Recl. Trav. Chim. Pays-Bas 113, 394–397 (1994) SSDI 0165-0513(94)00046-5 0165-0513/94/09394-04\$7.00

CF₃-BOP, CF₃-PyBOP and CF₃-HBTU: New peptide coupling reagents specially suited for α -aminoisobutyric acid condensations ^a

Jac C.H.M. Wijkmans, John A.W. Kruijtzer, Gijs A. van der Marel, Jacques H. van Boom and Wim Bloemhoff

Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands (Received March 2, 1994)

Abstract. The peptide-coupling reagents CF₃-BOP (1b), CF₃-PyBOP (1c) and CF₃-HBTU (2a) with built-in 1-hydroxy-6-(trifluoromethyl)benzotriazole proved to be highly efficient for the coupling of α -aminoisobutyric acid residues.

Introduction ^b

The isolation of an increasing number of naturally occurring peptides bearing α -aminoisobutyric acid (Aib)¹ residues has stimulated the chemical synthesis of this type of biologically interesting peptides. However, it became apparent that introduction of Aib into peptides using well-established coupling reagents in solid-phase syntheses, *e.g.* dicyclohexylcarbodiimide/1-hydroxybenzotriazole and BOP² (1a), was a slow and low-yielding process³. In order to solve this problem much effort has been directed to the development of more powerful reagents⁴.

We now wish to report that the CF₃-OBt-containing

- HOBt = 1-hydroxybenzotriazole
- BOP = (benzotriazol-1-yloxy)tris(dimethylamino)phosphonium hexafluorophosphate
- BroP = bromotris(dimethylamino)phosphonium hexafluorophosphate
- Bz = benzoyl
- $\label{eq:cf3-BOP} CF_3\text{-}BOP = [6(trifluoromethyl)benzotriazol-1-yloxy]\text{-}tris(dimethyl-amino)phosphonium hexafluorophosphate$
- CF_3 -HBTU = 2-[6(trifluoromethyl)benzotriazol-1-yl]-1,1,3,3-tetramethyluronium hexafluorophosphate

CF₃-PyBOP = [6(trifluoromethyl)benzotriazol-l-yloxy]tris(pyrrolidino)phosphonium hexafluorophosphate

- DIEA = N, N-diisopropylethylamine
- Fmoc = fluoren-9-ylmethoxycarbonyl

MeVal = N-methylvaline

reagents CF_3 -BOP (1b), CF_3 -PyBOP (1c) and CF_3 -HBTU (2a) are promising tools for the coupling of Aib.

Results and discussion

Some years ago,⁵ we presented the bifunctional phosphorylating reagent O-(2-chlorophenyl)-O,O-bis(benzotriazol-1-yl)phosphate **3a** for the introduction of $3' \rightarrow 5'$ internucleotide phosphotriester linkages. The rate of the two-step phosphorylation could be substantially enhanced by application of the CF₃ analogue **3b**⁶. On the basis of this information it was expected that the readily accessible CF₃-substituted reagents **1b,c** and **2a** would exert a beneficial effect on the introduction of the Aib moiety into peptides.

In order to assess this assumption, we first examined the coupling of isoleucine methyl ester with Z-protected Aib. It can be seen in entry 1 (Table I) that in-situ activation with both BOP (1a) and CF₃-BOP (1b) proceeded in an excellent yield. On the other hand, the yield of the CF₃-BOP-mediated coupling of the more hindered⁷ proline methyl ester with Z-Aib-OH (entry 2) was much higher than with BOP. The difference in efficacy between the latter reagent and CF3-BOP was even more pronounced in the peptide bond formation between Z-Aib-OH and H-Aib-OMe (entry 3). In this respect, it is interesting to note that *Coste* et al.^{3b} used the highly active brominecontaining phosphonium salts $BroP^{\overline{8}}$ (1d) and PyBroP⁹ (1e) for the preparation of Z-Aib-Aib-OMe (4c). However, the coupling efficiency of reagents 1d,e did not deviate substantially from those with BOP and its pyrroli-dine homologue PyBOP⁹ (1f). In addition, *Coste* et al.^{3b} provided evidence that the (Py)BOP-mediated condensation of Z-Aib-OH with the sterically hindered Aib methyl ester proceeded via the benzotriazolyl (OBt) ester of the N-protected Aib. In order to substantiate the effect of OBt and CF₃-OBt esters on the formation of Z-Aib-Aib-OMe (4c), coupling was conducted after preactivation of the N-protected Aib with BOP and CF₃-BOP. It is evident from the results in entry 4 that the Aib dipeptide 4c

^a Dedicated to Professor G.I. Tesser on the occasion of his 65th birthday.

^b **Abbreviations** are in accordance with the recommendations of the IUPAC-IUB as set forth in J. Biol. Chem. **260**, 14 (1985). Additional abbreviations:

Aib = α -aminoisobutyric acid

 $HATU=2\mbox{-}(7\mbox{-}azabenzotriazol\mbox{-}1\mbox{-}yl)\mbox{-}1\mbox{-}1\mbox{-}3\mbox{-}3\mbox{-}tetramethyluronium hexafluorophosphate}$

^{= 2-(}triazolo[4,5-/]pyridin-3-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate

PyBOP = (benzotriazol-1-yloxy)tris(pyrrolidino)phosphonium hexafluorophosphate

PyBroP = bromotris(pyrrolidino)phosphonium hexafluorophosphateZ = benzyloxycarbonyl.

Table 1 Relevant data on the formation of Aib-containing dipeptides with BOP (1a), CF₃-BOP (1b), CF₃-PyBOP (1c) and CF₃-HBTU (2a)

Entry	Dipeptide		Yield (%) ^{a,b}			
			1a	1b	lc	2a
1 2 3 4 5	Z-Aib-Ile-OMe Z-Aib-Pro-OMe Z-Aib-Aib-OMe Z-Aib-Aib-OMe Z-Aib-Aib-OMe	4a 4b 4c 4c 4c 4c	90 76 47 52 ^{c,d} 67 ^g	95 95 82 83 ° 94 ^g	n.d. ^c n.d. ^c 83 n.d. ^c n.d. ^c	n.d. ^e n.d. ^e 66 70 ^f 85 ^g

^a The yields were determined after 1h coupling at room temperature (see Experimental section). ^b In case of incomplete reaction (entries 2–6) the sole side-product was the (CF₃-)OBt-ester of the *N*-protected amino acid. ^c Amino acid ester hydrochloride was added after 5 min preactivation. ^d Addition of CF₃-HOBt (0.5 eq), DIEA (0.5 eq) and amino acid hydrochloride (1.0 eq), after 5 min preactivation, furnished 4c in 53% yield. ^e n.d. = not determined. ^f Amino acid ester was added after 20 min preactivation. The long preactivation time was necessary due to the low solubility of CF₃-HBTU in CH₂Cl₂. ^g DMF as solvent

 $\begin{bmatrix} R^{1} \\ R^{2} \end{bmatrix}_{3}^{+} = R^{3} = CH_{3}, R^{3} = OB_{1} (BOP)$ **b**: $R^{1} = R^{2} = CH_{3}, R^{3} = CF_{3} - OB_{1} (CF_{3} - BOP)$ **c**: $R^{1}, R^{2} = (CH_{2})_{4}, R^{3} = CF_{3} - OB_{1} (CF_{3} - PBOP)$ **d**: $R^{1} = R^{2} = CH_{3}, R^{3} = Br (BroP)$ **e**: $R^{1}, R^{2} = (CH_{2})_{4}, R^{3} = Br (PyBroP)$ **f**: $R^{1}, R^{2} = (CH_{2})_{4}, R^{3} = OB_{1} (PyBOP)$

2 a: CF₃-HBTU

3 a: $R^1 = H$, $R^2 = 2$ -chlorophenyl **b**: $R^1 = CF_3$, $R^2 = 2$ -chlorophenyl

5: HATU

could be isolated in comparable yields with those resulting from *in-situ* activation of Z-Aib-OH with BOP and CF₃-BOP, thus indicating that the acylation of an amine with decreased reactivity proceeds predominantly via the OBt or the more activated CF₃-OBt ester. Apart from this, it has been established¹⁰ that the solvent DMF may significantly enhance the efficiency of peptide bond formation. The latter effect was confirmed by the near quantitative formation of **4c** (entry 5) using CF₃-BOP as the activating agent.

At this stage, we were anxious to find out whether the pyrrolidine analogue CF_3 -PyBOP (1c) and the uronium derivative CF_3 -HBTU (2a) would be as effective as CF_3 -BOP. It can be seen in entry 3 and 6 that CF_3 -PyBOP gave similar results in the synthesis of 4c and 4d. How-

ever, CF_3 -HBTU-assisted condensation of two Aib residues (entries 3–6) gave lower yields than with CF_3 -BOP. Interestingly, the recently introduced¹¹ and highly advocated¹² 7-azabenzotriazole-based reagent HATU (5) gave a lower yield (*i.e.* 69%) than CF_3 -BOP in the coupling of Z-Aib-OH with H-Aib-OMe. The diminished efficacy of the uronium salts CF_3 -HBTU and HATU might be attributed¹³ to the *in-situ* generated strongly basic tetramethylurea.

Stimulated by the results thusfar obtained, we turned our attention to the rather troublesome¹⁵ coupling of *N*-methylvaline (MeVal). In accordance with expectation, we found that both BOP- and CF₃-BOP-mediated condensation of valine methyl ester with Z-protected MeVal (entry 1 in Table II) gave the desired dipeptide **4e** in high yield. In contrast, reaction of Z-Val-OH with MeVal methyl ester (entry 2) proceeded unsatisfactorily, even at 35°C (entry 3)¹⁶. Nonetheless, it is clear that CF₃-BOP is also superior in this particular case to BOP (*cf*. the high-yielding CF₃-BOP-assisted couplings in entries 2–6 in Table I). On the other hand, acylation of *N*-methylated valine under the agency of BroP and PyBroP afforded higher yields than with (Py)BOP or CF₃-BOP¹⁵.

Finally, it is of interest to note that loss of chiral integrity using CF_3 -BOP (see note ^e in Table II) was, as gauged by the *Davies* test¹⁷, in the same order as for BOP¹⁸.

In conclusion, the results presented in this paper indicate that shelf-stable CF_3 -BOP, CF_3 -PyBOP and CF_3 -HBTU are efficient coupling reagents for the introduction of Aib residues. The application of these promising condensing reagents in the solid-phase synthesis of Aib-containing peptides will be reported in due course.

Experimental

General methods and materials

DMF was stirred with CaH_2 and distilled under reduced pressure. CH_2Cl_2 was distilled from P_2O_5 and stored over molecular sieves (4

Table II Relevant data on the formation of dipeptides with BOP (1a) and CF_3 -BOP (1b)

Entry	Dipeptide		Yield (%) ^a	
			1a	1b
1	Z-MeVal-Val-OMe	4e	92	95
2	Z-Val-MeVal-OMe ^{b,c}	4f	4	32
3	Z-Val-MeVal-OMe ^{b,c}	4f	12 ^d	49 ^d
4	Bz-Val-Val-OMe ^e	4g	32	46

^a The yields were determined after 1h coupling at room temperature (see Experimental section). ^b The sole side-product was the (CF₃-)OBt-ester of Z-Val-OH. ^c After 1 h, hydrazine monohydrate (0.1 ml, 2 mmol) was added to facilitate purification. ^d Conducted at 35°C. ^e %DL diastereoisomer: 53% and 50%, for BOP and CF₃-BOP, respectively.

Å). DIEA was distilled from KOH. BOP reagent was purchased from Richelieu Biotechnologies. HATU was purchased from Millipore. Fmoc-Aib-OH was obtained from NovaBiochem. MeVal was prepared according to a procedure described by McDermott and Benoiton¹⁹. Reactions were run at ambient temperature unless noted otherwise. TLC analysis was performed on Schleicher and Schüll DC Fertigfolien F1500 LS254 employing the following solvent systems: A (ethyl-acetate/light-petroleum-(b.p. 40-60°C), 1/1, v/v), B (ethylacetate/light-petroleum-(b.p. 40-60°C), 1/2, v/v). Compounds were visualized by UV (254 nm) and 4,4'-methylenebis(N,N-dimethyl-aniline) reagent²⁰. Column chromatography was performed on Kieselgel 60, 230-100 mesh (Merck). Melting points were measured on a Büchi melting-point apparatus and are uncorrected. Optical rotations were determined with a PROPOL automatic polarimeter at 20°C. Mass spectra were obtained with a Finnigan MAT SSQ 710 (Finnigan MAT, San José) spectrometer equipped with an electrospray interface. 1D- and 2D-(¹H-¹H COSY) ¹H-NMR spectra were recorded at 300 MHz on a Bruker WM-300 spectrometer interfaced with an ASPECT 2000 computer. ¹³C- and ³¹P-NMR spectra were recorded on a Jeol JNM-FX 200 spectrometer, operating at 50.1 and 80.7 MHz, respectively. Chemical shifts (δ) are given in ppm relative to the signal for internal Me₄Si for ¹H, and to the signal for internal chloroform (δ 77.0) or acetone (δ 29.8) for ¹³C. ³¹P chemical shifts are given relative to 85% H₃PO₄ as external standard.

396

[(6-Trifluoromethyl)benzotriazol-1-y-oxy]tris(dimethylamino)phosphonium hexafluorophosphate, CF₃-BOP (**1b**). A solution of 1-hydroxy-6-(trifluoromethyl)benzotriazole²¹ (1.02 g, 5.0 mmol) and triethylamine (0.70, 5.0 mmol) in CH₂Cl₂ (10 ml) was carefully added to a mixture of chlorotris(dimethylamino)phosphonium hexafluorophosphate²² (1.72 g, 5.0 mmol) in acetone (25 ml) at 0°C. After stirring for 30 min at room temperature, the mixture was concentrated and acetone (40 ml) was added followed by the addition of water (200 ml) upon which the phosphonium salt precipitated. The white precipitate was collected by filtration and redissolved in CH₂Cl₂ (100 ml). The solution was washed with water (2×30 ml), dried (MgSO₄) and concentrated to give **1b** (2.25 g, 88%) as a white solid which was used without further purification. The obtained phosphonium salt, recrystallized from CH₂Cl₂/light-petroleum-(b.p. 40–60°C), decomposes at *T* > 140°C. MS (*m*/z): 365 [**1b**-PF₆]⁺. ³¹ P NMR (acetone-*d*₆): δ 45.9 (*s*, P⁺), -141.1 (septet, PF₆⁻, *J*_{P,F} 710.5 Hz). ¹³C NMR (acetone-*d*₆): δ 144.9, 128.1 (C_q), 132.2 (q, C-CF₃, ²*J*_{C,F} 32.7 Hz), 124.3 (q, C-CF₃, ¹*J*_{C,F} 272.6 Hz), 123.4, 123.3, 123.0, 107.8, 107.7 (CH-arom.), 37.7 (CH₃-N, ²*J*_{C,F} 4.4 Hz).

[(6-Trifluoromethyl)benzotriazol-1-yloxy]tris(pyrrolidino)phosphonium hexafluorophosphate, CF₃-PyBOP (1c). Prepared as described for the preparation of **1b** starting from bromotris(pyrrolidino)-phosphonium hexafluorophosphate²³ (3.60 g, 7.7 mmol); yield 3.13 g (69%). Phosphonium salt **1c**, recrystallized from CH₂Cl₂/light-petroleum-(b.p. 40-60°C), decomposes at T > 140°C. MS (m/z): 258 [O=P-(N(CH₂)₄)₃ + H]⁺, 443 [**1c**-PF₆]⁺, 515 [2O=P-(N(CH₂)₄)₃ + H]⁺. ³¹P NMR (acetone-d₆): δ 33.1 (s, P⁺), -141.1 (septet, PF₆⁻, J_{P,F} 708.8 Hz). ¹³C NMR (acetone-d₆): δ 145.0, 128.2 (C_q), 132.1 (q, C-CF₃, ²J_{C,F} 32.7 Hz), 124.5 (q, C-CF₃, ¹J_{C,F} 272.6 Hz), 123.4, 123.1, 108.0 (CH-arom.), 49.0 (CH₂-CH₂-N, ²J_{C,P} 4.4 Hz), 26.6 (CH₂-CH₂-N, ³J_{C,P} 8.8 Hz).

2-[6(Trifluoromethyl)benzotriazol-1-yl]-1,1,3,3-tetramethyluronium hexafluorophosphate, CF₃-HBTU (2a). Prepared starting from tetramethylchloroformamidinium hexafluorophosphate²⁴ (1.40 g, 5.0 mmol) in an analogous method to that used for 1b; yield 1.74 g (78%). Uronium salt 2a, recrystallized from acetone/CH₂Cl₂, decomposes at $T > 160^{\circ}$ C. MS (m/z): 302 [2a-PF₆]⁺. ³⁻P NMR (acetone-d₆): $\delta - 141.2$ (septet, PF₆⁻, J_{P,F} 708.5 Hz). ¹³C NMR (acetone-d₆): $\delta = 151$ (C⁺), 136.3, 134.2 (C_q), 129.4 (q, C-CF₃, ²J_{C,F} 33.7 Hz), 124.3 (q, C-CF₃, ¹J_{C,F} 272.6 Hz), 130.6, 116.9, 115.0 (CH-arom.), 42.8, 42.4 (CH₃).

General procedure for BOP, CF_3 -PyBOP- and CF_3 -HBTU-mediated dipeptide formation

To a mixture of Z-amino acid (0.50 mmol), amino acid methyl ester hydrochloride (0.50 mmol) and either BOP (220 mg, 0.50 mmol), CF₃-BOP (255 mg, 0.50 mmol), CF₃-PyBOP (293 mg, 0.50 mmol) or CF₃-HBTU (224 mg, 0.50 mmol) in CH₂Cl₂ (3 ml) was added DIEA (0.26 ml, 1.50 mmol). After 1 h, the mixture was diluted with ethyl acetate (100 ml), washed with water (2×30 ml), 1M NaHCO₃ (2×30 ml), water (2×30 ml), 1M KHSO₄ (2×30 ml), brine (2×30 ml), dried (MgSO₄) and concentrated. When needed, purification of the residue by column chromatography (eluent: light-petroleum-(b.p. 40–60°C)/ethyl-acetate, $2/1 \rightarrow 1/1$, v/v) gave **4a–g**.

N-[α-(Benzyloxycarbonylamino) isobutyryl]-*L*-isoleucine methyl ester, *Z*-Aib-Ile-OMe (**4a**). R_f 0.75 (system A); $[\alpha]_D$ + 18.2° (*c* 1, CHCl₃). MS (*m*/*z*): 365 [M+H]⁺, 387 [M+Na]⁺. ¹H NMR (CDCl₃): δ 7.4–7.3 (m, 5H, H-arom.), 6.86 (bd, 1H, NH Ile, $J_{H\alpha NH}$ 6.4 Hz), 5.41 (s, 1H, NH Aib), 5.09 (AB, 2H, CH₂ Z), 4.56 (dd, 1H, Hα Ile, *J* 4.7 and 8.5 Hz), 3.70 (s, 3H, OCH₃), 1.9 (m, 1H, Hβ Ile), 1.55 and 1.52 (2 s, each 3H, Hβ Aib), 1.4–1.3 and 1.2–1.1 (2 m, each 1H, Hγ Ile), 0.89 (t, 3H, Hδ Ile, $J_{\gamma\delta}$ 7.3 Hz), 0.87 (d, 3H, Hγ Ile, $J_{\beta,\gamma}$ 6.9 Hz). ¹³C NMR (CDCl₃): δ 174.0, 172.0 (C=O Aib, Ile), 154.8 (C=O Z), 136.0 (C_q, Z), 128.1, 127.7, 127.6 (CH-arom.), 66.3 (CH₂ Z), 56.6 (Cα Aib), 56.2 (Cα Ile), 51.6 (OCH₃), 37.4 (Cβ Ile), 25.5 (Cβ Aib), 24.7 (Cγ Ile), 15.1 (β-CH₃ Ile), 11.2 (Cδ Ile).

N-[α-(Benzyloxycarbonylamino)isobutyryl]-L-proline methyl ester, Z-Aib-Pro-OMe (**4b**). $R_{\rm f}$ 0.19 (system A); $[\alpha]_{\rm D_{\rm f}}$ -63.8° (*c* 1, CHCl₃). MS (*m*/*z*): 349 [M+H]⁺, 371 [M+Na]⁺. ¹³C NMR (CDCl₃): δ 172.7, 171.9 (C=O Aib, Pro), 154.1 (C=O Z), 136.3 (C_q Z), 128.1, 127.9, 127.8 (CH-arom.), 66.0 (CH₂ Z), 60.4 (Cα Pro), 56.4 (Cα Aib), 51.7 (OCH₃), 47.5 (Cδ Pro), 27.4 (Cβ Pro), 25.4 (Cγ Pro), 24.7, 24.1 (Cβ Aib).

N-(*N*-Benzyloxycarbonyl-α-aminoisobutyryl)-α-aminoisobutyric acid methyl ester, Z-Aib-Aib-OMe (4c). R_f 0.18 (system B). MS (m/z): 337 [M + H]⁺, 359 [M + Na]⁺. ¹H NMR (CDCl₃): δ 7.4–7.3 (m, 5H, H-arom.), 6.92 and 5.42 (2 s, each 2H, NH), 5.10 (s, 2H, CH₂ Z), 3.71 (s, 3H, OCH₃), 1.50 (s, 12H, Hβ). ¹³C NMR (CDCl₃): δ 174.8, 173.5 (C=O Aib), 155.0 (C=O Z), 136.2 (C_q Z), 128.3, 127.9, 127.8 (CHarom.), 66.5 (CH₂ Z), 56.7, 56.2 ($C\alpha$), 52.3 (OCH₃), 25.2, 24.3 (Cβ).

N-(*N*-Fluoren-9-ylmethoxycarbonyl-α-aminoisobutyryl)-α-aminoisobutyric acid methyl ester, Fmoc-Aib-Aib-OMe (**4d**). $R_{\rm f}$ 0.41 (system A). MS (m/z): 425 [M+H]⁺, 447 [M+Na]⁺. ¹H NMR (CDCl₃): δ 7.75 and 7.59 (2 d, 4H, H-arom., J 7.4 and 7.5 Hz), 7.6–7.3 (m, 4H, H-arom.), 6.90 and 5.50 (2 s, each 1H, NH Aib), 4.40 (d, 2H, CH₂ Fmoc, J 6.6 Hz), 4.20 (t, 1H, CH Fmoc, J 6.8 Hz), 3.71 (s, 3H, OCH₃), 1.53 (s, 12H, Hβ). ¹³C NMR (CDCl₃): δ 174.8, 173.5 (C=O Aib), 155.0 (C=O Fmoc), 143.7, 141.2 (C₄ Fmoc), 127.5, 126.9, 124.9, 119.8 (CH-arom.), 66.4 (CH₂ Fmoc), 56.7, 56.3 (Cα), 52.4 (OCH₃), 47.1 (CH Fmoc), 25.1, 24.4 (Cβ).

N-[*N*(*Benzyloxycarbonyl*)-*L*-*N*-methylvalyl]valine methyl ester, *Z*-MeVal-Val-OMe (4e). R_f 0.54 (system B). $[\alpha]_D - 93.4^\circ$ (*c* 1, MeOH); lit.¹⁵ $[\alpha]_D - 95^\circ$ (*c* 1, MeOH). MS (*m*/*z*): 379 [M+H]⁺, 401 [M+Na]⁺. ¹H NMR (CDCl₃): δ 7.34 (bs, 5H, H-arom.), 6.53 and 6.01 (d, and 'bs', ratio 4/1, 1H, NH, $J_{H\alpha NH}$ 8.3 Hz), 5.17 (AB, 2H, CH₂ Z), 4.49 (dd, 1H, H α Val, $J_{\alpha,\beta}$ 5.7 Hz, $J_{H\alpha NH}$ 8.7 Hz), 4.15 and 4.05 (d and 'bd', ratio 4/1, 1H, H α MeVal, $J_{\alpha,\beta}$ 11.1 Hz), 3.72 (s, 3H, OCH₃), 2.90 (s, 3H, NCH₃), 2.3 (m, 1H, H β MeVal), 2.1 (m, 1H, H β Val), 0.96 and 0.89 (2 d, each 3H, H γ WeVal, $J_{\beta,\gamma}$ 6.8 Hz). ¹⁸C NMR (CDCl₃): δ 171.7, 169.9 (C=O MeVal, Val), 157.2 (C=O Z), 136.3 (C_q Z), 128.2, 127.7, 127.4 (CH-arom.), 67.2 (CH₂ Z), 64.9, 56.6 (C α MeVal, Val), 51.7 (OCH₃), 30.6, 29.6 (C β MeVal, Val), 25.8 (NCH₃), 19.2, 18.6, 18.4, 17.3 (C γ MeVal, Val).

N-[*N*(*Benzyloxycarbonyl*)-*L*-*valyl*]-*L*-*N*-methylvaline methyl ester, *Z*-*Val-MeVal-OMe* (**4f**). R_f 0.52 (system B). $[\alpha]_D - 110.0^\circ$ (*c* 1, MeOH); lit.¹⁵ $[\alpha]_D - 63^\circ$ (*c* 1, MeOH). MS (*m*/*z*): 347 [M+H-CH₃OH]⁺, 379 [M+H]⁺, 401 [M+Na]⁺. ¹³C NMR (CDCl₃): δ 173.0, 171.1 (C=O MeVal, Val), 156.3 (C=O Z), 136.3 (C_q Z), 128.4, 127.9, 127.7 (CH-arom.), 66.7 (CH₂ Z), 65.0, 61.4, 55.8, 55.6 (C α MeVal, Val), 15.17 (OCH₃), 31.4, 31.2 (C β MeVal, Val), 27.4, 26.9 (NCH₃), 19.7, 19.1, 18.6, 17.4 (C γ MeVal, Val).

N-(*N*-Benzoylvalyl)valine methyl ester, Bz-Val-Val-OMe (4g) (diastereoisomeric mixture). MS (m/z): 335 [M+H]⁺, 357 [M+Na]⁺. ¹H NMR (CDCl₃): δ 7.9–7.8 and 7.5–7.4 (2 m, 5H, H-arom.), 7.2–7.1 (m, 2H, NH), 4.8–4.7 and 4.6–4.5 (2 m, each 1H, H α), 3.75 and 3.67 (2 s, 3H, OCH₃ LL and DL form respectively), 2.1–2.3 (m, 2H, H β), 1.0–0.9 (m, 12H, H γ). ¹³C NMR (CDCl₃): δ 172.0, 171.8, 171.7, 171.5 (C=O Val), 167.3 (C=O Bz), 131.5, 128.4, 127.1 (CHarom.), 58.6, 57.4 (C α), 51.9 (OCH₃), 31.4, 30.9, 30.7 (C β), 19.3, 19.1, 19.0, 18.9, 18.3, 18.1, 17.9, 17.7 (C γ).

Acknowledgements

We wish to thank Mr. E.R. Wijsman and Mrs. E. Kuyl-Yeheskiely for helpful assistance and discussions, and Mr. A.W.M. Lefeber for recording the 2D-NMR spectra. Recueil des Travaux Chimiques des Pays-Bas, 113 / 09, September 1994

References

- ¹ See footnote b, p. 394.
- ² B. Castro, J.-R. Dormoy, G. Evin and C. Selve, Tetrahedron Lett. 1219 (1975).
- ^{3a} T.M. Balasubramanian, N.C.E. Kendrick, M. Taylor, G.R. Marshall, J.E. Hall, I. Vodyanoy and F. Reusser, J. Am. Chem. Soc. 103, 6127 (1981);
- ^b E. Frérot, J. Coste, A. Pantalon, M.-N. Dufour and P. Jouin, Tetrahedron 47, 259 (1991).
- ⁴ H. Wenschuh, M. Beyermann, E. Krause, L.A. Carpino and M. Bienert, Tetrahedron Lett. **34**, 3733 (1993) and references cited therein.
- ⁵ G.A. van der Marel, C.A.A. van Boeckel, G. Wille and J.H. van Boom, Tetrahedron Lett. 22, 3887 (1981).
- E. de Vroom, A. Fidder, J.E. Marugg, G.A. van der Marel and J.H. van Boom, Nucleic Acid Res. 14, 5885 (1986).
 M. Bodanszky and J. Martinez, in "The Peptides: Analysis,
- ⁷ M. Bodanszky and J. Martinez, in "The Peptides: Analysis, Synthesis, Biology", Vol. 5, E. Gross and J. Meienhofer, eds., Academic Press, New York, p. 120 (1983).
- ⁸ B. Castro and J.-R. Dormoy, Tetrahedron Lett. 3243 (1973).
- ⁹ J. Coste, D. Le-Nguyen and B. Castro, Tetrahedron Lett. **31**, 205 (1990).
- ¹⁰ M. Bodanszky, in "The Peptides: Analysis, Synthesis, Biology", Vol. 1, E. Gross and J. Meienhofer, eds., Academic Press, New York, p. 139 (1979).
- ¹¹ L.A. Carpino, J. Am. Chem. Soc. 115, 4397 (1993).
- ¹² L.A. Carpino, A. El-Fahan, C.A. Minor and F. Albericio, J. Chem. Soc., Chem. Commun. 210 (1994).
- ¹³ No indication was found of Schiff base analogue formation¹⁴

between the amino group of Aib methyl ester and the tetramethyluronium moiety of CF₃-HBTU or HATU, which could account for the obtained lower yields in comparison with CF₃-BOP.

- for the obtained lower yields in comparison with CF₃-BOP.
 ¹⁴ H. Gausepohl, U. Pieles and R.W. Frank, in "Peptides: Chemistry and Biology; Proceedings of the 12th American Peptide Symposium", J.A. Smith and J.E. Rivier, eds., ESCOM, Leiden, p. 523 (1922).
- ¹⁵ J. Coste, M.-N. Dufour, A. Pantaloni and B. Castro, Tetrahedron Lett. 31, 669 (1990).
- ¹⁶ It should be noted that the reported¹⁵ yield (*i.e.* 67%) for the BOP-mediated formation of 4f was corrected in a recent paper [*J. Coste, E. Frérot, P. Jouin* and *B. Castro*, Tetrahedron Lett. 17, 1967 (1991)] as being only 10%. The latter yield is in good accordance with our results. Moreover, it cannot be excluded that the reported¹⁵ [α]_D value of 4f is also not correct.
- ^{17a} J.S. Davies, R.J. Thomas and M.K. Williams, J. Chem. Soc., Chem. Commun. 76 (1975);
- ^b J.S. Davies and R.J. Thomas, J. Chem. Soc. Perkin Trans. 1, 1639 (1981).
- ¹⁸ CF₃-HBTU-mediated condensation of Bz-Val-OH with H-Val-OMe was accompanied by 48% racemization.
- ¹⁹ J.R. McDermott and N.L. Benoiton, Can. J. Chem. **51**, 1915 (1973).
- ²⁰ E. von Arx, M. Faupel and M. Brugger, J. Chromat. **120**, 224 (1976).
- ²¹ W. König and R. Geiger, Chem. Ber. 103, 788 (1970).
- ²² J.R. Dormoy and B. Castro, Tetrahedron Lett. 3321 (1979). ²³ P. Castro and L. Castro, Dr. P. 90.02 2(1)
- ²³ B. Castro and J. Coste, Fr. P., 89.02.361.
- ²⁴ V. Dourtoglou, B. Gross, V. Lambropoulou and C. Zioudrou, Synthesis, 572 (1984).