

Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters 16 (2006) 3657-3662

Structure–activity relationships of 1,5-biaryl pyrroles as EP₁ receptor antagonists

Adrian Hall,* Stephen Atkinson, Susan H. Brown, Iain P. Chessell, Anita Chowdhury, Nicholas M. Clayton, Tanya Coleman,[†] Gerard M. P. Giblin, Robert J. Gleave,
Beverley Hammond, Mark P. Healy, Matthew R. Johnson, Anton D. Michel, Alan Naylor, Riccardo Novelli, David J. Spalding and Sac P. Tang

Neurology and Gastrointestinal Centre of Excellence for Drug Discovery, GlaxoSmithKline, New Frontiers Science Park, Third Avenue, Harlow, Essex CM19 5AW, UK

> Received 11 April 2006; accepted 23 April 2006 Available online 11 May 2006

Abstract—The preliminary SAR of a series of novel 1,5-biaryl pyrrole EP_1 receptor antagonists derived from compound 1 is described. Replacement of the benzyl group of 1 with isosteric groups was investigated. The most effective replacement was found to be the isobutyl group. The cyclopentylmethyl and cyclohexylmethyl groups were also effective benzyl replacements. The cyclohexylmethyl derivative 19 demonstrated the lowest metabolic clearance within this series. In addition, several high affinity substituted benzyl analogues were also identified. Compound 39 was found to have good bioavailability in rats and demonstrated efficacy in the established FCA preclinical model of inflammatory pain with a calculated ED_{50} of 9.2 mg/kg. © 2006 Elsevier Ltd. All rights reserved.

Prostaglandin E_2 (PGE₂) is a pro-inflammatory mediator¹ that exerts its physiological actions by activating four 7-transmembrane receptor subtypes, EP1-4.2 Studies with prostaglandin E synthase (PGES) knockout (KO) mice have shown that PGE₂ plays an important role in pain¹ and EP₁ receptor KO mice have implicated the EP_1 receptor subtype in the sensation of PGE_2 -mediated allodynia³ and inflammatory pain.⁴ In conjunction with this, EP_1 receptor antagonists have shown efficacy in preclinical models of postoperative pain,⁵ neuropathic pain⁶ and allodynia.⁷ There is also evidence to suggest that PGE_2 mediated pyrexia is controlled by the EP_1 receptor.⁸ Furthermore, a recent report described the efficacy of the AstraZeneca compound ZD6416 in a human model of visceral hypersensitivity.⁹ Thus, an EP₁ receptor antagonist has the potential to deliver efficacy in various pain states. By sparing the beneficial effects of PGE₂, at other EP receptors, and the synthesis of prostaglandin I_2 (PGI₂) and thromboxane A_2

(TxA₂),¹⁰ an improved side-effect profile over COX-2 inhibitors may be achieved.

Several EP₁ antagonists are known in the literature, such as ZD6416,¹¹ ONO-8713¹² and ONO-8711,¹³ SC-51322¹⁴ and analogues¹⁵ and the 2,3-biaryl thiophenes from Merck Frosst.¹⁶

We recently disclosed the structures of several novel EP_1 receptor antagonists, such as the pyrrole **1**.¹⁷

Herein we describe the initial structure–activity relationships (SAR) in this series.

Compound 1^{17} showed good in vitro activity at the EP₁ receptor, 8 nM in a [³H]PGE₂ binding assay in CHO cells and 0.7 nM in a functional assay (FLIPR) in CHO cells.^{17,18} It has also shown low intrinsic clearance in both rat and human liver microsomes (Fig. 1). However, the rat in vivo pharmacokinetic profile was not optimal. Thus, our goals were to explore the SAR of this template and to optimise EP₁ activity,whilst improving the in vivo efficacy in preclinical models of inflammatory pain.

Keywords: EP₁ antagonist; Pyrrole; Isostere; Pain; Established FCA. * Corresponding author. Tel.: +44 1279 643464; e-mail: adrian.2.hall@gsk.com

[†] Present address: AstraZeneca, Mereside, Alderley Park, Macclesfield, Cheshire SK11 4TG, UK.

⁰⁹⁶⁰⁻⁸⁹⁴X/\$ - see front matter @ 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2006.04.073

 EP_1 binding $pIC_{50} = 8.1$ EP_1 functional pKi = 9.15

rat CLi = 1.4 mL/min/g liver human CLi = 1.6 mL/min/g liver

rat pharmacokinetics CLb = 67 mL/ming/kg Vss = 3.0 L/kg $t_{1/2} = 0.5\text{h}$

Figure 1. Profile of lead compound 1.

One of the first areas we sought to investigate was the role of the chlorine atom, *para* to the benzyloxy group. Initial data suggested that the bromo analogue 2 had an improved in vivo DMPK profile relative to 1. Hence, we were interested in exploring whether replacement of the chlorine atom would improve EP1 receptor affinity, whilst simultaneously optimising the pharmacokinetic parameters of the series. Results show that the chlorine atom can be replaced by isosteric electron-withdrawing moieties such as Br and CF₃ and even the larger methyl sulfone group, compounds 2-4. Deletion of this electron-withdrawing moiety appeared to have little effect on activity, as evidenced by compound 5. However, replacement by aromatic groups such as phenyl or thiophenyl led to a marked decrease in activity, compounds 6 and 7. Table 1. Despite the fact that 5 was essentially equipotent with analogues 1-3, we chose the Cl, Br and CF₃ substituents for further exploration.

Next, we investigated substitution of the pyrrole ring. We had previously discovered that the methyl group on the pyrrole ring could be removed without effecting activity, compound 8.¹⁷ In this instance, replacement of the Me group by CF₃ led to a substantial decrease in activity, compounds 9 and 10, compared to the analogous methyl derivatives 14 and 15. This may be due to the increased steric nature of the CF₃ group relative to the Me group as it was found that the Me group could be replaced by a chlorine atom, compound 11, therefore implying that electron-withdrawing groups are tolerated in this position. The steric restrictions of this region of the molecule were further highlighted

Table 1. In vitro EP_1 binding data for compounds 1–7

Compound	Х	Y	Binding pIC ₅₀ ^a
1	Cl	Н	8.1 ± 0.4
2	Br	Н	8.1 ± 0.2
3	CF_3	Н	8.3 ± 0.1
4	SO ₂ Me	Н	7.6 ± 0.1
5	Н	Н	7.7 ± 0.3
6	Ph	Н	6.4 ± 0.5
7	Thiophen-3-yl	Н	6.2 ± 0.7

^a Mean of at least three experiments.

Table 2. In vitro binding data for compounds 8-15

Compound	Х	Y	Ζ	Binding pIC ₅₀ ^a
8	Cl	Н	Н	8.0 ± 0.1
9	Cl	4-F	CF_3	6.7 ± 0.1
10	Cl	2,4-DiF	CF_3	7.0 ± 0.1
11	Cl	Н	Cl	7.6 ± 0.1
12	Cl	Н	Et	7.0 ± 0.2
13	Br	Н	Et	7.1 ± 0.1
14	Cl	4-F	Me	8.2 ± 0.2
15	Cl	2,4-DiF	Me	8.4 ± 0.2

^a Mean of at least three experiments.

		н
Compound	Х	Binding pIC ₅₀ ^a
16	Cl	<6
17	Br	6.1 ± 0.2
18	Ph	<6

^a Mean of at least three experiments.

when the methyl group was replaced by an ethyl group, compounds **12** and **13**, which resulted in a considerable loss of activity, approximately 10-fold, relative to the corresponding methyl analogues (compounds **1** and **2**), Table 2.

Further substitution of the pyrrole ring by addition of a halogen atom or a phenyl group led to a marked decrease in EP_1 activity, compounds **16–18**, hence no further analogues were pursued in this series, Table 3.

We were interested in exploring the role of the benzyl group in binding to the EP_1 receptor and its potential in modulating the intrinsic clearance and CYP450 profile of compounds.

To this end, we synthesized a range of analogues where the benzyl group was replaced by potential non-aromatic isosteric groups, Table 4.

We were pleased to find that the benzyl group could be replaced by a cyclohexylmethyl group, compounds 19-21, with a modest decrease in activity (5- to 16-fold). Furthermore, the cyclohexyl ring could be replaced by a tetrahydropyran (22) ring without further affect on

Table 4. In vitro EP₁ binding data for compounds 19–29

Compound	Х	R	Binding pIC_{50}^{a}
19	Cl	CH ₂ Cyclohexyl	6.9 ± 0.5
20	Br	CH ₂ Cyclohexyl	7.4 ± 0.1
21	CF_3	CH ₂ Cyclohexyl	7.5 ± 0.2
22	Cl	CH ₂ tetrahydropyran-4-yl	7.4 ± 0.2
23	Cl	CH ₂ Cyclopentyl	7.6 ± 0.3
24	Br	CH ₂ Cyclopentyl	7.8 ± 0.3
25	Cl	CH ₂ tetrahydrofuran-2-yl	7.4 ± 0.2
26	Cl	<i>i</i> -Bu	8.3 ± 0.1
27	Br	<i>i</i> -Bu	8.3 ± 0.1
28	Br	(5-Methyl-3-isoxazolyl)	7.6 ± 0.1
29	Br	methyl (3,5-Dimethyl-4-isoxazolyl) methyl	6.7 ± 0.1

^a Mean of at least three experiments.

activity. Replacement of the benzyl group by the less bulky cyclopentylmethyl moiety yielded more promising analogues (23 and 24), with activity 2- to 3-fold lower than their benzyl analogues. Again, we found that an oxygen atom could be incorporated into the ring with minimal detriment to binding affinity, compound 25. The most potent analogues were obtained when the benzyl group was replaced by an iso-butyl group, (26 and 27), as these compounds were equipotent with the original benzyl analogues. These results suggest that the benzyl group forms a lipophilic interaction with the receptor, but that the environment may be limited sterically, as the bulky cyclohexylmethyl group has lower activity than the sterically less demanding cyclopentylmethyl group and the smaller iso-butyl group. These results demonstrate the utility of the cyclohexylmethyl, cyclopentylmethyl and iso-butyl groups as isosteres for the benzyl group in this instance.

We also investigated replacement of the phenyl moiety of the benzyl group by aromatic heterocycles such as isoxazole, (**28** and **29**). Results show that **28** was well tolerated indicating that the 5-methylisoxazol-3-yl group is a good isostere for a phenyl ring in this instance.

Synthesis of substituted benzyl analogues was undertaken in the bromo series as compound 2 had previously demonstrated lower metabolic clearance than 1 in rat in vivo study, Table 5.

The addition of both electron-donating and electronwithdrawing substituents was explored. In general, electron-withdrawing groups were well tolerated. Addition of a halogen atom to the 2-position, **38**, the 4-position, **47**, and the 2,4-position, **48**, was well tolerated. The most preferred substitution patterns were the 2,6- and the 2,4,6-positions. The 2,6-difluoro derivative **43** showed excellent activity with an IC₅₀ of 1 nM making it the most potent compound in this series. Table 5. In vitro EP1 binding data for compounds 2 and 30-53

Compound	Y	Binding pIC ₅₀ ^a
2	Н	8.0 ± 0.2
30	2-Me	7.7 ± 0.2
31	4-Me	8.6 ± 0.1
32	3-CF ₃	6.6 ± 0.1
33	$4-CF_3$	7.4 ± 0.1
34	3-OMe	7.3 ± 0.0
35	4-OMe	7.3 ± 0.3
36	3-OCHF ₂	7.1 ± 0.1
37	4-OCF ₃	7.8 ± 0.0
38	2-F	8.5 ± 0.1
39	4-F	8.2 ± 0.1
40	3,4-DiF	8.3 ± 0.2
41	2,5-DiF	8.1 ± 0.1
42	2,3-DiF	8.2 ± 0.1
43	2,6-DiF	9.0 ± 0.3
44	2,4,6-TriF	8.8 ± 0.5
45	2-Cl	7.9 ± 0.2
46	3-Cl	8.0 ± 0.2
47	4-Cl	8.0 ± 0.2
48	2,4-DiCl	8.3 ± 0.2
49	3,4-DiCl	7.0 ± 0.3
50	2-Cl, 4-F	7.8 ± 0.1
51	2-Cl, 6-F	7.9 ± 0.3
52	2-F, 4-CF ₃	7.9 ± 0.1
53	2-F, 6-CF ₃	7.0 ± 0.2

^a Mean of at least three experiments.

The pharmacokinetic parameters of several compounds were assessed in vivo in a rat iv pharmacokinetic screen. Results are summarized in Table 6.

The data in Table 6 show that substitution of the benzyl group could be used to modulate the rate of clearance of the compounds although the cyclohexylmethyl derivative (19) showed the lowest blood clearance. Derivative **39** also showed similar metabolic stability to analogue **2** and displayed a good CYP450 profile (IC₅₀ values all $\ge 17 \mu$ M, except the 2C9 isoform which displayed an IC₅₀ of 3.9 μ M). When administered orally to rats in 1% (w/v) methylcellulose aqueous formulation at a dose of 3 mg/kg, **39** was found to have 44% bioavailability. Due to these encouraging results, **39** was tested in Freund's complete adjuvant (FCA) model of inflammatory pain.¹⁹ A dose-related effect was observed, 1 h postdose, at doses of 3, 10 and 30 mg/kg with a calculated ED₅₀ of 9.2 mg/kg, Figure 2.²⁰

Compounds were synthesized as described in Schemes 1–5. Full experimental details and characterizing data for key compounds have been described.¹⁸

The methyl-pyrrole derivatives were prepared as outlined in Scheme 1.²¹ Briefly, chlorosalicylaldehydes were

Table 6. In vivo pharmacokinetic data for selected compounds^a

Compound	CLb (mL/min/kg)	Vss (L/kg)	$t_{1/2}$ (h)
1	67	3.0	0.5
2	41	0.6	0.3
14	48	0.9	nd
15	62	0.9	nd
17	54	1.0	0.3
19	28	0.5	0.4
39	42	0.7	nd
47	51	0.8	0.2
50	48	0.8	0.3

^a Compounds administered intravenously in 0.9% and (w/v) saline solution containing 2% (v/v) DMSO and 10% (w/v) hydroxypropylβ-cyclodextrin at a dose of 1 mg/kg.

Figure 2. Dose-response graph for compound 39 in FCA.

Scheme 1. Reagents and conditions: (a) MVK, TEA, 3-ethyl-5-(2-hydroxyethyl)-4-methyl-thiazolium bromide, reflux; (b) ethyl 3-aminobenzoate, PhMe, pTSA, reflux; (c) ethyl 3-aminobenzoate, reacti-vial, 145 °C; (d) 2 M NaOH, EtOH, reflux; (e) 2 M NaOH, EtOH, reacti-vial, 100–200 °C.

alkylated with benzyl bromide (K₂CO₃, DMF, 60 °C) to give 2-benzyloxy-5-chlorobenzaldehyde **54a–d**. Implementation of the Stetter reaction²² with methylvinylketone (MVK) gave the corresponding 1,4-diketones **55a–d** which underwent Paal–Knorr condensation²³ with ethyl-3-aminobenzoate to give the requisite pyrroles **1–3** and **5**, upon basic hydrolysis of the esters, Scheme 1 and Table 7. The ethyl ester of Br-derivative

Table 7. Yields for the synthesis of compounds 1-3 and 5

Compound	Х	Yields
1	Cl	81%, ^a 60%, ^b 100% ^d
2	Br	78%, ^a 55%, ^b 100% ^d
3	CF_3	32%, ^a 56%, ^c 96% ^e
5	Н	72%, ^a 88%, ^b 91% ^e

^a Yield for conditions a.

^b Yield for conditions b.

^c Yield for conditions c.

^d Yield for conditions d.

^e Yield for conditions e.

Scheme 2. Reagents and conditions: (a) 3,4-dihydro-2*H*-pyran, DCM, HCl in dioxane, 78%; (b) *n*-BuLi, TMEDA, $-15 \,^{\circ}$ C then DMF, $-15 \,^{\circ}$ C to rt, then aq HCl, 75%; (c) HMTA, TFA, 100 $^{\circ}$ C; (d) BnBr, K₂CO₃, DMF, 60 $^{\circ}$ C; (e) PMBCl, K₂CO₃, DMF, 70 $^{\circ}$ C.

Table 8. Yields for the synthesis of compounds 54c and 58

Compound	Х	Yields
54c	CF ₃	78%, ^a 75%, ^b 19% ^d
58	SO ₂ Me	30%, ^c 100% ^e

^a Yield for conditions a.

^b Yield for conditions b.

^c Yield for conditions c.

^d Yield for conditions d.

^e Yield for conditions e.

Scheme 3. Reagents and conditions: (a) DCM, SOCl₂, reflux; (b) 60, THF, -60 °C to rt, 65%; (c) ethyl 3-aminobenzoate, NMP, pTSA, 150 °C, microwave 10 min, 50%; (d) 2M NaOH, EtOH, 100 °C, microwave 2 min, 100%; (e) NCS, THF, 100%.

2 underwent Suzuki reaction with phenylboronic and thiophene-3-boronic acid to give derivatives 6 and 7, respectively, under standard conditions (PhMe–EtOH, Pd(PPh₃)₄, K_2CO_3 , reflux). The ethyl pyrrole derivatives 12 and 13 were prepared in an analogous fashion to the corresponding methyl derivatives 1 and 2 using ethylvinylketone (EVK).

Scheme 4. Reagents and conditions: (a) DCM, SOCl₂, reflux; (b) 57, THF, -60 °C to rt; (c) ethyl 3-aminobenzoate, NMP, pTSA, 150 °C, microwave 12 min, 92%; (d) ICF₃, 30% H₂O₂, FeSO₄·7H₂O, DMSO, 43%; (e) NaSMe, DMF, 100 °C, 4h; (f) 4-fluorobenzyl bromide, KI, K₂CO₃, MeOH, 60 °C; (g) 2,4-difluorobenzyl bromide, KI, K₂CO₃, MeOH, 60 °C.

The ester of compound 1 could be chlorinated or brominated with NCS or NBS to yield 16 and 17, respectively, upon saponification. Suzuki reaction of 17 with phenylboronic acid, under standard conditions, furnished 18.

2-Benzyloxy-5-trifluoromethylbenzaldehyde **57a** was prepared from 4-trifluoromethylphenol **56a** as described by Schäfer.²⁴ Alkylation under standard conditions furnished **54c**, Scheme 2. 2-*para*-Methoxybenzyl-5-methylsulfoxidebenzaldehyde was prepared from 4-(methylsulfonyl)-phenol **56b** by Duff reaction²⁵ with hexamethylenetetramine (HMTA) to give salicylaldehyde derivative **57b** which was alkylated with *para*methoxybenzyl chloride to give **58** as illustrated in Scheme 2 and Table 8.

The des-methyl pyrrole **8** was prepared as outlined in Scheme $3.^{26}$ 2-Benzyloxy-5-chlorobenzoic acid **59** was converted to the corresponding acid chloride and reacted with the Grignard reagent **60**²⁶ to give the protected acetal **61**. Condensation with ethyl 3-aminobenzoate led directly to **62** which underwent base-mediated ester hydrolysis to give **8**, Scheme 3.

The Cl-pyrrole 11 was prepared by chlorination of 62 with NCS in THF followed by ester hydrolysis, Scheme 3.

The CF₃ pyrrole derivatives **9** and **10** were prepared as described in Scheme 4. 5-Chloro-2-methoxybenzoic acid **63** was converted to the corresponding acid chloride and reacted with Grignard reagent **60** then ethyl 3-aminobenzoate to give pyrrole **64**. The CF₃ group was installed by reaction with CF₃I in the presence of FeSO₄·7H₂O and H₂O₂ in DMSO.²¹ Simultaneous deprotection of the methyl ether and ethyl ester was achieved by reaction with sodium thiomethoxide. Selective alkylation of the phenol, in the presence of the carboxylic acid, was achieved by reaction with the requisite benzyl bromide derivative in methanol with KI and K₂CO₃ as base, Scheme 4.

The analogues described in Tables 4 and 5 were prepared as detailed for the CF_{3} - and Br-derivatives in Scheme 5. The requisite salicylaldehyde derivatives **65a** and **57a** were protected as their *para*-methoxybenzyl derivatives, then subjected to the Stetter reaction²² to give the analogous 1,4-diketones. Refluxing in toluene with pTSA followed by addition of ethyl 3-aminobenzoate and further heating effected a one-pot deprotection of the PMB ether and pyrrole formation to give **66a**

Scheme 5. Reagents and conditions: (a) PMBCl, K_2CO_3 , DMF, 60 °C; (b) MVK, TEA, 3-ethyl-5-(2-hydroxyethyl)-4-methyl-thiazolium bromide, reflux; (c) PhMe, pTSA, reflux 4–6 h then ethyl 3-aminobenzoate, reflux, 53% (X = Br), 74% (X = SO_2Me); (d) substituted benzyl bromide derivative, alkyl halaide or alkyl tosylate, K_2CO_3 , DMF, 60 °C; (e) 2 M NaOH, EtOH, reflux or 2 M NaOH, EtOH, 100 °C, microwave 2 min or 2 M NaOH, EtOH, reacti-vial, 100–200 °C.

and **b**. Sequential alkylation and ester hydrolysis furnished the desired compounds, Scheme 5.

In summary we have described the SAR of a range of novel pyrrole EP_1 receptor antagonists. The most potent analogue **43** displayed an IC₅₀ of 1 nM. We have also shown that the Me group on the pyrrole ring could be effectively replaced by a Cl-atom but not a CF₃ group. In addition, we have described several isosteric replacements for the benzyl group of **1** and have shown that replacement of this benzyl group by a cyclohexylmethyl group, to give **19**, resulted in lower metabolic clearance. Finally, compound **39** showed good bioavailability in rats and efficacy in a preclinical model of inflammatory pain.

Acknowledgments

The authors thank Dr. Iain McLay for informative discussions and computational chemistry input into the analysis of benzyl analogues. We also thank Dr. Frank King for insightful suggestions during the course of this work.

References and notes

 (a) Murakami, M.; Nakatani, Y.; Tanioka, T.; Kudo, I. *Prostaglandins Other Lipid Mediat.* 2002, 68–69, 383; (b) Claveau, D.; Sirinyan, M.; Guay, J.; Gordon, R.; Chan, C.-C.; Bureau, Y.; Riendeau, D.; Mancini, J. A. *J. Immunol.* 2003, 170, 4738; (c) Trebino, C. E.; Stock, J. L.; Gibbons, C. P.; Naiman, B. M.; Wachtmann, T. S.; Umland, J. P.; Pandher, K.; Lapointe, J.-M.; Saha, S.; Roach, M. L.; Carter, D.; Thomas, N. A.; Durtschi, B. A.; McNeish, J. D.; Hambor, J. E.; Jakobsson, P.-J.; Carty, T. J.; Perez, J. R.; Audoly, L. P. *Proc. Natl. Acad.* Sci. U.S.A. 2003, 100 15, 9044; (d) Kamei, D.; Yamakawa, K.; Takegoshi, Y.; Mikami-Nakanishi, M.; Nakatani, Y.; Ohishi, S.; Yasui, H.; Azuma, Y.; Hirasawa, N.; Ohuchi, K.; Kawaguchi, H.; Ishikawa, Y.; Ishii, T.; Uematsu, S.; Akira, S.; Murakami, M.; Kudo, I. J. Biol. Chem. 2004, 27, 33684; (e) Mabuchi, T.; Kojima, H.; Abe, T.; Takagi, K.; Sakurai, M.; Ohmiya, Y.; Uematsu, S.; Akira, S.; Watanabe, K.; Ito, S. NeuroReports 2004, 1, 1395.

- (a) Coleman, R. A.; Smith, W. L.; Narumiya, S. *Pharmacol. Rev.* **1994**, *4*, 205; (b) Breyer, R. M.; Bagdassarian, C. K.; Myers, S. A.; Breyer, M. D. *Annu. Rev. Pharmacol. Toxicol.* **2001**, *41*, 661; (c) Narumiya, S.; Sugimoto, Y.; Ushikubi, F. *Physiol. Rev.* **1999**, *79*, 1193; (d) Coleman, R. A.; Kennedy, I.; Humphrey, P. P. A.; Bunce, K.; Lumley, P. In *Comprehensive medicinal chemistry*; Pergamon: Oxford, UK, 1990; Vol. 3, p 643.
- (a) Minami, T.; Nakano, H.; Kobayashi, T.; Sugimoto, Y.; Ushikubi, F.; Ichikawa, A.; Narumiya, S.; Ito, S. *Br. J. Pharmacol.* 2001, *133*, 438; (b) Mebane, H.; Turnbach, M. E.; Randich, A. *J. Pain* 2003, *4*, 392.
- Stock, J. L.; Shinjo, K.; Burkhardt, J.; Roach, M.; Taniguchi, K.; Ishikawa, T.; Kim, H.-S.; Flannery, P. J.; Coffman, T. M.; McNeish, J. D.; Audoly, L. P. J. Clin. Invest. 2001, 107, 325.
- (a) Omote, K.; Kawamata, T.; Nakayama, Y.; Kawamata, M.; Hazama, K.; Namiki, A. Anesth. Analg. 2001, 92, 233;
 (b) Omote, K.; Yamamoto, H.; Kawamata, T.; Nakayama, Y.; Namiki, A. Anesth. Analg. 2002, 95, 1708.
- Kawahara, H.; Sakamoto, T.; Takeda, S.; Onodera, H.; Imaki, J.; Ogawa, R. Anesth. Analg. 2001, 93, 1012.
- Maruyama, T.; Koketsu, M.; Yamamoto, H.; Yamamoto, K.; Yamamoto, L. T.; Hayashida, K-i.; Ohuchida, S.; Kondo, K. *Prostaglandins Other Lipid Mediat.* 1999, 59, 217.
- (a) Oka, T.; Oka, K.; Saper, C. B. Brain Res. 2003, 968, 256; (b) Oka, T. Front. Biosci. 2004, 9, 3046; (c) Oka, K.; Oka, T.; Hori, T. Brain Res. 1997, 767, 92; (d) Oka, T.; Hori, T. Am. J. Physiol. 1994, 267, R289; (e) Oka, T.; Oka, K.; Kobayashi, T.; Sugimoto, Y.; Ichikawa, A.; Ushikubi, F.; Narumiya, S.; Saper, C. B. J. Physiol. 2003, 55, 945.
- Sarkar, S.; Hobson, A. R.; Hughes, A.; Growcott, J.; Woolf, C. J.; Thompson, D. G.; Aziz, Q. *Gastroenterology* 2003, 124, 18.
- deLeval, X.; Hanson, J.; David, J.-L.; Masereel, B.; Pirotte, B.; Dogné, J.-M. Curr. Med. Chem. 2004, 11, 1243.
- 11. (a) Anon *Expert Opin. Ther. Patents* **2004**, *1*, 435; (b) Breault, G.A. WO9700863A1, 1997.
- Watanabe, K.; Kawamori, T.; Nakatsugi, S.; Ohta, T.; Ohuchida, S.; Yamamoto, H.; Maruyama, T.; Kondo, K.; Narumiya, S.; Sugimura, T.; Wakabayashi, K. *Cancer Lett.* 2000, 156, 57.

- Kawamori, T.; Uchiya, N.; Nakatsugi, S.; Watanabe, K.; Ohuchida, S.; Yamamoto, H.; Maruyama, T.; Kondo, K.; Sugimura, T.; Wakabayashi, K. *Carcinogenesis* 2001, 2, 2001.
- Hallinan, E. A.; Stapelfeld, A.; Savage, M. A.; Reichman, M. Bioorg. Med. Chem. Lett. 1994, 4, 509.
- Hallinan, E. A.; Hagen, T. J.; Tsymbalov, S.; Husa, R. K.; Lee, A. C.; Stapelfeld, A.; Savage, M. A. J. Med. Chem. 1996, 39, 609.
- Ducharme, Y.; Blouin, M.; Carrière, M.-C.; Chateauneuf, A.; Côté, B.; Denis, D.; Frenette, R.; Greig, G.; Kargman, S.; Lamontagne, S.; Martins, E.; Nantel, F.; O'Neill, G.; Sawyer, N.; Metters, K. M.; Friesen, R. W. *Bioorg. Med. Chem. Lett.* 2005, 15, 1155.
- Hall, A.; Bit, R. A.; Brown, S. H.; Chaignot, H. M.; Chessell, I. P.; Coleman, T.; Giblin, G. M. P.; Hurst, D. N.; Kilford, I. R.; Lewell, X. Q.; Michel, A. D.; Mohamed, S.; Naylor, A.; Novelli, R.; Skinner, L.; Spalding, D. J.; Tang, S. P.; Wilson, R. J. *Bioorg. Med. Chem. Lett.* 2006, 16, 2666.
- (a) Giblin, G.M.P.; Hall, A.; Healy, M.P.; Lewell, X.Q.; Miller, N.D.; Novelli, R. WO2003/101959A1; (b) Giblin, G.M.P.; Hall, A.; Healy, M.P.; Lewell, X.Q.; Miller, N.D.; Novelli, R.; King, F.D.; Naylor, A. WO2005/054191A1.
- (a) Iadarola, M. J.; Douglass, J.; Civelli, O.; Naranjo, J. R. Brain Res. 1988, 455, 205; (b) Hay, C. H.; Trevethick, M. A.; Wheeldon, A.; Browers, J. S.; De Belleroche, J. S. Neuroscience 1997, 7, 843.
- 20. Clayton, N. M.; Oakley, I.; Thompson, S.; Wheeldon, A.; Sargent, B.; Bountra, C. Br. J. Pharmacol. 1997, 75P, Established inflammatory hypersensitivity to pain was induced in groups of 7 rats by injection of 100 ul of Freund's complete adjuvant (FCA; 1 mg/ml Mycobacterium tuberculosis) intraplantar into the left hindpaw. Compound 39 (3, 10 and 30 mg/kg po) or vehicle (2 drops 2N NaOH in 1% aqueous methylcellulose) was administered 23 h post-FCA, with change in weightbearing (hypersensitivity to pain) on the inflamed paw assessed 1 h postdose.
- Khanna, I. K.; Weier, R. M.; Yu, Y.; Collins, P. W.; Miyashiro, J. M.; Koboldt, C. M.; Veenhuizen, A. W.; Currie, J. L.; Seibert, K.; Isakson, P. C. J. Med. Chem. 1997, 40, 1619.
- 22. Stetter, H. Angew. Chem., Int. Ed. Engl. 1976, 1, 639.
- (a) Paal, C. Ber. 1885, 18, 367; (b) Knorr, L. Ber. 1885, 18, 299.
- 24. Geneste, H.; Schäfer, B. Synthesis 2001, 2259.
- (a) Duff, J. C.; Bills, E. J. J. Chem. Soc. 1932, 1987; (b) Duff, J. C.; Bills, E. J. J. Chem. Soc. 1934, 1941; (c) Duff, J. C.; Bills, E. J. J. Chem. Soc. 1941, 547; (d) Duff, J. C.; Bills, E. J. J. Chem. Soc. 1945, 276.
- Mach, R. H.; Huang, Y.; Freeman, R. A.; Wu, L.; Blair, S.; Luedtke, R. *Bioorg. Med. Chem.* 2003, 11, 225.