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Abstract—A series of substituted 3,4-dihydro-2-quinolone glycogen phosphorylase inhibitors, which have potential as antidiabetic
agents, is described. Initial members of the series showed good enzyme inhibitory potency but poor physical properties. Optimisa-
tion of the 1-substituent led to 2,3-dihydroxypropyl compounds which showed good in vitro potency and improved physical prop-
erties, together with good DMPK profiles and acute in vivo efficacy in a rat model. X-ray crystallographic data are presented,
showing an unexpected variety of binding orientations at the dimer interface site.
� 2006 Elsevier Ltd. All rights reserved.
Abnormally high output of glucose from the liver con-
tributes significantly to the elevated plasma glucose lev-
els found in diabetic patients.1 A key mechanism in this
raised hepatic glucose output (HGO) is the action of the
enzyme glycogen phosphorylase to liberate glucose from
its polymeric storage form glycogen.2 The active form of
the enzyme (GPa) is a homodimer, its activity being
inhibited by glucose, glucose-6-phosphate and ATP,
but stimulated by AMP and by phosphorylation.3 Two
allosteric inhibitor binding sites have been identified: a
purine binding site where inhibitors such as caffeine
interact and a novel binding site at the interface between
the two dimer subunits,2,4,5 for which synthetic ligands
have been described. Here we report a further series of
novel potent glycogen phosphorylase inhibitors, some
of which show improved physical and DMPK properties
and good activity in a rat model of diabetes.

Previously, we have reported a series of thienopyrrole-
carboxamide inhibitors, including the 3,4-dihydro-2-
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quinolone (DHQ) derivatives 1 and 2.6 These com-
pounds showed good potency both in an in vitro GPa
assay7 and in a glucose output assay from rat hepato-
cytes7 (Table 1). However, the high plasma protein bind-
ing (as determined using the equilibrium dialysis
technique at 37 �C, analysing by generic LC/UV/MS)
and poor solubility (as measured in 0.1 M phosphate
at pH 7.4 following 24 h of agitation) for these com-
pounds limited their potential for further development.
Dihydroquinolone GPa inhibitors have been reported
previously, but no physical property, DMPK, in vivo
or crystallographic data were included.8

As an initial attempt to improve properties, substitution
at the quinolone 1-position was explored, starting with
the 1-methyl compound 3, which showed similar poten-
cy and physical properties (Table 1) to those of its par-
ent compound. Simple functionalised alkyl substituents
such as the ether 4, the ketone 8, the sulfide 5, and the
sulfone 7 all showed similar enzyme inhibitory potencies
but generally without significant improvements in solu-
bility or protein binding. However, the sulfoxide 6 did
give an indication that improvements in protein binding
could be achieved through incorporation of more polar
groups.

The 1-acetic acids 9–10 showed similar potencies togeth-
er with the expected significant increase in aqueous
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Table 1. In vitro activity and physical property data for 1-substituted DHQs

NO

R

R1

Compound R R1 Enzyme inhibitionb

IC50
c (lM)

Celld IC50 (lM) Plasma protein

binding % free

Sol. (lM)

1 Aa H 0.132 0.56 0.03 0.72

2 Ba H 0.041 0.69 0.14 0.33

3 B Me 0.223 (n = 1) 1.4 0.04 0.38

4 B CH2CH2OMe 0.05 1.7 0.18 1.9

5 B CH2CH2SMe 0.163 (n = 1) 5.0e 0.03 0.29

6 B CH2CH2S(O)Me 0.048 6.0e 1.11 1.2

7 B CH2CH2S(O)2Me 0.063 4.0e 0.50 0.50

8 B CH2C(O)Et 0.084 7.0e 0.15 0.27

9 A CH2CO2H 0.063 2.7 0.12 595

10 Ca CH2CO2H 0.237 20e ND 2100

11 B CH2CONH2 0.135 1.2 0.38 5.3

12 B CH2CONHMe 0.079 1.3 0.45 5.4

13 B CH2CONMe2 0.161 IA at 30 0.62 0.74

14 B CH2CH2CONHMe 0.150 9.0 0.51 16

15 B CH2CONHOH 0.103 8.0e 0.04 15

16 B CH2CONH(CH2)2OH 0.121 15 0.97 14

17 B

CH2 N

O

OH

0.709 ND 1.83 0.13

18 B CH2CONHCH(CH2 OH)2 0.104 ND 2.63 17

19 B

CH2 N

O

OH

OH

0.140 IA at 30 2.35 2.2

20 B CH2CONHSO2Me 0.399 IA at 30 0.37 1100

21 B

CH2 NH2

N
OH

0.075 9.8 0.6 6.9

22 B CH2CO2Me 0.084 1.9 ND 0.44

23 B CH2CN 0.028 3e 0.09 0.58
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b Using recombinant human liver GPa: glucose-1-phosphate production from glycogen monitored by a multienzyme coupled assay (Ref. 7).
c n P 3 unless otherwise stated.
d Inhibition of glucose output from primary rat hepatocytes following glucagon challenge (Ref. 7), determined from 7 concentration points unless

otherwise stated.
e Determined from 3 concentration points IA 6 50% inhibition at stated dose.
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solubilities. However, plasma protein binding remained
high and activity in whole hepatocytes dropped.
Consistent with this, compound 9 showed poor intrinsic
permeability and high efflux potential in a Caco-2 assay
(Papp A–B 0.3, B–A 11 cm s�1 · 10�6). Amide deriva-
tives of these acids showed generally similar potencies
against the enzyme, although activity dropped with
tertiary or bulky substitution.
Incorporation of hydroxy groups in compounds 15–19
led to some modest increases in solubility and decreases
in plasma protein binding. The acidic N-sulfonylamide
20 showed the expected improvement in solubility but
was without activity in hepatocytes, presumably as a
result of poor cellular permeability. The hydroxamidine,
ester and nitrile 21–23 all showed no significant
improvement in physical properties.



Figure 1. Inhibitor environment in the crystal structure of rabbit

muscle glycogen phosphorylase (A) complexed with compound 11 and

(B) with compound 16. Residues from one monomer are coloured

pink; residues from the other blue. The figures were prepared using

PyMol (DeLano Scientific).
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Crystallographic study9 of the complex between 11 and
rabbit muscle glycogen phosphorylase (Fig. 1A)
revealed two inhibitor molecules at the dimer interface,
consistent with earlier reports.2,4,5 Although crystallo-
graphic experiments were carried out with compounds
racemic at the DHQ 3-position, we have generally found
that the two bound molecules have the same stereo-
chemistry, the S-isomer in the case of 11. The thienopyr-
role system binds into a hydrophobic pocket defined by
Table 2. In vitro activity and physical property data for 1-(di)hydroxyalkyl

NO

R

R1

Compound R DHQ 3-config. R1 E

I

24 Aa R,S- CH2CH2OH 0

25 Ba R,S- CH2CH2OH 0

26 Ca R,S- CH2CH2OH 0

27 A R,S- CH2CH(CH2OH)2 0

28 B R,S- CH2CH(CH2OH)2 0

29 C R,S- CH2CH(CH2OH)2 0

30 B R,S- CH2CH2CH2OH 0

31 B R,S- (R,S)-CH2CH(OH)Et 0

32 A R,S- (R)-CH2CH(OH)CH2OH 0

33 B R,S- (R)-CH2CH(OH)CH2OH 0

34 C R,S- (R)-CH2CH(OH)CH2OH 0

35 B R- (R)-CH2CH(OH)CH2OH 0

36 B S- (R)-CH2CH(OH)CH2OH 0

37 B R- (S)-CH2CH(OH)CH2OH 0

38 B S- (S)-CH2CH(OH)CH2OH 0

Footnotes as for Table 1.
the residues Val40 (from the one monomer) and Val64,
Arg60, Leu63, Trp67, Lys191 and Pro229 (from the
other monomer). The more hydrophobic dichlorothie-
no[3,2-b]pyrrole group is the most potent of the three
alternative systems described, but has the poorest solu-
bility and the highest protein binding. In the refined
structure, the pendant primary amides of the two li-
gands adopt different orientations. In one of the ligands,
the amide NH2 is close to the cationic nitrogen of
Lys191 and also forms a hydrogen bond with the back-
bone carbonyl of Ala192. The other inhibitor molecule
chelates Lys191 between the carbonyl groups of the pri-
mary amide and dihydroquinolone. Crystallographic
study9 on the N-(hydroxyethyl) analogue 16 (Fig. 1B)
reveals a hydrogen bond interaction between the two
inhibitor molecules, with one adopting a new binding
mode using the opposite enantiomer. The carbonyl oxy-
gen of the R enantiomer only interacts with Arg60 that
lies against the iso-TP ring of the other ligand. The
structure of 16 shows the spatial resolution of a racemic
mixture into the two binding pockets. For each inhibitor
molecule, attempting to fit the opposite enantiomer into
electron density results in a higher strain and less prob-
able ‘syn’ arrangement of the inferred positions of the
amide hydrogen with the nearest carbon hydrogen (see
Supplementary material for conformational analyses
through examination of structures in CCDD and
through calculation). In both complexes, the crystal
space group change on ligand soaking9 permits small
changes between the two now crystallographically inde-
pendent binding pockets in the dimer interface to stabi-
lise different binding modes. The hydrogen-bonding
contact between the two bound enantiomers of 16 hints
at cooperativity. These observations illustrate the diffi-
culty of both interpreting SAR and predicting binding
modes for this system. These structures suggest that
the hydrophobic interactions with the thienopyrrole sys-
tem are the most important for inhibitor binding, with a
DHQs

nzyme inhibitionb

C50
c (lM)

Cell IC50
d

(lM)

Plasma protein

binding % free

Sol. (lM)

.007 (n = 1) 0.6e 0.03 1.1

.026 0.79 0.25 14

.017 4.0e 0.06 2.0

.038 0.83 0.23 1.2

.060 2.7 0.51 4.0

.066 3.0 0.21 2.7

.021 1.1 0.22 4.3

.044 2.0 0.11 4.9

.002 0.26 0.08 3.1

.029 1.1 0.36 190

.044 1.3 0.20 45

.040 ND ND 11

.027 ND ND 35

.021 ND ND 12

.012 ND ND 16
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Scheme 2. Reagents and conditions: (a) DMF, argon, 0 �C, NaH,

20 min, then ROTf13 45 min to rt; (b) 1,4-dioxane/HCl, rt, 8 h, then

H2O, 45 min; (c) 2-chloro-6H-thieno[2,3-b]pyrrole-5-carboxylic acid,

HOBt, EDAC, Et3N to pH 8, DMF, rt, 3.5 h.
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variety of options acceptable for the remaining parts of
the molecules, depending on size and flexibility.

With the knowledge that a compound’s potency was
unlikely to be negatively affected by any moderately
sized 1-substituent, further variations containing
functionality likely to improve physical properties were
explored. A series of 1-(hydroxyalkyl) compounds
showed most promise (Table 2). The 1-(2-hydroxyethyl)
compounds showed good enzyme and cell potencies for
the isomeric thienopyrroles 24 and 25, with the corre-
sponding 5-chloroindole 26 somewhat less active. Plas-
ma protein binding remained high and solubilities low
for these compounds, with the thieno[2,3-b]pyrrole sys-
tem showing the best balance of properties. Incorpora-
tion of dihydroxyalkyl substituents generally
maintained good potency whilst improving physical
properties. Compound 33 (racemic at the dihydroquino-
lone 3-position) in particular showed much improved
solubility, as measured on amorphous material. The
four individual diastereoisomers of this system 35–38
all showed similar enzyme potencies and solubilities,
the latter being lower than for the mixed diastereoiso-
mers, as expected. The synthesis of these individual
diastereomers is detailed below; exemplified by the
3-(S)-2 0-(R)-form.

(S)-3-Amino-3,4-dihydro-1H-quinolin-2-one 42 was
prepared, in high enantiomeric excess,10 via oxidative
cyclisation11 of an N-methoxycarboxamide of (S)-
ZPheOH 39 and 40 (Scheme 1). The subsequent two-
step hydrogenolysis, effecting removal of the Z-group,
then removal of the methoxy group under acidic condi-
tions, to give 42,11,12 was followed by BOC-protection to
afford 43. Alternatively, a one-pot hydrogenolysis may
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Scheme 1. Reagents and conditions: (a) CH3ONH2ÆHCl, Et3N

(2 equiv), EDAC, HOBt, DMF, rt; (b) DCM, argon, 0 �C, TFA

(2.7 equiv), (CF3CO2)IPh (1.05 equiv), 1.5 h; (c) excess 10% aq

Na2CO3; (d) H2, 10% Pd/C, 1 bar, EtOAc, 12 h; (e) EtOH/water

(1:1), 2 M HCl to pH 3, H2, 10% Pd/C, 3 bar, 25 �C, 33 h; (f) DCM,

Et3N, (Boc)2O, rt; (g) (Boc)2O (1.1 equiv), Et3N (1.1 equiv), 10% Pd/C,

15 bar, 50 �C.
be employed to remove the methoxy group with con-
comitant replacement of benzylcarbamate by tert-
butylcarbamate, proceeding from 40 to 43.

Amine 42 was protected as the tert-butyl carbamate, be-
fore subjecting the cyclic amide to basic conditions for
subsequent alkylations, in order to maintain the chiral
integrity of the 3-amino position (Scheme 2). In like
manner, all four diasteroisomers 35–38 were synthesised
from the respective homo-chiral precursors and recrys-
tallised from iPrOH. Recrystallisation in all four cases
improved the enantiomeric purity at the 3-position,
but reduced it at the 2 0-position. The final composition
of the four diastereomers is reported in Table 3.

Variation of the thieno[2,3-b]pyrrole group gave 32
and 34 which had comparable in vitro profiles,
although 33 displayed the best balance of properties.
Comparison of rat pharmacokinetic profiles for com-
pounds from the various sub-series (Table 4) again
showed 33 to have the best profile with complete
bioavailability, high permeability with low efflux
potential, low clearance, moderate volume of distribu-
tion and a 11 h half-life.

Compound 33 showed no activity against a panel of
cytochrome P450 isoforms (1A2, 2C9, 2C19, 2D6,
3A4; <50% inhibition at 10 lM) and no inhibition of
the hERG encoded potassium channel.

Compound 33 was next tested in a glucagon challenge
model of diabetes in Zucker rats.14 In this model admin-
Table 3. Purity profiles of stereoisomers of compound 33

Diastereoisomer Composition

3-(S)-2 0-(R)- <1% 3-(R)-2 0-(R)-form; <2% 3-(S)-2 0-(S)-form

3-(S)-2 0-(S)- <1% 3-(R)-2 0-(S)-form; <2% 3-(S)-2 0-(R)-form

3-(R)-2 0-(R)- <1% 3-(S)-2 0-(R)-form; 7% 3-(R)-20-(S)-form

3-(R)-2 0-(S)- <1% 3-(S)-2 0-(S)-form; 6% 3-(R)-2 0-(R)-form



Table 4. Pharmacokinetic data for compounds

Compound Rat clearance

(mL/min/Kg)

Rat Vdss

(L/Kg)

Rat

t1/2 h

Bioavail.

(%)

Caco-2 A–B

cm/s · 10�6

Caco-2 B–A

cm/s · 10�6

11 1.2 1.4 16 35 12 7

16 5.1 1.4 5.4 12 4 14

28 2.5 2.2 13 41–94 17 10

33 2.4 1.9 11 >100 29 29

Compounds dosed at 2.1–4.0 mg/kg (iv) and 8.1–8.9 mg/kg (po) to male AP Wistar rats.
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istration of glucagon increases hepatic glucose output
through cAMP mediated activation of GPa.

Compounds were dosed po to between four and six ani-
mals in each group (basal blood glucose was around 5–
6 mM) and did not affect pre-glucagon challenge blood
glucose at doses which inhibited the glucagon response.
When dosed at 12.5 lM/kg (dose volume 5 mL/kg)
45 min prior to the glucagon, compound 33 caused a
46% lowering of the induced glucose increase, measured
90 min after the compound dose.

In summary, optimisation of a series of 1-substituted
3,4-dihydro-2-quinolone GPa inhibitors resulted in
compound 33, which exhibits good potency in vitro
and in vivo, a good DMPK profile and improved phys-
ical properties.
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38.2 Å2 for protein atoms and 39.1 Å2 for the ligand.
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