

Tetrahedron 54 (1998) 4405-4412

TETRAHEDRON

Synthesis of Two Pyranoquinolinones. What is the Structure of Cherimoline ?

Wadi Ajana,^a Lidia Feliu,^a Mercedes Alvarez,^{a*} and John A. Joule^{b*}

a Laboratorio de Química Orgánica, Facultad de Farmacia, Universidad de Barcelona, 08028 Barcelona, Spain. b Chemistry Department, The University of Manchester, Manchester M13 9PL, U.K.

Received 20 January 1998; revised 9 February 1998; accepted 12 February 1998

Abstract: Ethyl quinolin-4-one-3-carboxylate has been converted in 4 steps into 4H-pyrano[3,4c]quinolin-4-one and 3-methoxyquinolin-4-one has been converted in 3 steps into 3H-pyrano[2,3c]quinolin-3-one. Neither of these tricyclic lactones corresponds to natural cherimoline. © 1998 Elsevier Science Ltd. All rights reserved.

Plants of the family Annonaceae cultivated in Taiwan have yielded alkaloids of the oxoaporphine, aporphine, benzylisoquinoline, proaporphine, and phenanthrene types.¹ An examination of the sub-tropical fruit tree Annona cherimola (Annonaceae) revealed² the presence of several alkaloids amongst which was a new base named cherimoline, a substance with the formula $C_{12}H_7NO_2$, which was assigned the structure shown below – 4*H*-pyrano[3,4-*c*]quinolin-4-one. This ring system had not been described before in either a natural product or in a synthetic material. Nonetheless, the construction of a compound with this constitution (Scheme 1) seemed to present a straightforward challenge the successful conclusion of which would be confirmation for the novelty of the structure deduced² spectroscopically. In particular, our interest in the synthesis of quinoline-containing alkaloids³ and our previous experience⁴ with the use of 4-trifluoromethylsulfonyloxyquinolines for the introduction of functionalised two-carbon units at a quinoline 4-position by Pd(0)-catalysed coupling processes led us to suppose that 4*H*-pyrano[3,4-*c*]quinolin-4-one might be accessible using this methodology.

In contrast to our previous studies,⁴ the 4-quinolone (precursor to a 4-triflate) required in the present case needed to carry a carboxylic acid/ester function at C-3. Fortunately, such quinolones are readily available via the thermal ring closure of arylaminomethylenemalonates, thus, following earlier work,⁵ reaction of aniline with diethyl ethoxymethylenemalonate gave 1 which in turn was converted into the 4-quinolone-3-ester 2 on heating in Dowtherm[®] A. The quinolone was transformed into the corresponding triflate 3 by reaction with $(CF_3SO_2)_2O$ in the presence of 2,6-lutidine. Coupling to a functionalised two-carbon unit – trimethylsilylacetylene – albeit in only modest yield was brought about using tris(dibenzylideneacetone) palladium(0)-chloroform adduct as catalyst giving 4. Following removal of the silicon protection (\rightarrow 5) in the standard way, formation of the lactone took place in the same pot as alkaline hydrolysis of the ester, giving 4Hpyrano[3,4-c]quinolin-4-one 6.

The ¹H and ¹³C NMR spectra of 6 were compared with those reported² for the alkaloid. Although there was considerable similarity, the spectra were clearly not identical, in particular the synthetic lactone had a ¹³C 0040-4020/98/\$19.00 © 1998 Elsevier Science Ltd. All rights reserved. *PII:* S0040-4020(98)00154-9

Scheme 1

Reagents: i, Tf₂O, DMAP, 2,6-lutidine, CH₂Cl₂, rt (63%); ii, HC=CSiMe₃, Pd₂(dba)₃.CHCl₃, PPh₃, *i*-Pr₂NEt, DMF, rt (30%); iii, KF, MeOH, reflux (80%); iv, LiOH, H₂O, THF, rt (20%).

NMR signal at 150.0 for C-2 (numbering according to Fig 1), compared to 134.3 for the equivalent carbon in the alkaloid, reflecting its linkage in 6 to the electronegative oxygen – indeed the shift of C-2 in 6 is very similar to that of the quinoline α -carbon (C-5; 150.7; the hetero-ring α -carbon in cherimoline resonates at 149.5). The protons at C-2 in 6 and the equivalent position in cherimoline also reflect this difference, the former resonating some 0.5 ppm to lower field. As a final verification that we had indeed synthesised the structure proposed for cherimoline we carried out an extensive series of ¹H-¹³C (COSY) correlations and long range ¹H-¹³C (HMBC) correlations, these are summarised in Figure 1.

Figure 1

We were fortunate in being supplied with a small quantity of cherimoline by Professor Wu and were thus able to carry out a direct tlc comparison – cherimoline and 6 are not the same.

The availability of the small sample of the natural material allowed us to attempt to verify the high carbonyl stretching frequency reported for cherimoline -1760 cm^{-1} – which might have been consistent with the enol-lactone structure proposed; the synthetic lactone 6 had a carbonyl absorption at 1732 cm⁻¹. Measured as a

film, cherimoline had a strong absorption at 1670 cm⁻¹; we assume that a simple typographical transposition of '6' and '7' must have occurred in the preparation of the original report.²

The true carbonyl frequency of the natural material clearly suggests a conjugative influence. It seemed possible that the structure of cherimoline might be 7 - 3H-pyrano[2,3-c]quinolin-3-one – which also had not been previously described as either a natural or synthetic material. Accordingly we undertook a synthesis (Scheme 3) of this tricycle.

Scheme 2

Reagents: i, Ac₂O, rt (66%); ii, Tf₂O, DMAP, 2,6-lutidine 0 "C \rightarrow rt (61%); iii, CH₂=CHCO₂Et, Pd₂(dba)₃.CHCl₃, Ph₃P, *i*-Pr₂NEt, DMF, rt (10%) plus **8a** (*ca.* 70%).

3-Hydroxyquinolin-4-one⁶ 8a was converted into its acetate 8b and thence into the triflate 9a. The conditions applied in an attempt to bring about coupling of 9a with ethyl acrylate resulted mainly in hydrolysis to 3-hydroxyquinolin-4-one 8a, which was accompanied by a little of the Michael adduct 9b (Scheme 2).

It was clear that a more robust protection for the 3-hydroxyl would need to be put in place. 3-Methoxyquinolin-4-one⁷ 10 was converted into the 4-trifluoromethylsulfonyloxy-quinoline 11 and this now did couple satisfactorily with ethyl acrylate (\rightarrow 12) to install the three-carbon unit required for formation of 7, which was produced in a one pot procedure from 12 by heating with 48% HBr.

Scheme 3

Reagents: i, Tf₂O, DMAP, 2,6-lutidine () "C \rightarrow rt (57%); ii, CH₂=CHCO₂Et, Pd(OAc)₂, DMF, Bu₄NCl, NaHCO₃, 80 "C, 24 h (95%); iii, HBr (aq., 48%, 2 ml), AcOH (70 µl), Ac₂O (64 µl), heat, 24 h (60%).

A comparison of the spectroscopic data for the synthetic 7 with that for cherimoline again showed considerable similarities, but there were irreconcilable discrepancies. The introduction of α,β -unsaturation did not bring the carbonyl stretching frequency (observed at 1730 cm⁻¹ in 7) anywhere near that of cherimoline but did have the effect of bringing the chemical shift of the signal for the proton equivalent to the C-1-hydrogen in 6, down to 8.05 (cf. corresponding cherimoline signal at 7.21). Neither of the ¹³C NMR signals for the CH

carbons of the acrylate unit is consistent with the equivalent signals from cherimoline. A direct tlc comparison confirmed that cherimoline and 7 are not the same. The ¹H and ¹³C NMR and IR data for 6 and 7 and for the natural material are compared in Tables 1, 2, and 3.

		and the second	Sector and the sector of the s			
	6	6	cherimoline ²	7	13 ⁸	14 ⁸
solvent	CDCl ₃	CD3OD	CD ₃ OD	CDCl ₃	CDCl ₃	CDCl ₃
proton/field	500 MHz	500 MHz	400 MHz	300 MHz	200 MHz	200 MHz
H-1	7.25, d, J 5.5	7.67*	7.21*, d, J 7.2	8.05*, d, J 9.7	7.88, d, J 5.5	8.20, d, J 7.8
Н-2	7.71, d, J 5.5	8.00	7.47, d, J 7.2	6.80, d, J 9.7	8.92, d, J 5.5	8.80, d, J 7.8
H-5	9.62, s	9.54, s	9.54, s	8.03, s	9.52, s	8.59, s
H-7	8.24, dd,	8.24	8.07, dd	7.91, dd,	1H of 3H at	1H of 2H at
1	J 8.0, 1.5		J 7.8, 1.2	J 8.0, 1.4	7.35-7.61, m	7.89-7.98, m
H-8	7.95, ddd,	8.10	7.79, td	7.65, ddd,	1H of 3H at	7.75, dd,
	J 8.0, 7.5, 1.0		J 7.8, 7.8, 1.2	J 8.0, 7.5, 1.0	7.35-7.61, m	J 8.1, 1.2
H-9	7.75, ddd,	7.92	7.63, td	7.76, ddd,	8.07, dd,	8.48, dd,
	J 7.5, 7.5, 1.5		J 7.8, 7.8, 1.2	J 8.8, 7.5, 1.4	J 8.2, 1.0	J 8.1, 1.2
H-10	8.26, dd,	8.62*	8.30*, dd	8.16 [*] , dd,	1H of 3H at	1H of 2H at
	J 7.5, 1.0		J 7.8, 1.2	J 8.8, 1.0	7.35-7.61, m	7.89-7.98, m

 Table 1
 ¹H NMR data (hydrogens numbered according to Fig. 1)

* An nOe was found between these protons

Tahla 2	13C NMR data ((carbons numbered	according to Fig	11
	C I WING GAME	(earoons numbered	accoluting to Fig.	1)

	6	cherimoline ²	7
solvent	CDCl ₃	CD ₃ OD	CDCl3
carbon	75.4 MHz	100 MHz	75.4 MHz
1	101.7	100.4	122.4
2	150.0	134.3	120.5
4	161.0	162.8	159.3
4a	113.1	117.5	146.9
5	150.7	149.5	144.7
ба	149.5	147.6	145.9
7	130.6	129.6	129.5
8	132.7	131.5	129.5
9	128.0	127.4	128.6
10	123.8	123.6	122.4
10a	121.2	122.2	128.8
10b	142.3	142.8	139.1

6	cherimoline	7	13 ⁸	14 ⁸
film	not specified ²	film	nujol	nujol
1732	1760 ² 1670*	1730	1738	1747

 Table 3 IR carbonyl frequencies (cm⁻¹)

* The carbonyl absorption frequency of the cherimoline sample provided by Professor Wu and measured by us as a film.

There are currently 94 substances listed in the Beilstein data base with the molecular formula $C_{12}H_7NO_2$. Of these only 2 can be considered as possible structures for cherimoline, namely the lactones 13 and 14⁸ but a comparison (**Tables 1** and 3) of the published IR and ¹H NMR data for these two substances with those for cherimoline show conclusively that neither of these two structures represents the natural material.

A consideration of the types of alkaloid previously reported from plants of the Annonaceae, which all have isoquinoline or isoquinoline-derived structures, may give some guidance as to the true structure of cherimoline, but the number of possibilities which this still leaves open is too large to contemplate further synthetic work until more evidence becomes available on the natural material.

ACKNOWLEDGEMENTS

We thank for generous support CIRIT (Generalitat de Catalunya) for Grant QFN 95-4701 and Comissionat per a Universitats i Recerca (Generalitat de Catalunya) for Grant GRQ94-1009. We also thank the CIRIT for a fellowship (LF). We are greatly indebted to Professor Yang-Chang Wu (Graduate Institute of Natural Products, Kaohsiung Medical College, Kaohsiung, Taiwan, R.O.C.) for providing a sample of cherimoline.

EXPERIMENTAL

General

Melting points were determined in a capillary tube and are uncorrected. TLC was carried out on SiO₂ (silica Gel 60 F₂₅₄, Merck 0.063-0.200 mm) and spots were located with UV light. Column chromatography was carried out on SiO₂ (silica Gel 60 SDS 0.060-0.2 mm). Flash chromatography was carried out on SiO₂ (silica Gel 60 A CC (Merck). Organic extracts were dried over anhydrous Na₂SO₄, and solutions were evaporated under reduced pressure with a rotatory evaporator. IR spectra were performed on a Nicolet 205 FT-IR and peaks are given in cm⁻¹. NMR spectra were measured with Varian Gemini-200 (200 MHz), Varian Gemini-300 (300 MHz) and Varian VXR-500 (500 MHz) spectrometers; data are given in δ referenced to TMS with ¹H-NMR coupling constants (*J*) in Hz. Mass spectra were measured in the electron impact (EI) and chemical ionisation (CI) modes with a Hewlett-Packard model 5989A; ions are recorded as *m/z* with percentage abundances relative to the molecular ion given in parentheses. High resolution mass spectra were performed on a Autospec/VG by Departamento de Química Orgánica Biológica (C.S.I.C.) Barcelona.

Ethyl 4-trifluoromethylsulfonyloxyquinoline-3-carboxylate 3

To a solution of 2^5 (250 mg, 1.2 mmol) in dry CH₂Cl₂ (15 ml) were successively added under N₂, 4dimethylaminopyridine (DMAP) (30 mg, 0.24 mmol), 2,6-lutidine (0.2 ml, 1.68 mmol) and (CF₃SO₂)₂O (Tf₂O) (0.25 ml, 1.44 mmol). The mixture was stirred at 0 °C for 2 h then 1 h at rt. The organic solution was washed with H₂O, dried and evaporated *in vacuo* and the residue was purified by column chromatography. Elution with hexane/CH₂Cl₂ (70:30) afforded 3 as an oil (265 mg, 63%). IR (film) 1710 cm⁻¹. ¹H NMR (CDCl₃, 300 MHz) δ 1.33 (t, J =7.1 Hz, 3H); 4.34 (q, J =7.1 Hz, 2H); 7.51 (ddd, J = 8.0, 8.0, 0.8 Hz, 1H); 7.69 (ddd, J = 8.0, 8.0, 1.8 Hz, 1 H); 8.16 (dd, J = 8.0, 0.8 Hz, 1H); 8.39 (dd, J = 8.0, 1.8 Hz, 1H); 8.82 (s, 1H). ¹³C NMR (CDCl₃, 75.4 MHz) δ 14.2 (q); 62.0 (t); 118.4 (d); 121.9 (q); 127.5 (s); 127.8 (d); 128.3 (d); 133.9 (d); 137.6 (s); 143.1 (d); 155.0 (s); 162.8 (s); 173.7 (s). MS (EI) 349 (M⁺, 3); 172 (100); 144 (21); 132 (31).

Ethyl 4-trimethylsilylethynylquinoline-3-carboxylate 4

To a solution of 3 (260 mg, 0.74 mmol) in dry DMF (5 ml) were successively added under N₂, Pd₂(dba)₃.CHCl₃ (77 mg, 0.074 mmol), Ph₃P (64 mg, 0.5 mmol), *i*-Pr₂NEt (0.4 ml, 2.2 mmol), and trimethylsilylacetylene (0.3 ml, 2.2 mmol). The mixture was stirred at rt for 16 h after which time Et₂O (20 ml) was added and the organic solution was washed with H₂O, dried and evaporated *in vacuo*. The residue was purified by column chromatography, elution with hexane/CH₂Cl₂ (70:30) giving 4 as an oil (67 mg, 30%). IR (film) 2130, 1730 cm⁻¹. ¹H NMR (CDCl₃, 300 MHz) δ 0.38 (s, 9H); 1.48 (t, *J* = 7.1 Hz, 3H); 4.50 (q, *J* = 7.1 Hz, 2H); 7.68 (ddd, *J* = 8.5, 8.5, 1.2 Hz, 1H); 7.82 (ddd, *J* = 8.5, 8.5, 1.4 Hz, 1H); 8.13 (dd, *J* = 8.5, 1.2 Hz, 1H); 8.45 (dd, *J* = 8.5, 1.4 Hz, 1H); 9.36 (s, 1H). ¹³C NMR (CDCl₃, 75.4 MHz) δ -0.3 (q); 14.3 (q); 61.6 (t); 98.4 (s); 113.0 (s); 124.5 (s); 127.2 (d); 127.4 (s); 128.0 (d); 129.7 (d); 130.2 (s); 131.4 (d); 148.8 (s); 150.2 (d); 165.3 (s). MS (EI) 297 (M⁺, 13); 282 (23); 268 (29); 254 (45); 238 (100); 223 (29). Found M⁺ 297.1169; C₁₇H₁₉NO₂Si requires *M* 297.1185.

Ethyl 4-ethynylquinoline-3-carboxylate 5

To a solution of 4 (100 mg, 0.34 mmol) in MeOH (5 ml) was added KF (60 mg, 1 mmol) and the mixture was stirred at reflux for 1 h. After this time the solvent was evaporated and the residue was dissolved in CH₂Cl₂ and washed with H₂O. The organic solution was dried and evaporated to give 5 as a gum (60 mg, 80%). IR (film) 2250, 1735 cm⁻¹. ¹H NMR (CDCl₃, 200 MHz) δ 1.47 (t, J = 7.0 Hz, 3H); 4.13 (s, 1H); 4.51 (q, J = 7.0 Hz, 2H); 7.68 (ddd, J = 7.6, 7.6, 1.4 Hz, 1H); 7.84 (ddd, J = 7.6, 7.6, 1.8 Hz, 1 H); 8.15 (dd, J = 7.6, 1.4 Hz, 1H); 8.49 (dd, J = 7.6, 1.8 Hz, 1H); 9.39 (s, 1H). ¹³C NMR (CDCl₃, 75.4 MHz) δ 14.2 (q); 61.8 (t); 93.5 (d); 116.0 (s); 124.5 (s); 127.1 (d); 128.2 (d); 129.8 (d); 131.7 (d); 142.5 (s); 133.0 (s); 148.5 (s); 150.0 (d); 168.5(s). MS (EI) 225 (M⁺, 79); 197 (49); 180 (100); 152 (87). Found M⁺ 225.0789; C₁₄H₁₁NO₂ requires M 225.0789.

4H-pyrano[3,4-c]quinolin-4-one 6

A solution of LiOH (53 mg, 1.3 mmol) in H₂O (0.5 ml) was added to a solution of 5 (60 mg, 0.26 mmol) in THF (3 ml) and the mixture was stirred for 48 h at rt. The organic solvent was evaporated, H₂O (3 ml) was added to the residue, the aq. solution was neutralized with 1N HCl and extracted with CH₂Cl₂. The organic solution was dried and evaporated to give a residue which was purified by column chromatography. Elution with CH₂Cl₂ gave 6 (10 mg, 20%), mp 144-146 °C (Et₂O). IR (CHCl₃) 1732 cm⁻¹. ¹H NMR (CDCl₃, 500 MHz) **5** 7.25 (d, J = 5.5 Hz, 1 H); 7.71 (d, J = 5.5 Hz, 1 H); 7.75 (ddd, J = 7.5, 7.5, 1.5 Hz, 1H); 7.95 (ddd J

= 8.0, 7.5, 1.0 Hz, 1 H); 8.24 (dd, J = 8.0, 1.5 Hz, 1 H); 8.26 (dd, J = 7.5, 1.0 Hz, 1H); 9.62 (s, 1H). ¹³C NMR (CDCl₃, 75.4 MHz) δ 101.7 (d); 113.1 (s); 121.2 (s); 123.8 (d); 128.0 (d); 130.6 (d); 132.7 (d); 142.3 (s); 149.5 (s); 150.0 (d); 150.7 (d); 161.0 (s). MS (EI) 197 (M⁺, 99); 169 (100); 141(37); 140 (37). Found M⁺ 197.0481; C₁₂H₇NO₂ requires *M* 197.0477.

3-Acetoxyquinolin-4-one 8b

3-Hydroxyquinolin-4-one⁶ 8a (95 mg, 0.6 mmol) was dissolved in Ac₂O (3 ml) and after 1 h at rt, saturated aq. NaHCO₃ was added until the solution was basic then product extracted into CH₂Cl₂. The organic layer was dried and evaporated to give 8b (80 mg, 66%), mp 202-205 °C (CH₂Cl₂). IR (KBr) 1765 cm⁻¹. ¹H NMR (d₆-DMSO, 300 MHz) δ 2.24 (s, 3H); 7.34 (ddd, J = 7.5, 7.5, 1.2 Hz, 1H); 7.58 (dd, J = 7.8, 1.2 Hz, 1H); 7.67 (ddd, J = 7.8, 7.5, 1.5 Hz, 1H); 8.00-8.14 (m, 2H). ¹³C NMR (d₆-DMSO, 75.4 MHz) δ 20.5 (q); 118.6 (d); 123.3 (d); 125.2 (d); 125.9 (s); 131.9 (d); 132.5 (d); 133.8(s); 139.3 (s); 168.7 (s); 170.0 (s). MS (EI) 203 (M⁺, 5); 161 (100); 133 (46); 104 (42).

3-Acetoxy-4-trifluoromethylsulfonyloxyquinoline 9a

To a solution of **8b** (170 mg, 0.8 mmol) in dry CH₂Cl₂ (5 ml) cooled at 0 °C under N₂ were successively added DMAP (20 mg, 0.2 mmol), 2,6-lutidine (140 ml, 1.2 mmol) and Tf₂O (170 µl). The mixture was stirred for 2 h at 0 °C and for 1 h at rt. The organic solution was washed with H₂O, dried and evaporated to give a residue which was purified by column chromatography, elution with hexane/CH₂Cl₂ (70:30) affording **9a** (170 mg, 61%) as an oil. IR (film) 18(0 cm⁻¹. ¹H NMR (CDCl₃, 300 MHz) δ 2.45 (s, 3H); 7.70 (ddd, *J*= 8.2, 7.7, 1.2 Hz, 1H); 7.80 (ddd, *J*= 8.8, 7.7, 1.4 Hz, 1H); 8.00 (dd, *J*= 8.8, 1.2 Hz, 1H); 8.19 (dd, *J*= 8.2, 1.4 Hz, 1H); 8.92 (s, 1H). ¹³C NMR (CDCl₃, 75.4 MHz) δ 20.5 (q); 120.5 (d); 124.4 (q); 128.8 (d); 129.8 (d); 130.3 (d); 133.8 (s); 135.2 (s); 141.7 (s); 147.1 (d); 147.6 (s); 167.6 (s). MS (EI) 335 (M⁺, 7); 292 (36); 160 (100); 132 (53).

3-(2-Ethoxycarbonylethoxy)-4-trifluoromethylsulfonyloxyquinoline 9b

To a solution of **9a** (170 mg, 0.5 mmol) in dry DMF (3 ml) were successively added under N₂, Pd₂(dba)₃.CHCl₃ (52 mg, 0.05 mmol), Ph₃P (43 mg, 0.2 mmol), *i*-Pr₂NEt (260 ml, 1.5 mmol) and ethyl acrylate (160 ml, 0.8 mmol). The reaction mixture was stirred at rt for 24 h, Et₂O was added and the organic solution was washed with H₂O dried and evaporated. The residue was purified by column chromatography, elution with hexane/CH₂Cl₂ (70: 30) affording **9b** as an oil (20 mg, 10 %). IR (film) 1737 cm⁻¹. ¹H NMR (CDCl₃, 300 MHz) δ 1.24 (t, *J* = 7.2 Hz, 3H); 2.92 (t, *J* = 6.2 Hz, 2H); 4.17 (q, *J* = 7.2 Hz, 2H); 4.53 (t, *J* = 6.2 Hz, 2H); 7.40-7.52 (m, 2H); 7.76 (ddd, *J* = 8.0, 8.0, 1.6 Hz, 1H); 8.04 (s, 1H); 8.55 (dd, *J* = 8.0, 0.9 Hz, 1H). ¹³C NMR (CDCl₃, 75.4 MHz) δ 14.0 (q); 33.2 (t); 48.8 (t); 61.7 (t); 115.0 (d); 118.8 (q); 123.7 (s); 124.8 (d); 128.0 (d); 128.4 (s); 133.1 (d); 133.3 (s); 137.8 (d); 138.4 (s); 170.2 (s). MS (EI) 393 (M⁺, 9%); 260 (56); 232 (63); 146 (100). Found M⁺ 393.0492; C₁5H₁₄F₃NSO₆ requires *M* 393.0494.

3-Methoxy-4-trifluoromethylsulfonyloxyquinoline 11

To a solution of 10^7 (200 mg, 1.1 mmol) in CH₂Cl₂ (5 ml) cooled at 0 °C were successively added DMAP (30 mg, 0.2 mmol), 2,6-lutidine (185 ml, 1.6 mmol) and Tf₂O (250 ml, 1.5 mmol) and the mixture stirred 1 h at 0 °C and 1 h at rt. After this time, the organic solution was washed with H₂O, dried and evaporated. The residue was purified by column chromatography, elution with hexane/CH₂Cl₂ (80:20) giving 11 (200 mg, 57%) as an oil. IR (film) 1403, 1220 cm⁻¹. ¹H NMR (CDCl₃, 300 MHz) δ 4.00 (s, 3H); 7.50-7.65 (m, 3H); 7.75 (dd, J =

7.7, 1.9 Hz, 1H); 7.95 (dd, J = 8.1, 1.3 Hz, 1H). ¹³C NMR (CDCl₃, 75.4 MHz) δ 56.3 (q); 117.0 (d); 118.6 (q); 126.3 (d); 128.1 (2d); 128.6 (d); 129.5 (s); 139.8 (s); 144.4 (s); 145.2 (s). MS (EI) 307 (M⁺, 100); 174 (34); 159 (68); 146 (83). Found M⁺ 307.0114; C₁₁H₈F₃NSO₄ requires *M* 307.0126.

Ethyl 3-(3-methoxyquinolin-4-yl)propenoate 12

A mixture of 11 (150 mg, 0.5 mmol), ethyl acrylate (110 ml, 1 mmol), Pd(OAc)₂ (10 mg, 0.01 mmol), Bu4NC1 (140 mg, 1 mmol), NaHCO₃ (105 mg, 1.2 mmol) in dry DMF (3 ml) was stirred under N₂ for 24 h at 80 °C. To the cooled solution, Et₂O was added, solid was removed by filtration and the organic layer washed with H₂O, dried and evaporated to give 12 (122 mg, 95%), mp 112-115 °C (AcOEt). IR (CHCl₃) 1713 cm⁻¹. ¹H NMR (CDCl₃, 200 MHz) δ 1.35 (t, J = 6.8 Hz, 3H); 4.30 (q, J = 6.8 Hz, 4H); 7.24 (d, J = 15.6 Hz, 1H); 7.38 (s, 1H); 7.45-7.60 (m, 2H); 7.67 (dd, J = 7.8, 1.4 Hz, 1H); 8.00 (dd, J = 8.0, 1.0 Hz, 1H); 8.21 (d, J = 15.6 Hz, 1H). ¹³C NMR (CDCl₃, 50.3 MHz) δ 14.2 (q); 55.4 (q); 60.5 (t); 112.5 (d); 124.3 (d); 126.2 (d); 127.1 (d); 127.5 (d); 134.3 (s); 138.0 (d); 142.8 (s); 145.7 (s); 152.0 (s); 166.9 (s). MS (EI) 257 (M⁺, 91); 228 (20); 226 (20); 212 (100); 184 (97); 170 (65). Found M⁺ 257.1051; C₁₅H₁₅NO₃ requires M 257.1052.

3H-Pyrano[2,3-c]quinolin-3-one 7

A solution of 12 (50 mg, 0.2 mmol), AcOH (70 µl), Ac₂O (64 µl), and 48% HBr (2 ml) was refluxed during 24 h. The cooled solution was made basic with sat. aq. NaHCO₃ and organic material extracted into CH₂Cl₂. The organic layer was dried and evaporated to give 7 (25 mg, 60%), mp 192-194 "C (AcOEt). IR (CHCl₃) 1730 cm⁻¹. ¹H NMR (CDCl₃, 300 MHz) δ 6.80 (d, J = 9.7 Hz, 1H); 7.65 (ddd, J = 8.0, 7.5, 1.0 Hz, 1H); 7.76 (ddd, J = 8.8, 7.5, 1.4 Hz, 1H); 7.91 (dd, J = 8.0, 1.4 Hz, 1H); 8.03 (s, 1H); 8.05 (d, J = 9.7 Hz, 1H); 8.16 (dd, J = 8.8, 1.0 Hz, 1H). ¹³C NMR (CDCl₃, 75.4 MHz) δ 120.5 (d); 122.4 (d); 127.4 (d); 128.6 (d); 128.8 (s); 129.5 (2d); 139.1 (s); 144.7 (d); 145.9 (s); 146.9 (s); 159.3 (s). MS (EI) 197 (M⁺, 100); 169 (87); 141 (70). Found M⁺ 197.0478. C₁₂H₇NO₂ requires M 197.0477.

REFERENCES

- 1 For previous isolation work see citations given in reference 2.
- 2 Chen, C.-Y.; Chang, F.-R.; Wu, Y.-C, Tetrahedron Lett., 1997, 38, 6247-6248.
- 3 For recent work see Alvarez, M.; Ajana, A.; López-Calahorra, F.; Joule, J. A., J. Chem. Soc., Perkin Trans. 1, 1994, 917-919; Ajana, W.; López-Calahorra, F.; Joule, J. A.; Alvarez, M., Tetrahedron, 1997, 53, 341-356; Roberts, D.; Joule, J. A.; Bros, M. A.; Alvarez, M., J. Org. Chem., 1997, 62, 568-577.
- 4 Feliu, L.; Ajana, W.; Alvarez, M.; Joule, J. A., Tetrahedron, 1997, 53, 4511-4520.
- 5 Riegel, B.; Lappin, G. R.; Adelson, B. H.; Jackson, R. I.; Albisetti, C. J.; Dodson, R. M.; Baker, R.H., J. Am. Chem. Soc., 1946, 68, 1264-1266; de la Cruz, A.; Elguero, J.; Goya, P.; Martínez, A., Tetrahedron, 1992, 48, 6135-6150.
- 6 Evans, D. J.; Eastwood, F. W., Aust. J. Chem., 1974, 27, 537-542.
- 7 Miura, Y.; Takaku, S.; Nawata, Y.; Hamana, M., Heterocycles, 1991, 32, 1579-1586.
- 8 Shiao, M.-J.; Perng, C.-Y.; Shen, C.-C., J. Chin. Chem. Soc. 1991, 38, 47-50.