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Abstract: The phosphine-free ruthenium complex containing chi-
ral N-(p-toluenesulfonyl)-1,2-diphenylethylenediamine (TsDPEN)
showed excellent stereoselectivity in the tandem asymmetric reduc-
tion of 2-(aroylmethyl)quinolines. The reaction involves transfer
hydrogenation of aromatic ketones and hydrogenation of quino-
lines, giving 1,2,3,4-tetrahydroquinoline derivatives with up to 99%
ee and 95:5 dr.
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Asymmetric hydrogenation of heteroaromatic compounds
to give chiral heterocycles using inexpensive molecular
hydrogen and a small amount of chiral transition-metal
catalyst represents one of the most straightforward, effi-
cient, and atom-economic methods available.1 Represen-
tative examples including hydrogenation of quinolines,2–4

indoles,5a,b pyrroles,5c furans,5d pyridines,5e isoquino-
lines,5f and quinoxalines5g,h have been reported. Among
them, the Ir-catalyzed asymmetric hydrogenation of quin-
oline derivatives has attracted attention since the pioneer-
ing work reported by Zhou and co-workers.1b,2 To date, a
number of iridium complexes containing chiral diphos-
phine, diphosphinite or monophosphine ligands, or P,N
ligands have been found to be effective in the hydrogena-
tion of 2-substituted quinoline derivatives.1b,2,3 Most re-
cently, we demonstrated that the phosphine-free, chiral
cationic Ru(OTf)(TsDPEN)(h6-cymene) complex was an
effective catalyst for the asymmetric hydrogenation of
quinolines in ionic liquid or under solvent-free conditions,
providing both excellent enantioselectivity and reactivi-
ty.4

2-(Aroylmethyl)quinolines contain both C=N and C=O
functional groups and present ketoimine and enaminone
tautomers in solution.6 The selective and/or full asymmet-
ric hydrogenation of both functional groups can provide
new kinds of enantiomerically pure quinoline and 1,2,3,4-
tetrahydroquinoline derivatives. Most recently, Zhou and
co-workers first reported the selective asymmetric hydro-
genation of the C=N bond in a range of 2-(aroylmeth-
yl)quinolines using [Ir(cod)Cl]2/MeO-BIPHEP/I2 as
catalyst with high enantioselectivity (Scheme 1, equation

1).3b Herein, we wish to report our preliminary results for
the selective asymmetric transfer hydrogenation of the
C=O bond (Scheme 1, equation 2), tandem reductions in-
cluding asymmetric transfer hydrogenation (ATH) of the
C=O bond, and asymmetric hydrogenation (AH) of the
C=N bond (Scheme 1, equation 3) of a range of 2-(aroyl-
methyl)quinolines by using phosphine-free Ru-TsDPEN
catalyst.7

Scheme 1 Asymmetric reduction of 2-(aroylmethyl)quinolines

Scheme 2 Asymmetric hydrogenation of 2-(benzoylmethyl)quino-
line catalyzed by (R,R)-1a
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In our initial exploratory studies, Ru-TsDPEN (R,R)-1a
was used as catalyst in the asymmetric hydrogenation of
2-(benzoylmethyl)quinolines (2a), because this catalyst
has proven to be effective in the hydrogenation of both ar-
omatic ketones7b,c and quinolines.4 Although the expected
chiral product, 2-(1,2,3,4-tetrahydroquinolin-2-yl)-1-phe-
nylethanol, was observed in high stereoselectivity (99%
ee and 76:24 dr), the major product was found to be the
enamine (Z)-2-(3,4-dihydroquinolin-2(1H)-ylidene)-1-
phenylethanone (Scheme 2). In contrast to the Ir catalyst,8

the Ru catalyst was found to be inactive in the hydrogena-
tion of this enamine. After testing different reaction con-
ditions, the yield of the chiral product was less than 40%,
which was probably due to the existence of ketoimine and
enaminone tautomers.

Considering the Ru-TsDPEN complexes to be powerful
catalysts for ATH of aromatic ketones,9 we then investi-
gated the selective ATH of the C=O bond of 2-(aroylme-
thyl)quinolines. Chiral alcohols containing the quinoline
unit are important chiral building blocks in organic syn-
thesis and chiral drug production, for example, synthesis
of the LTD4 antagonist L-708,738 at Merck.10 Firstly,
ATH of 2a was performed in the presence of 1.0 mol%
(R,R)-1b by using methanol as both hydrogen source and
solvent at room temperature for four hours. To our de-
light, the chiral alcohol 3a was obtained as the sole prod-
uct with 94% ee (Table 1, entry 1), suggesting that ATH
of quinoline could not occur.11 After screening a range of
alcoholic solvents, ethanol was found to be the best choice
for this reaction in terms of both enantioselectivity and re-
activity (entries 1–4). Notably, complete conversion and

Table 1 Asymmetric Transfer Hydrogenation (ATH) of 2-(Aroylmethyl)quinolinesa

Entry R, Ar (Substrate) Solvent Yield (%)b ee (%) (Config.)c

1 H, Ph (2a) MeOH 35 94 (+)

2 H, Ph (2a) EtOH 38 97 (+)

3 H, Ph (2a) i-PrOH 35 87 (+)

4 H, Ph (2a) n-BuOH 17 91 (+)

5 H, Ph (2a) EtOH 96 97 (+)

6 H, o-MeOC6H4 (2b) EtOH 91 67 (+)

7d H, o-MeC6H4 (2c) EtOH 90 84 (+)

8 H, o-FC6H4 (2d) EtOH 87 73 (+)

9 H, m-MeOC6H4 (2e) EtOH 94 99 (+)

10 H, m-MeC6H4 (2f) EtOH 95 90 (+)

11 H, m-FC6H4 (2g) EtOH 90 89 (+)

12 H, p-MeOC6H4 (2h) EtOH 96 90 (+)

13 H, p-MeC6H4 (2i) EtOH 97 91 (+)

14 H, p-FC6H4 (2j) EtOH 84 89 (+)

15 MeO, Ph (2k) EtOH 97 87 (+)

16 Me, Ph (2l) EtOH 95 93 (+)

17 F, Ph (2m) EtOH 89 85 (+)

a Reaction conditions: substrate (0.1 mmol), EtOH (1 mL), (R,R)-1b (1 mol%), 25 °C, 24 h, except for entries 1–4 (4 h).
b Isolated yields, except for entries 1–4 (conversion of 2a).
c The ee values of the major isomer were determined by HPLC analysis with a chiral column (see the Supporting Information).
d With 2 mol% (R,R)-1b.
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similar enantioselectivity was observed upon prolonged
reaction time (entry 5).

Under the optimal reaction conditions, ATH of a range of
2-(aroylmethyl)quinolines 2a–m were then examined,
and good to excellent enantioselectivities (67–99% ee)
were obtained. It was found that both steric and electronic
properties of the substituents on the phenyl ring of the
substrates have a clear impact on enantioselectivity and
reactivity (Table 1, entries 5–17). Introduction of a sub-
stituent into the ortho position of the phenyl ring of the
aryl ketones led to a lower enantioselectivity (entries 6–
8). ATH of 2c, bearing an o-methyl group on the phenyl
ring, required 2.0 mol% catalyst to achieve complete con-
version (entry 7). Substrates bearing a fluorine substituent
also exhibited low reactivity and/or enantioselectivity
(entries 8, 11, 14 and 17). The highest enantioselectivity
was observed in the ATH of 2e bearing an m-methoxy
group on the phenyl ring (entry 9).

Having achieved efficient ATH of 2-(aroylmethyl)quino-
lines, we further investigated AH of the reduced chiral
quinoline by using 3a as a standard substrate. Hydrogena-
tion was carried out in ethanol with 1.0 mol% (R,R)-1a.
The reaction occurred smoothly at room temperature un-
der 50 atm H2 in 8 h, providing 1,2,3,4-tetrahydroquino-
line derivative 4a with excellent enantioselectivity (>99%

ee). On the basis of this exciting result, and on the fact that
(R,R)-1a can be generated in situ from the reaction of
(R,R)-1b with one equivalent TfOH,7b we reasoned that
sequential ATH of a ketone and AH of quinoline could be
carried out in a one-pot manner. We then conducted the
tandem reductions using 2a as a standard substrate. After
the reaction was carried out in ethanol with 1.0 mol%
(R,R)-1b in 24 h, 1.0 mol% TfOH was added into the re-
action mixture under nitrogen atmosphere. The autoclave
was then pressurized to 50 atm with hydrogen and stirred
at room temperature in 12 h. Gratifyingly, complete con-
version was observed, and 4a was obtained as the sole
product with excellent stereoselectivity (>99% ee, >95:5
dr; Table 2, entry 1).

Finally, the scope of the reaction with 2-(aroylmeth-
yl)quinolines was briefly investigated (Table 2). In all
cases, the tandem reactions proceeded smoothly in high
yields and with excellent enantioselectivity (>99%) and
diastereoselectivity (88:12 to >95:5). Introducing a sub-
stituent into the ortho position of the phenyl ring of aryl
ketones led to relatively low yields and diastereoselectiv-
ities (entries 2–4). Substrates bearing fluorine substituents
also showed low reactivity.

In conclusion, we have successfully developed a selective
asymmetric transfer hydrogenation of the C=O bond of

Table 2 Asymmetric Tandem Reduction (ATH/AH) of 2-(Arocylmethyl)quinolinesa

Entry R, Ar (Substrate) Yield (%)b drc ee (%) (config.)d

1 H, Ph (2a) 94 >95:5 >99 (+)

2 H, o-MeOC6H4 (2b) 89 88:12 99 (+)

3e H, o-MeC6H4 (2c) 89 90:10 >99 (+)

4 H, o-FC6H4 (2d) 85 88:12 >99 (+)

5 H, m-MeOC6H4 (2e) 94 93:7 99 (+)

6 H, m-MeC6H4 (2f) 92 93:7 99 (+)

7 H, m-FC6H4 (2g) 88 91:9 >99 (+)

8 H, p-MeOC6H4 (2h) 93 93:7 99 (+)

9 H, p-MeC6H4 (2i) 95 94:6 >99 (+)

10 H, p-FC6H4 (2j) 80 91:9 99 (+)

11 MeO, Ph (2k) 94 95:5 >99 (+)

12 Me, Ph (2l) 91 95:5 >99 (+)

13 F, Ph (2m) 84 95:5 >99 (+)

a Reaction conditions: substrate (0.1 mmol) in EtOH (1 mL), (R,R)-1b (1 mol%), 25 °C, 24 h; then, TfOH (1 mol%), H2 (50 atm), 12 h.
b Isolated yield.
c Determined by 1H NMR analysis.
d The ee value of the major diastereomer was determined by HPLC analysis with a chiral column (see the Supporting Information).
e With 2 mol% (R,R)-1b and 2 mol% TfOH.
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2-(aroylmethyl)quinolines, and the tandem ATH/AH
reductions of 2-(aroylmethyl)quinolines with excellent
stereoselectivity by using phosphine-free Ru-TsDPEN
complex as the catalyst.12 Further application of this cata-
lytic system in the asymmetric reduction of other het-
eroaromatics and prochiral imines is in progress.

Supporting Information for this article is available online at
http://www.thieme-connect.com/ejournals/toc/synlett.
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