Intramolecular Staudinger Ligation towards Biaryl-Containing Lactams

Géraldine Masson,^a Tim den Hartog,^a Hans E. Schoemaker,^b Henk Hiemstra,^a Jan H. van Maarseveen^{*a}

- ^a Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Nieuwe Achtergracht 129, 1018 WS Amsterdam, The Netherlands
- ^b DSM Research, Life Science Products, PO Box 18, 6160 MD Geleen, The Netherlands Fax +31(020)5255670; E-mail: jvm@science.uva.nl

Received 23 December 2005

Abstract: Both 15- and 16-membered biaryl-type lactams were prepared in good yield using the intramolecular Staudinger ligation strategy.

Key words: biaryls, macrolactams, cyclizations, atropisomerism, ring contractions

Various natural and synthetic compounds based on a cyclic peptide scaffold with an endocyclic biaryl moiety have been shown to possess important bioactivities (e.g. biphenomycins A,B and RP-66453, Figure 1).¹ In these compounds rotation around the aryl–aryl bond is hindered due to ring strain, even in the absence of *ortho* substituents, causing atropisomerism. Consequently, these fascinating molecular architectures are attractive yet challenging synthetic targets.

Figure 1

Recently, we disclosed a new strategy for the synthesis of the otherwise difficult-to-prepare medium-sized lactams based on the intramolecular Staudinger ligation.² This method involves a Staudinger reaction of a *C*-terminal phosphinomethylene ester with an *N*-terminal azide resulting in an intermediate iminophosphorane, which undergoes an intramolecular ring-contracting $S \rightarrow N$ acyltransfer reaction, via a favored five-membered transition state (Scheme 1).³

The auxiliary residue is hydrolyzed in situ by the presence of a small amount of water in the reaction mixture providing the liberated lactam. We envisaged that this approach might be applicable to the construction of synthetically challenging biaryl-type macrolactams displaying atropisomerism as the only source of chirality. Herein, we

SYNLETT 2006, No. 6, pp 0865–0868 Advanced online publication: 14.03.2006 DOI: 10.1055/s-2006-939059; Art ID: G41205ST © Georg Thieme Verlag Stuttgart · New York

Scheme 1

present an efficient method for the synthesis of chiral macrocyclic lactams **I** containing a *meta–meta* connected biaryl moiety (Scheme 2). Retrosynthetic analysis of the target macrolactams shows that disconnection via the Staudinger-type macrolactamization can follow two possible pathways to give ω -azido phosphinothioesters **II** or **III** and that formation of the biaryl linkage via Suzuki coupling gives two appropriately functionalized aryls **IV** and **V** (Scheme 2).

Scheme 2

Our ultimate goal was to introduce an appropriate chiral phosphinothioester that would enable enantioselective lactamizations. In addition, we chose the highly nucleophilic bisalkylphosphine auxiliaries instead of the previously used bisarylphosphines.⁴ For this, we developed a convenient synthesis of the air-stable borane-protected phosphinothiol auxiliary **2** and its optically enriched analogue **3** (Scheme 3).

Scheme 3 Reagents and conditions: a) s-BuLi, THF,-78 °C, 3 h; b) S_8 , THF,-78 °C to r.t., 2 h; c) s-BuLi, (-)-sparteine, Et_2O ,-78 °C, 3 h; d) S_8 , THF, -20 °C to r.t., 2 h. The ee was determined by HPLC analysis using a Chiralcel OJ column and heptane-*i*-PrOH (95:5) as the eluent (UV detection at 210/240 nm).

tert-Butyl(dimethyl)phosphine borane (1)⁵ was deprotonated with *s*-BuLi (THF, -78 °C) and then trapped with S₈ (1.1 equiv, THF, -20 °C to r.t.) to provide 2 in 72% yield.^{6,7} The optically enriched analogue **3** was obtained by asymmetric deprotonation by *s*-BuLi (THF, -78 °C) of 1 in the presence of (–)-sparteine providing **3** in 59% yield and 92% ee.^{7–9}

The construction of the *C*-terminal phosphinoester and an *N*-terminal azide containing lactamization precursor is depicted in Scheme 5. The required biaryl frameworks were prepared using the Suzuki–Miyaura coupling as the key step (Scheme 4).¹⁰

The mono *ortho-* and unsubstituted biaryl compounds **6a** and **6b** were synthesized using classical Suzuki–Miyaura $[Pd(PPh_3)_4, aq Na_2CO_3, THF, reflux]$ conditions starting from arylboronic acid **4**¹¹ and aryl bromides **5a** and **5b** to give **6a** and **6b** in yields of 95% and 84%, respectively. To obtain the hindered *o,o*-disubstituted biaryl **6c** in good yield, S-Phos¹² was required as the ligand.

For the preparation of pathway A precursors **12a–d**, alcohols **6a–c** were converted into azides by mesylation followed by nucleophilic substitution with sodium azide (Scheme 5). TFA-mediated *tert*-butyl ester cleavage of **9a–c** resulted in acids **11a–d** that were coupled with the amino esters **10a** and **10b**. Ester hydrolysis was followed by introduction of the phosphinothiol auxiliary **2** to provide the precursors **12a–d**. To obtain pathway B precursors **15a–c**, the azides **9a** and **9b** were reduced to their amines using triphenylphosphine in THF–water and

acylated with the azido acids **13a** and **13b**,¹³ followed by liberation of the acids **14a–c** by *tert*-butyl ester cleavage and thioesterification with the borane-protected auxiliary **2** (Scheme 5).

Scheme 5 Reagents and conditions: a) MsCl, Et₃N, CH₂Cl₂, 0 °C to r.t., 1 h; b) NaN₃, DMF, overnight, r.t.; c) TFA–H₂O (7:3), r.t., 18 h; d) **10a** or **10b**, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC), DMAP (cat.), NaHCO₃, CH₂Cl₂, r.t., 18 h; e) 4 N NaOH, EtOH, r.t., 5–10 h; f) **2**, EDC, DMAP, CH₂Cl₂, r.t., 16 h; g) PPh₃, THF–H₂O (1:9), 70 °C, 4 h; h) **13a** or **13b**, EDC, DMAP (cat.), CH₂Cl₂, r.t., 18 h.

The intramolecular Staudinger reaction was initiated by liberation of the phosphane by decomplexation with DABCO (5 equiv) in THF at 70 °C (Table 1).^{14,15} Based on our preliminary investigation, we employed high-dilution conditions (10^{-3} M) .² Cyclization of **12a** gave the corresponding 16-membered lactam **17a** in an isolated yield of 67%.

Cyclization of the substituted precursor **15c** gave lactam **18** in 57% yield. On the other hand, formation of the more strained 15-membered lactam **17c** took two days to produce the product in a reasonable 40% isolated yield (Table 1).¹⁶ The *o,o*-dimethyl substituted biaryl lactam **17d** was isolated in 61% yield as a racemic mixture of stable atropenantiomers separable by chiral HPLC.¹⁷ The observation that **17a–c** are all achiral suggests that the

presence of two methyl groups *ortho* to the biaryl linkage is essential to obtain stable atropisomers. The degree of stability of the axial chirality of **17d** was studied by dynamic ¹H NMR spectroscopy. It was found that even at 150 °C (DMSO- d_6), no signals coalesced, demonstrating the high rotational barrier of the aryl–aryl single bond.¹⁸

We next focused our attention on atropenantioselective lactamization¹⁹ by using the enantiomerically enriched phosphine auxiliary, however, the cyclization of **12d** containing the optically enriched auxiliary **3** provided lactam **17d** with no detectable enantioselectivity. Most probably, no enantioselectivity was achieved because the chiral phosphine is too remote from the prochiral biaryl system to allow any stereocontrol during the macrolactamization.

Entry	Precursors	Product	Time (h)	Yield (%)
1	12a		18	67
2	15a	$M_2 \rightarrow M_2$	18	65
		17a		
		Me		
3	12b		18	72
4	15b	NH M2 NH	18	60
		17b		
5	15c		18	57
6	12c		48	40
7	12d	17c Me Me atropos HN 2 NH	18	61

In conclusion, the intramolecular Staudinger ligation strategy is a powerful method to ring-closed biaryl-type macrolactams. A 16-membered *o,o*-dimethyl substituted biaryl containing a medium-sized lactam has been prepared featuring axial chirality as the only asymmetric element. The same product was also prepared using an enantiomerically enriched P-chiral auxiliary but without any detectable asymmetric induction. Further studies to reach this ultimate goal are currently in progress.

Acknowledgment

G.M. gratefully acknowledges the European Community for a Marie Curie grant. Dr. A.L.L. Duchateau (DSM, Geleen) is thanked for determining the ee of the chiral phosphine.

References and Notes

- (a) Schmidt, U.; Meyer, R.; Leitenberger, V.; Griesser, H.; Lieberknecht, A. *Synthesis* 1992, 1025. (b) Schmidt, U.; Leitenberger, V.; Griesser, H.; Schmidt, J.; Meyer, R. *Synthesis* 1992, 1248. (c) Bois-Choussy, M.; Cristau, P.; Zhu, J. *Angew. Chem. Int. Ed.* 2003, *42*, 4238.
 (d) Krenitsky, P. J.; Boger, D. L. *Tetrahedron Lett.* 2003, *44*, 4019.
- (2) David, O.; Meester, W. J. N.; Bieräugel, H.; Schoemaker, H. E.; Hiemstra, H.; van Maarseveen, J. H. Angew. Chem. Int. Ed. 2003, 42, 4373.
- (3) (a) Köhn, M.; Breinbauer, R. Angew. Chem. Int. Ed. 2004, 43, 3106. (b) Lin, F. L.; Hoyt, H. M.; van Halbeek, H.; Bergman, R. G.; Bertozzi, C. R. J. Am. Chem. Soc. 2005, 127, 2686. (c) Soellner, M. B.; Nilsson, B. L.; Raines, R. T. J. Org. Chem. 2002, 67, 4993.
- (4) He, Y.; Hinklin, R. J.; Chang, J.; Kiessling, L. L. Org. Lett. 2004, 6, 4479.
- (5) Imamoto, T.; Watanabe, J.; Wada, Y.; Masuda, H.; Yamada, H.; Tsuruta, H.; Matsukawa, S.; Yamaguchi, K. J. Am. Chem. Soc. 1998, 120, 1635.
- (6) For a similar approach using phenyl disulfide for the introduction of sulfur, see: Sugama, H.; Saito, H.; Danjo, H.; Imamoto, T. Synthesis 2001, 2348.
- (7) To a cooled (-78 °C) solution of sparteine (0.70 mL, 3.04 mmol) in Et₂O (10 mL), s-BuLi (1.30 M in cyclohexane; 2.40 mL, 3.12 mmol) was added. After stirring for 15 min, dimethylphenylphosphine borane (366 mg, 2.77 mmol) was added via cannula as a solution in Et₂O (10 mL). After 3 h at -78 °C, the solution was slowly added to a suspension of sublimed sulfur (98 mg, 3.06 mmol) in THF (40 mL), and the reaction was warmed to r.t. The resulting mixture was stirred for 16 h at r.t., then 2 N HCl (20 mL) was added and the aqueous layer was extracted with EtOAc. The organic layer was washed with brine, dried over Na₂SO₄, and concentrated in vacuo. The crude residue was purified by flash chromatography (SiO₂; PE-EtOAc, 95:5 to 9:1) to afford **3** as a pasty white solid (268 mg, 59%). $[a]_{D}^{25}$ -8.9 (c 1.6, CHCl₃); 92% ee. ¹H NMR (400 MHz, CDCl₃): $\delta = 2.71$ (dd, J = 5.2, 14.0 Hz, 1 H), 2.52–2.43 (m, 1 H), 1.97–1.92 (m, 1 H), 1.29 (d, J = 10.4 Hz, 3 H), 1.27 (d, J = 13.6 Hz, 9 H), 0.39 (qd, J = 96.0, 13.0 Hz, 3 H). ¹³C NMR (100 MHz, $CDCl_3$): $\delta = 28.03$ (d, J = 31.2 Hz), 25.4 (d, J = 1.8 Hz), 15.39 (d, J = 26.9 Hz), 4.00 (d, J = 35.5 Hz). ³¹P NMR (162 MHz, CDCl₃): δ = 31.41 (q, *J* = 59.0 Hz).
- (8) Recrystallization to increase the ee was impossible because the product is a pasty solid.

- (9) The absolute configuration of **3** was determined by comparison with the known (*R*)-*tert*-butyl(hydroxymethyl)methylphosphine borane. The alcohol was converted to the thioacetate in two steps followed by acetyl group removal to give the chiral thiol, see: Nagata, K.; Matsukawa, S.; Imamoto, T. *J. Org. Chem.* **2000**, *65*, 4185.
- (10) (a) Suzuki, A. Acc. Chem. Res. 1982, 15, 178. (b) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.
- (11) The boronic acid component for the Suzuki coupling from **7** was prepared by lithium–halogen exchange with *n*-BuLi and treatment with triethyl borate.
- (12) Walker, S. D.; Barder, T. E.; Martinelli, J. R.; Buchwald, S. L. Angew. Chem. Int. Ed. 2004, 43, 1871.
- (13) ω-Azido acids were obtained from ω-amino acids by a diazotransfer reaction: Lundquist, J. T.; Pelletier, J. C. *Org. Lett.* **2001**, *3*, 781.
- (14) For an extensive review on applications of borane-protected phosphines see: Brunel, J. M.; Faure, B.; Maffei, M. Coord. Chem. Rev. 1998, 180, 665.
- (15) Intramolecular Staudinger Ligation Reaction: General Procedure

Precursor **12d** (132.0 mg, 0.24 mmol) and DABCO (110.0 mg, 0.98 mmol) was dissolved in THF (240 mL) and then heated at reflux. Upon completion of the reaction a sat. aq solution of NH_4Cl (excess) was added. The resulting mixture

was stirred for 1 h then the aqueous layer was extracted with EtOAc. The organic layer was washed with brine, dried over Na₂SO₄, and concentrated in vacuo. The residue was purified by flash chromatography (SiO₂; PE–EtOAc, 9:1 to EtOAc) to afford **17d** as a white solid (52 mg, 61%). ¹H NMR (400 MHz, MeOD): $\delta = 7.66$ (dd, J = 2.0, 8.0 Hz, 1 H), 7.47 (d, J = 2.0 Hz, 1 H), 7.37 (d, J = 7.6 Hz, 1 H), 7.25 (s, 1 H), 7.20–7.15 (m, 2 H), 4.74 (d, J = 14.4 Hz, 1 H), 3.94 (d, J = 14.4 Hz, 1 H), 3.71–3.78 (m, 1 H), 3.07–3.01 (m, 1 H), 2.30 (s, 3 H), 2.21 (s, 3 H), 2.27–1.99 (m, 2 H), 1.80–1.58 (m, 4 H), 1.57–1.39 (m, 2 H). ¹³C NMR (100 MHz, MeOD): $\delta = 175.9, 170.9, 143.1, 143.0, 140.8, 139.7, 135.7, 134.2, 133.9, 132.2, 131.6, 130.7, 128.2, 127.5, 43.8, 41.2, 37.3, 30.5, 29.1, 27.4, 30.0, 19.6.$

- (16) Attempts to produce **17c** via lactamization of the pentafluorophenyl ester analogue of **12c** using an aza-Wittig reaction failed.
- (17) The atropenantiomers were separated by analytical HPLC analysis using a chiral Daicel OD-H column with heptane– *i*-PrOH (98:2) as the eluent.
- (18) Eshdat, L.; Shabtai, E.; Saleh, S. A.; Sternfeld, T.; Saito, M.; Okamoto, Y.; Rabinovitz, M. J. Org. Chem. **1999**, 64, 353.
- (19) For the first example of atropenantioselective macrocyclizations see: Islas-Gonzalez, G.; Bois-Choussy, M.; Zhu, J. Org. Biomol. Chem. 2003, 1, 30.