 1H NMR (400
MHz, CDCl3)δ 10.07 (s, 1H), 8.74 (d, J = 4.2 Hz, 1H), 8.60 (d, J
= 1.4 Hz, 1H), 8.45–8.34 (m, 1H), 7.87 (d, J = 7.8 Hz, 1H), 7.81
(t, J = 7.6 Hz, 1H), 7.59 (d, J = 8.0 Hz, 1H), 7.48 (m, 5H), 7.33–
7.25 (m, 1H). 13C{1H} NMR (101 MHz, CDCl3) δ 192.3, 155.9,
149.9, 146.3, 138.9, 137.4, 137.0, 133.9, 131.9, 131.5, 130.1,
128.5, 128.3, 125.8, 122.7, 120.6. HRMS (ESI) m/z: [M+H]+
Calcd for C18H14NO 260.1070; Found 260.1075.
2-bromo-5-(pyridin-2-yl)benzaldehyde (3d, white solid,
PE/EtOAc = 3:1 as eluent, 24.4mg, 47% yield): 1H NMR (400
MHz, CDCl3)δ 10.44 (s, 1H), 8.72 (d, J = 4.7 Hz, 1H), 8.49 (d, J
= 2.2 Hz, 1H), 8.22 (m, 1H), 7.80 (m, 3H), 7.31 (m, 1H). 13C{1H}
NMR (101 MHz, CDCl3) δ 191.6, 155.0, 149.9, 139.3, 137.1,
134.4, 133.6, 127.9, 127.6, 123.0, 120.4. HRMS (ESI) m/z:
[M+H]+ Calcd for C12H9BrNO 261.9863; Found 261.9861.
2-fluoro-5-(pyridin-2-yl)benzaldehyde (3e, white solid,
PE/EtOAc = 3:1 as eluent, 17.3mg, 43% yield): 1H NMR (400
MHz, CDCl3) δ 10.43 (s, 1H), 8.70 (d, J = 4.8 Hz, 1H), 8.45 (m,
1H), 8.36 (m, 1H), 7.82–7.74 (m, 2H), 7.31–7.25 (m, 2H).
13C{1H} NMR (101 MHz, CDCl3) δ 187.0 (d), 166.4, 163.8,
155.1, 149.8, 137.0, 134.9 (d), 127.0 (d), 122.7, 120.3, 117.2,
117.0. HRMS (ESI) m/z: [M+H]+ Calcd for C12H9FNO 202.0663;
Found 202.0667.
2-methoxy-5-(pyridin-2-yl)benzaldehyde (3f, white solid,
PE/EtOAc = 3:1 as eluent, 22.6mg, 53% yield): 1H NMR (400
MHz, CDCl3)δ 10.53 (s, 1H), 8.67 (d, J = 4.7 Hz, 1H), 8.41 (d, J
= 2.4 Hz, 1H), 8.36 (m, 1H), 7.79 – 7.72 (m, 2H), 7.23 (d, J =
3.9 Hz, 1H), 7.12 (d, J = 8.8 Hz, 1H), 4.01 (s, 3H). 13C{1H} NMR
(101 MHz, CDCl3) δ 189.6, 162.4, 155.9, 149.6, 136.9, 134.5,
132.1, 126.8, 124.7, 122.0, 119.9, 112.1, 55.9. HRMS (ESI) m/z:
[M+H]+ Calcd for C13H12NO2 214.0863; Found 214.0867.
5-(pyridin-2-yl)-2-(trifluoromethyl)benzaldehyde (3g, white
solid, PE/EtOAc = 3:1 as eluent, 19.6mg, 39% yield): 1H NMR
(400 MHz, CDCl3)δ 10.47 (d, J = 2.0 Hz, 1H), 8.79– 8.68 (m,
2H), 8.44 (d, J = 8.1 Hz, 1H), 7.94– 7.83 (m, 3H), 7.35 (m, 1H).
13C{1H} NMR (101 MHz, CDCl3) δ 188.8, 154.5, 150.1, 143.30,
137.2, 134.1, 131.8, 127.3, 126.8, 125.0, 123.6, 121.0. HRMS
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(ESI) m/z: [M+H]+ Calcd for C13H9F3NO 252.0631; Found
252.0632.
3-(pyrimidin-2-yl)benzaldehyde (3h, white solid, PE/EtOAc =
3:1 as eluent, 24.7mg, 67% yield): 1H NMR (400 MHz, CDCl3)
δ 10.14 (s, 1H), 8.96 (s, 1H), 8.84 (d, J = 4.3 Hz, 2H), 8.72 (d, J
= 7.6 Hz, 1H), 8.02 (d, J = 7.3 Hz, 1H), 7.66 (t, J = 7.6 Hz, 1H),
7.26 (t, J = 4.6 Hz, 1H). 13C{1H} NMR (101 MHz, CDCl3)δ 192.2,
163.4, 157.4, 138.6, 136.9, 133.9, 130.6 (d), 129.4, 119.7.
HRMS (ESI) m/z: [M+H]+ Calcd for C11H9N2O 185.0710; Found
185.0712.
2-methyl-5-(pyrimidin-2-yl)benzaldehyde (3i, white solid,
PE/EtOAc = 3:1 as eluent, 22.6mg, 57% yield): 1H NMR (400
MHz, CDCl3)δ 10.32 (s, 1H), 8.92– 8.74 (m, 3H), 8.54 (d, J =
7.9 Hz, 1H), 7.39 (d, J = 7.9 Hz, 1H), 7.21 (d, J = 4.8 Hz, 1H),
2.73 (s, 3H). 13C{1H} NMR (101 MHz, CDCl3) δ 193.0, 163.5,
157.3, 143.1, 136.0, 134.5, 133.0, 132.7, 132.3, 119.4, 20.0.
HRMS (ESI) m/z: [M+H]+ Calcd for C12H11N2O 199.0866;
Found 199.0867.
2-chloro-5-(pyrimidin-2-yl)benzaldehyde (3j, white solid,
PE/EtOAc = 3:1 as eluent, 23.5mg, 54% yield): 1H NMR (400
MHz, CDCl3)δ 10.55 (s, 1H), 9.03 (d, J = 1.9 Hz, 1H), 8.84 (d, J
= 4.8 Hz, 2H), 8.63 (m, 1H), 7.59 (d, J = 8.4 Hz, 1H), 7.27 (d, J =
4.4 Hz, 1H). 13C{1H} NMR (101 MHz, CDCl3) δ 189.4, 162.8,
157.4, 139.8, 137.1, 134.2, 132.6, 130.9, 129.5, 119.8. HRMS
(ESI) m/z: [M+H]+ Calcd for C11H8ClN2O 219.0320; Found
219.0322.
benzo[h]quinoline-9-carbaldehyde (3k, white solid, PE/EtOAc
= 3:1 as eluent, 15.3mg, 37% yield): 1H NMR (400 MHz, CDCl3)
δ 10.34 (s, 1H), 9.79 (s, 1H), 9.08 (m, 1H), 8.23 (m, 2H), 8.01
(d, J = 8.3 Hz, 1H), 7.87 (s, 2H), 7.61 (m, 1H). 13C{1H} NMR
(101 MHz, CDCl3) δ 192.5, 149.7, 136.1, 146.5, 137.3, 134.9,
131.4, 130.6, 128. 8 (d), 127.2, 126.7, 125.3, 122.5. HRMS (ESI)
m/z: [M+H]+ Calcd for C14H10NO 208.0757; Found 208.0757.
3-(pyridin-2-yl)-1-naphthaldehyde (3l, 35 mg, colorless oil,
PE/EtOAc = 3:1 as eluent, 17.7mg, 38% yield): 1H NMR (400
MHz, CDCl3)δ 10.53 (s, 1H), 9.29 (d, J = 8.5 Hz, 1H), 8.80 (d, J
= 4.0 Hz, 1H), 8.76 – 8.69 (m, 2H), 8.04 (d, J = 8.1 Hz, 1H),
7.97 (d, J = 8.0 Hz, 1H), 7.87 (m, 1H), 7.76– 7.69 (m, 1H), 7.64
(m, 1H), 7.36 (s, 1H). 13C{1H} NMR (101 MHz, CDCl3)δ 193.7,
155.6, 150.0, 137.1, 135.6 (d), 134.1, 132.8, 132.0, 129.6,
129.2, 127.4, 125.0, 122.8, 120.5. HRMS (ESI) m/z: [M+H]+
Calcd for C16H12NO 234.0914; Found 234.0913.
3-(3-methylpyridin-2-yl)benzaldehyde (3m, yellow oil,
PE/EtOAc = 3:1 as eluent, 18.5mg, 47% yield): 1H NMR (400
MHz, CDCl3) δ 10.10 (s, 1H), 8.56 (d, J = 4.4 Hz, 1H), 8.08 (s,
1H), 7.94 (d, J = 7.6 Hz, 1H), 7.83 (d, J = 7.6 Hz, 1H), 7.64 (t, J =
7.4 Hz, 2H), 7.25 (m, 1H), 2.39 (s, 3H). 13C{1H} NMR (101 MHz,
CDCl3)δ 192.1, 157.1, 147.3, 141.6, 138.8, 136.4, 135.0, 130.9,
130.6, 129.0, 122.7, 20.0. HRMS (ESI) m/z: [M+H]+ Calcd for
C13H12NO 198.0914; Found 198.0918.
3-(quinolin-2-yl)benzaldehyde (3n, white solid, PE/EtOAc = 3:1
as eluent, 19.1mg, 41% yield): 1H NMR (400 MHz, CDCl3) δ
10.18 (s, 1H), 8.70 (s, 1H), 8.53– 8.46 (m, 1H), 8.29 (d, J = 8.6
Hz, 1H), 8.20 (d, J = 8.5 Hz, 1H), 8.00 (d, J = 7.6 Hz, 1H), 7.95 (d,
J = 8.6 Hz, 1H), 7.87 (d, J = 8.0 Hz, 1H), 7.80 – 7.75 (m, 1H),
7.71 (t, J = 7.7 Hz, 1H), 7.58 (m, 1H). 13C{1H} NMR (101 MHz,
CDCl3)δ 192.2, 155.7, 148.3, 140.6, 137.1, 133.3, 130.3, 129.6,
129.0, 127.5, 126.8, 118.6. HRMS (ESI) m/z: [M+H]+ Calcd for
C16H12NO 234.0914; Found 234.0916.

3-(isoquinolin-1-yl)benzaldehyde (3o, yellow solid, PE/EtOAc =
3:1 as eluent, 13mg, 28% yield): 1H NMR (400 MHz, CDCl3) δ
10.14 (s, 1H), 8.65 (d, J = 5.6 Hz, 1H), 8.24 (s, 1H), 8.03 (t, J =
12.4 Hz, 3H), 7.93 (d, J = 8.2 Hz, 1H), 7.77– 7.70 (m, 3H), 7.59
(t, J = 7.3 Hz, 1H). 13C{1H} NMR (101 MHz, CDCl3) δ 192.0,
159.1, 142.3, 140.6, 136.9, 136.5, 135.8, 131.6, 130.3, 129.5,
129.2, 127.7, 127.2, 126.9, 126.5, 120.6. HRMS (ESI) m/z:
[M+H]+ Calcd for C16H12NO 234.0914; Found 234.0915.
3-(1H-pyrazol-1-yl)benzaldehyde (3p, yellow oil, PE/EtOAc =
3:1 as eluent, 15.6mg, 45% yield): 1H NMR (400 MHz, CDCl3)
δ 10.08 (s, 1H), 8.20 (s, 1H), 8.06 – 8.01 (m, 2H), 7.83 –

7.75 (m, 2H), 7.64 (t, J = 7.8 Hz, 1H), 6.58 – 6.49 (m, 1H).
13C{1H} NMR (101 MHz, CDCl3) δ 191.4, 141.7, 137.5, 130.3,
127.6, 126.8, 124.7, 119.1, 118.8, 108.3. HRMS (ESI) m/z:
[M+H]+ Calcd for C10H9N2O 173.0710; Found 173.0709.
3-(3-methyl-1H-pyrazol-1-yl)benzaldehyde (3q, white solid,
PE/EtOAc = 3:1 as eluent, 15.6mg, 42% yield): 1H NMR (400
MHz, CDCl3) δ 10.07 (s, 1H), 8.15 (s, 1H), 7.98 (d, J = 8.1 Hz,
1H), 7.91 (d, J = 2.2 Hz, 1H), 7.76 (d, J = 7.5 Hz, 1H), 7.61 (t, J =
7.8 Hz, 1H), 6.31 (d, J = 2.1 Hz, 1H), 2.40 (s, 3H). 13C{1H} NMR
(101 MHz, CDCl3) δ 191.5, 151.3, 140.9, 137.5, 130.2, 127.3,
127.0, 124.2, 118.8, 108.4, 13.7. HRMS (ESI) m/z: [M+H]+
Calcd for C11H11N2O 187.0866; Found 187.0860.
3-(3,5-dimethyl-1H-pyrazol-1-yl)benzaldehyde (3r, yellow oil,
PE/EtOAc = 3:1 as eluent, 14.4mg, 36% yield): 1H NMR (400
MHz, CDCl3)δ 10.03 (s, 1H), 7.94 (d, J = 1.6 Hz, 1H), 7.83 (d, J
= 7.6 Hz, 1H), 7.76– 7.69 (m, 1H), 7.60 (t, J = 7.8 Hz, 1H), 6.01
(s, 1H), 2.34 (s, 3H), 2.28 (s, 3H). 13C NMR (101 MHz, CDCl3)δ
191.3, 149.7, 140.8, 139.5, 137.2, 129.9 (d), 127.9, 124.9,
107.8, 13.4, 12.5. HRMS (ESI) m/z: [M+H]+ Calcd for
C12H13N2O 201.1023; Found 201.1022.
3-(9-(tetrahydro-2H-pyran-2-yl)-9H-purin-6-yl)benzaldehyde
(3s, white solid, PE/EtOAc = 3:1 as eluent, 22.2mg, 36% yield):
1H NMR (400 MHz, CDCl3) δ 10.20 (s, 1H), 9.33 (s, 1H), 9.13
(d, J = 7.8 Hz, 1H), 9.07 (s, 1H), 8.39 (s, 1H), 8.08 (d, J = 7.6 Hz,
1H), 7.74 (t, J = 7.7 Hz, 1H), 5.89 (m, 1H), 4.23 (d, J = 10.6 Hz,
1H), 3.85 (m, 1H), 2.22 (d, J = 12.4 Hz, 1H), 2.14 (d, J = 10.1 Hz,
2H), 1.82 (m, 2H), 1.71 (d, J = 9.9 Hz, 1H). 13C{1H} NMR (101
MHz, CDCl3) δ 192.1, 153.2, 152.4, 151.5, 142.6, 136.8 (d),
135.6, 132.2, 131.3, 130.6, 129.4, 82.1, 68.9, 31.9, 24.9, 22.8.
HRMS (ESI) m/z: [M+H]+ Calcd for C17H17N4O2 309.1347;
Found 309.1348.
methyl 3-(pyridin-2-yl)benzoate (4a, yellow oil, PE/EtOAc =
3:1 as eluent, 87 mg, 82% yield): 1H NMR (400 MHz, CDCl3)δ
8.73– 8.68 (m, 1H), 8.64 (d, J = 1.5 Hz, 1H), 8.23 (m, 1H), 8.12
– 8.05 (m, 1H), 7.80 – 7.74 (m, 2H), 7.55 (m, 1H), 7.28 –

7.21 (m, 1H), 3.94 (d, J = 1.9 Hz, 3H). 13C{1H} NMR (101 MHz,
CDCl3)δ 166.9, 156.3, 149.8, 139.7, 136.9, 131.3, 130.7, 130.0,
128.9, 128.0, 122.6, 120.6, 52.2. HRMS (ESI) m/z: [M+H]+
Calcd for C13H12NO2 214.0863; Found 214.0859.
methyl 3-(pyrimidin-2-yl)benzoate (4b, white solid, PE/EtOAc
= 3:1 as eluent, 83mg, 78% yield): 1H NMR (400 MHz, CDCl3)
δ 9.08 (t, J = 1.4 Hz, 1H), 8.78 (d, J = 4.8 Hz, 2H), 8.66– 8.57
(m, 1H), 8.17– 8.08 (m, 1H), 7.54 (t, J = 7.8 Hz, 1H), 7.17 (t, J
= 4.8 Hz, 1H), 3.93 (s, 3H). 13C{1H} NMR (101 MHz, CDCl3) δ
166.8, 163.8, 157.3, 138.0, 132.4, 131.7, 130.7, 129.3, 128.7,
119.5, 52.1. HRMS (ESI) m/z: [M+H]+ Calcd for C12H11N2O2

215.0816; Found 215.0825.
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(3-(pyridin-2-yl)phenyl)methanol (5a, colorless oil, PE/EtOAc
= 2:1 as eluent, 88mg, 95% yield): 1H NMR (400 MHz, CDCl3)
δ 8.67 (d, J = 4.5 Hz, 1H), 7.97 (s, 1H), 7.87 (d, J = 7.4 Hz, 1H),
7.74 (m, 2H), 7.49 – 7.38 (m, 2H), 7.31 – 7.19 (m, 1H), 4.75
(s, 2H). 13C{1H} NMR (101 MHz, CDCl3) δ 157.3, 149.5, 141.7,
139.5, 136.9, 128.9, 127.5, 126.1, 125.5, 122.2, 120.8, 65.1.
HRMS (ESI) m/z: [M+H]+ Calcd for C12H12NO 186.0914; Found
186.0911.
(3-(pyrimidin-2-yl)phenyl)methanol (5b, colorless oil,
PE/EtOAc = 2:1 as eluent, 96mg, 96% yield): 1H NMR (400
MHz, CDCl3)δ 8.82 (d, J = 4.8 Hz, 2H), 8.44 (s, 1H), 8.38 (d, J =
6.9 Hz, 1H), 7.53 (s, 2H), 7.21 (s, 1H), 4.81 (s, 2H). 13C{1H}
NMR (101 MHz, CDCl3) δ 164.5, 157.2, 141.7, 137.5, 129.4,
128.8, 127.2, 126.6, 119.1, 64.7. HRMS (ESI) m/z: [M+H]+
Calcd for C11H11N2O 187.0866; Found 187.0866.
2-(3-(chloromethyl)phenyl)pyridine (6a, colorless oil,
PE/EtOAc = 5:1 as eluent, 86mg, 85% yield): 1H NMR (400
MHz, CDCl3) δ 8.72 (d, J = 4.5 Hz, 1H), 8.07 (s, 1H), 7.99 –

7.90 (m, 1H), 7.80– 7.72 (m, 2H), 7.48 (d, J = 7.1 Hz, 2H), 7.29
– 7.21 (m, 1H), 4.69 (s, 2H). 13C{1H} NMR (101 MHz, CDCl3)
δ 156.8, 149.7, 139.9, 138.1, 136.8, 129.2 (d), 127.2, 126.9,
122.4, 120.6, 46.2. HRMS (ESI) m/z: [M+H]+ Calcd for
C12H11ClN 204.0575; Found 204.0572.
2-(3-(chloromethyl)phenyl)pyrimidine (6b, yellow solid,
PE/EtOAc = 5:1 as eluent, 90mg, 88% yield): 1H NMR (400
MHz, CDCl3)δ 8.83 (d, J = 4.8 Hz, 2H), 8.50 (s, 1H), 8.43 (d, J =
7.3 Hz, 1H), 7.53 (m, 2H), 7.22 (s, 1H), 4.70 (s, 2H). 13C{1H}
NMR (101 MHz, CDCl3)δ 164.2, 157.3, 138.0 (d), 130.9, 129.1,
128.3 (d), 119.3, 46.1. HRMS (ESI) m/z: [M+H]+ Calcd for
C11H10ClN2 205.0528; Found 205.0528.
(E)-2-(3-styrylphenyl)pyridine (7a, white solid, PE/EtOAc = 6:1
as eluent, 121mg, 94% yield): 1H NMR (400 MHz, CDCl3) δ
8.76 (d, J = 4.3 Hz, 1H), 8.23 (s, 1H), 7.90 (d, J = 7.5 Hz, 1H),
7.76 (d, J = 12.9 Hz, 2H), 7.59 (t, J = 8.7 Hz, 3H), 7.49 (t, J = 7.6
Hz, 1H), 7.41 (d, J = 7.4 Hz, 2H), 7.31 (d, J = 7.3 Hz, 4H). 13C{1H}
NMR (101 MHz, CDCl3) δ 157.3, 149.7, 139.8, 137.9, 137.3,
136.8, 129.2 (d), 128.8, 128.5, 127.8, 127.1, 126.6, 126.2,
125.2, 122.3, 120.7. HRMS (ESI) m/z: [M+H]+ Calcd for
C19H16N 258.1278; Found 258.1279.
(E)-2-(3-styrylphenyl)pyrimidine (7b, white solid, PE/EtOAc =
6:1 as eluent, 119mg, 92% yield): 1H NMR (400 MHz, CDCl3)
δ 8.85 (d, J = 4.8 Hz, 2H), 8.65 (s, 1H), 8.38 (d, J = 7.7 Hz, 1H),
7.66 (d, J = 7.6 Hz, 1H), 7.57 (d, J = 7.4 Hz, 2H), 7.53 (d, J = 7.8
Hz, 1H), 7.40 (t, J = 7.5 Hz, 2H), 7.30 (d, J = 7.1 Hz, 1H), 7.26 (d,
J = 6.4 Hz, 2H), 7.22 (t, J = 4.8 Hz, 1H). 13C{1H} NMR (101 MHz,
CDCl3) δ 164.6, 157.3, 137.9 (d), 137.3, 129.2, 129.0, 128.9,
128.7, 128.4, 127.7, 127.4, 126.6, 126.2, 119.2. HRMS (ESI)
m/z: [M+H]+ Calcd for C18H15N2 259.1230; Found 259.1233.
3-(pyridin-2-yl)benzonitrile (8a, white solid, PE/EtOAc = 3:1 as
eluent, 79mg, 88% yield): 1H NMR (400 MHz, CDCl3)δ 8.72 (s,
1H), 8.33 (s, 1H), 8.24 (d, J = 7.5 Hz, 1H), 7.80 (d, J = 7.4 Hz,
1H), 7.72 (m, 2H), 7.62 – 7.53 (m, 1H), 7.36 – 7.22 (m, 1H).
13C{1H} NMR (101 MHz, CDCl3) δ 154.9, 150.0, 140.5, 137.1,
132.2, 131.0, 130.6, 129.6, 123.2, 120.5, 118.7, 113.0. HRMS
(ESI) m/z: [M+H]+ Calcd. For C12H9N2 181.0761; Found
181.0760.
3-(pyrimidin-2-yl)benzonitrile (8b, white solid, PE/EtOAc = 3:1
as eluent, 91mg, 82% yield): 1H NMR (400 MHz, CDCl3) δ

8.85 (d, J = 4.8 Hz, 2H), 8.81 (s, 1H), 8.71 (d, J = 7.9 Hz, 1H),

7.78 (d, J = 7.6 Hz, 1H), 7.62 (t, J = 7.8 Hz, 1H), 7.29 (d, J = 4.8
Hz, 1H). 13C{1H} NMR (101 MHz, CDCl3)δ 162.6, 157.5, 138.8,
133.5, 132.2, 132.0, 129.4, 120.0, 118.7, 112.9. HRMS (ESI)
m/z: [M+H]+ Calcd for C11H8N3 182.0713; Found 182.0712.
Complex I (yellow solid, EtOAc/ EtOH = 5:1 as eluent, 326mg,
68% yield): 1H NMR (400 MHz, CDCl3) δ 9.75 (m, 1H), 8.65
(m, 1H), 8.33 (d, J = 7.1 Hz, 1H), 8.00 (m, 1H), 7.32– 7.23 (m,
2H), 7.15 – 7.06 (m, 1H), 7.05 – 6.95 (m, 1H), 5.70 (m, 2H),
5.48 (d, J = 5.8 Hz, 1H), 5.25 (d, J = 5.6 Hz, 1H), 2.22 (m, 1H),
1.92 (s, 3H), 1.68 (s, 3H), 0.89 (m, 6H). 13C{1H} NMR (101 MHz,
CDCl3) δ 181.3, 178.9, 172.7, 163.6, 157.1, 142.0, 139.0,
131.0, 127.2, 123.2, 116.5, 100.5, 97.1, 90.1, 89.4, 86.5, 82.5,
31.0, 24.3, 22.3 (d), 18.7.
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