

DIRECT SCIENCE

Bioorganic & Medicinal Chemistry Letters 13 (2003) 2145-2149

BIOORGANIC & MEDICINAL CHEMISTRY LETTERS

Molecular Design, Synthesis, and Structure–Activity Relationships Leading to the Potent and Selective P56^{lck} Inhibitor BMS-243117

Jagabandhu Das,* James Lin, Robert V. Moquin, Zhongqi Shen, Steven H. Spergel, John Wityak, Arthur M. Doweyko, Henry F. DeFex, Qiong Fang, Suhong Pang, Sidney Pitt, Ding Ren Shen, Gary L. Schieven and Joel C. Barrish

Bristol-Myers Squibb Pharmaceutical Research Institute, Princeton, NJ 08543-4000, USA

Received 14 February 2003; accepted 7 April 2003

Abstract—A series of structurally novel benzothiazole based small molecule inhibitors of $p56^{lck}$ were prepared to elucidate their structure–activity relationships (SARs), selectivity and cell activity in the T-cell proliferation assay. BMS-243117 (compound 2) is identified as a potent, and selective Lck inhibitor with good cellular activity (IC₅₀=1.1 µM) against T-cell proliferation. © 2003 Elsevier Science Ltd. All rights reserved.

p56^{lck}(Lck), a member of the Src family of non-receptor protein tyrosine kinases is expressed primarily in T-lymphocytes and natural killer cells. In T cells, Lck is absolutely required for T-cell antigen receptor (TCR) signaling, culminating in IL-2 gene expression and effector functions.¹ T-cells lacking Lck are shown to be severely impaired in TCR tyrosine phosphorylation and subsequent activation via the TCR.² Selective inhibitors of Lck may have potential therapeutic utility in the treatment of T cell mediated disorders such as autoimmune and inflammatory diseases and in the prevention of solid organ transplant rejection.³

Over the past decade, development of small molecule Lck inhibitors⁴ has been an area of major pharmaceutical research. High-throughput screening of our in-house compound collection identified thiazole **1** as a modestly potent Lck inhibitor (Fig. 1). In this communication, we describe structure activity studies leading to a novel benzothiazole template, that have culminated in the discovery of BMS-243117 (**2**) as a potent, and selective Lck inhibitor having excellent activity in vitro and good activity in a T-cell proliferation assay. The synthesis, and SAR studies leading to BMS-243117 and analogues are described.

The synthesis of this class of compounds follows a general synthetic route that is illustrated in Scheme 1. Accordingly, 2-amino-6-carbethoxybenzothiazole⁵ was treated with excess of di-tert-butyl dicarbonate and a catalytic amount of 4-dimethylaminopyridine in dichloromethane to form the corresponding tert-butyl carbamate. Saponification with aqueous sodium hydroxide formed acid 3 which was coupled to a wide variety of anilines 4 under standard coupling conditions to form anilides 6 outlined in Table 3. Alternatively carboxylic acid 3 was converted to its acid chloride (CH₂Cl₂, oxalyl chloride, catalytic DMF, rt) and then condensed with the anilines 4 (THF, *i*-Pr₂NEt, 0°C) to form anilides 5. Hydrolysis of the *tert*-BOC group with trifluoroacetic acid afforded the 2-amino-benzothiazole analogues 6. This synthetic route is quite general and was used for the synthesis of related analogues (Table 2).

A solution-phase parallel synthesis approach was used to prepare a large number of carboxamides 7 (Table 4). 2-Aminobenzothiazole 6 was either treated with the corresponding carboxylic acid anhydride in dichloromethane and pyridine or coupled with a carboxylic acid under standard activating conditions to form carboxamides 7 (Scheme 2).

A similar approach was utilized to prepare the urea derivatives 8 (Scheme 3). 2-Aminobenzothiazole 6 was treated with an isocyanate in dichloromethane and pyridine to form urea 8. Alternatively 6 was treated with phenyl chloroformate in aqueous THF in the presence

^{*}Corresponding author. Tel.: + 1-609-252-5068; fax: + 1-609-252-6804; e-mail: jagabandhu.das@bms.com

⁰⁹⁶⁰⁻⁸⁹⁴X/03/\$ - see front matter \odot 2003 Elsevier Science Ltd. All rights reserved. doi:10.1016/S0960-894X(03)00380-9

Figure 1. Lck inhibitory activity of thiazole 1 and benzothiazole 2.

Scheme 1. (a) CH₂Cl₂, DMAP, (BOC)₂O, 72%; (b) MeOH, 1 N aq NaOH, 91%; (c) DMF, HATU, *i*-Pr₂NEt, 55–85%; (d) CF₃CO₂H, 72–95%.

Table 1. SAR for core nucleus modification

of potassium bicarbonate to form a phenyl carbamate which was treated with an amine in THF to form the urea 8.

Compound **2** (BMS-243117) and its analogues were tested for their ability to inhibit the phosphorylation of an exogenous substrate⁶ by human Lck enzyme (IC₅₀, Tables 1–5).

With compound 1 as the initial lead, the effect of the modification of the core thiazole ring was studied and these results are summarized in Table 1. Thiazole 1 and its *tert*-butylcarbamate derivative 9 were found to be equipotent in inhibiting human Lck. Replacement of the thiazole nucleus in 1 with a benzothiazole ring system (10) resulted in 5-fold loss in potency but the corresponding *tert*-butylcarbamate analogue 5a was an order of magnitude more potent than 1. Similar replacement of the

Compd	R	Lck inhibition IC ₅₀ , μ M ⁶	Compd	R	Lck inhibition IC ₅₀ , µM ⁶
1	H ₂ N-VS-VS-VS-VS-VS-VS-VS-VS-VS-VS-VS-VS-VS-	3.2	12	H ₂ N-N-V-V-V-V-V-V-V-V-V-V-V-V-V-V-V-V-V-V	> 12.5
9	t-Bu O H S	3.0	13	t-Bu _{OC} H	7.25
10	H2N-VS	15	14	H2N-V	23
5a	t-Bu O H	0.29	15		> 12.5
11		3.23	16	H ₂ N-VS	> 12.5

Table 2. SAR for benzothiazole core modification

Compd	R	Lck inhibition $IC_{50}, \mu M^6$	Compd	R	Lck inhibition IC ₅₀ , μM ⁶
5a	1.BU OLN SLOX	0.29	20	1-Bu _{vo} H s CI	4.4
17	tBu O H S	> 12.5	21	LEBU OF H	> 12.5
18	1-BU O H SLIT	> 12.5	22	L-BULOCHING	5.6
19		>12.5	23		>12.5

Table 3. SAR for aniline modification

Compd	R	Lck inhibition $IC_{50}, \mu M^6$	Compd	R	Lck inhibition IC ₅₀ , μM ⁶
5a	2,4,6- Me ₃	0.29	5i	2-Br,6-Me	4.27
5b	2-Me,4-Br	> 12.5	5j	5-Br, 2,4,6- Me ₃	> 12.5
5c	2-Cl,6-Me	0.07	5k	2,6- Me ₂ ,3- <i>i</i> Pr	> 12.5
5d	2,6- Me ₂	0.09	51	$2,6-(OMe)_2$	> 12.5
5e	2-Me,6-(CH ₂) ₂ OH	> 12.5	5m	$2,6-Me_2,4-CO_2Me$	3.12
5f	2-OH,6-Ac	> 12.5	5n	2-Br,4,6- Me ₂	0.20
5g	2-Br,3,4,6- Me ₃	> 12.5	50	2,6-Me ₂ ,4-CH ₂ OH	0.31
5h	2,6-Me ₂ ,4-Br	0.11	5p	2,6-Me ₂ ,4-Ph	9.65

Table 4. SAR for amide modification

Compd	R	R ₁	Lck inhibition IC ₅₀ , μM ⁶
7a	2,4,6-Me ₃	Me	0.12
7b	$2,4,6-Me_3$	Ph	>12.5
7c	$2,4,6-Me_3$	<i>i</i> -Propyl	0.70
7d	$2,4,6-Me_3$	Cyclopropyl	0.02
7e	$2,6-Me_2$	Cyclopropyl	0.015
7f	$2,6-Me_2$	<i>i</i> -Propyl	1.80
7g	$2,6-Me_2$	2-Me-cyclopropyl	0.011
7h	2-Cl,6-Me	Cyclopropyl	0.009
7i	2-Cl,6-Me	Cyclobutyl	0.666
7j	2-Cl,6-Me	2-Tetrahydrofuryl	0.272
7ĸ	2-Cl,6-Me	o-MePh–CH ₂	0.565
71	2-Cl,6-Me	2-Me-cyclopropyl	0.007
7m	2-Cl,6-Me	trans-2-Ph-cyclopropyl	0.027
7n	2-Cl,6-Me	1-Me-cyclopropyl	0.337
7o	2-Cl,6-Me	Cyclopropyl-CH ₂	0.085
7p	2-Cl,6-Me	trans-2-Me2NCH2-cyclopropyl	0.007
7q	2-Cl,6-Me	trans-2-CH ₂ OH-cyclopropyl	0.003
7 r	2-Cl,6-Me	2-Pyrrolidinyl-CH ₂ -cyclopropyl	0.011

Scheme 2. (a) (R_1CO_2O , DMAP, THF, Py; (b) R_1CO_2H , HOAt, EDAC, THF, *i*-Pr₂NEt, 45 °C.

Scheme 3. (a) R_1NCO , CH_2Cl_2 , Py; (b) PhOCOCl, THF, aq KHCO₃; (c) R_1NH_2 , THF.

thiazole nucleus with a benzimidazole, benzoxazole, or 7-azabenzothiazole ring system led to significant attenuation in activity in vitro. Compound **5a** served as the starting point for further optimization.

Table 2 outlines the SAR observed with the carboxamide regio-isomers of compound **5a** or effect of substitution in the phenyl ring of compound **5a**. None of these modifications led to any improvement in potency.

Table 5. SAR for urea modification

Compd	R	R ₁	Lck inhibition IC ₅₀ , μM ⁶
8a	2,4,6-Me ₃	Me	0.13
8b	2,4,6-Me ₃	Ph	0.38
8c	2,4,6-Me ₃	Bn	1.73
8d	2,4,6-Me ₃	Cyclopropyl	0.30
8e	$2,4,6-Me_3$	<i>n</i> -Bu	0.33
8f	2,4,6-Me ₃	t-Bu	0.07
8g	$2,6-Me_2$	Cyclopropyl	0.09
8h	$2,6-Me_2$	t-Bu	0.10
8i	$2,6-Me_2$	1,1-Me ₂ propyl	0.08
8j	2-Cl,6-Me	Cyclopropyl	0.09
8k	2-Cl,6-Me	Cyclopentyl	0.045
81	2-Cl,6-Me	2-Furyl-CH ₂	0.039
8m	2-Cl,6-Me	α-Et-Bn	0.019
8n	2-Cl,6-Me	2-Pyridinyl	2.01
80	2-Cl,6-Me	2-Pyrimidinyl	> 3.125
8p	2-Cl,6-Me	<i>p</i> -F-Ph	0.123
8q	2-Cl,6-Me	<i>p</i> -F-Bn	0.087
2	2-Cl,6-Me	t-Bu	0.004
8s	2-Cl,6-Me	1,1-Me ₂ propyl	0.055
8t	2-Cl,6-Me	$Me_{2}(N(CH_2)_2)$	0.03
8u	2-Cl,6-Me	<i>N</i> -Me-2-pyrrolidinyl-(CH ₂) ₂	0.007
8v	2-Cl,6-Me	2,2,6,6-Me ₄ -4-piperidinyl	0.004

In order to further optimize the potency, we investigated the effect of substitution on the aniline ring of 5a (Table 3). The methyl substituent at C4 can be replaced with hydrogen (5d), bromine (5h) or hydroxymethyl group (50) without any loss of activity. In contrast, a carbomethoxy group (5m) or a bulky phenyl ring at this position is not tolerated. Addition of a substituent at either C3 or C5 is quite detrimental for activity (5g, 5j, 5k). A methyl group at C2 of 5d can be substituted with chlorine (5c) but replacement with bromine (5i) or hydroxyethyl (5e) resulted in significant loss of potency. The importance of 2,6-substitution in the aniline ring is demonstrated by the fact that compound 5b is more than 150-fold less potent than 5h. This finding is consistent with findings reported earlier with other Lck inhibitors.^{4a,c} It appears that only a small alkyl or halogen substituent is tolerated at C2 and C6 since replacement of a chlorine by bromine at C2 (5i) or introduction of polar functions (5f, 5l) has led to significant losses of activity. Because of the optimal potency of the 2,4,6-trimethylaniline (5a), 2,6-dimethylaniline (5d), and 2-chloro-6-methylaniline (5c) analogues, further optimization was carried out on these series.

Table 4 outlines the SAR observed with the carboxamide modification at the C2 amine of the benzothiazole nucleus. In the 2,4,6-trimethylaniline series, acetamide 7a was roughly equipotent as the carbamate 5a. Corresponding *iso*-propyl amide 7c was about 6-fold less potent while the benzamide 7b was significantly less potent than 7a. Cyclopropyl amide 7d was the most potent analogue in this series. A similar trend was observed with the 2,6-dimethylanilines. Cyclopropyl amides (7h, 7l, 7p-q) in the 2-chloro-6-methylaniline series turned out to be the most potent lck inhibitors. Replacement of the cyclopropyl group by cyclobutyl (7I), tetrahydrofuryl (7j) or o-MeBn (7k) was detrimental for activity as was the introduction of a methyl substituent at C1 of the cyclopropyl ring (7n) or insertion of a methylene linker (70). Substitution at C2 of the cyclopropyl ring was well tolerated as was the introduction of a polar functionality at this position. Compounds 71, and 7p-q were identified to be the most potent analogues in the carboxamide series.

Similarly, functionalization of the C2 amino group as a urea also led to some very potent Lck inhibitors in this series (Table 5). Some of the interesting SAR findings are: (1) in the 2,4,6-trimethylaniline series methyl urea 8a was more potent than the corresponding phenyl (8b), *n*-butyl (8e), cyclopropyl (8d) and the benzyl (8c) analogues. More importantly, replacement of the methyl by tert-butyl group (8f) was well tolerated. The corresponding analogue (8h) in the 2,6-dimethylaniline series was equipotent to 8f as were the homologated analogue 8i and the cyclopropyl urea 8g. As in the carboxamide series the ureas in the 2-chloro-6-methylaniline series were the most potent Lck inhibitors. The cyclobutyl (8k) and tetrahydrofurylmethyl (8l) ureas were roughly equipotent, while the α -ethylbenzyl analogue (8m) was 5-fold more potent than the cyclopropyl analogue (8j). Heteroaryl ureas (8n, and 8o) were significantly less potent. In contrast, the phenyl (8p) and benzyl (8q) urea modifications were tolerated. The *tert*-butyl urea 2 was one of the most potent inhibitors in this series. SAR pattern observed with the urea analogues was in some cases different from the one observed with the carboxamides. In general the cyclopropyl amide analogues (7d, 7e, and 7h) were significantly more potent than the corresponding urea analogues (8d, 8g, and 8j). However, as in the carboxamide series, introduction of polar functionality also resulted in some of the most potent urea analogues (8u, 8v).

The most potent carboxamide and urea analogues (2, 71, 7p, 7q, 8u, and 8v) were tested for their selectivity against several kinases and for cell activity in a T-cell proliferation assay (Table 6). All these compounds showed some degree of selectivity against other members of the Src family kinases. Urea 2 (BMS-243117) is the most selective Lck inhibitor in this series. In addition, 2 was highly

Table 6. Enzyme selectivity of selected lck inhibitors

Compd	Lck IC ₅₀ , nM ⁶	Src ^a	Fyn ^a	Hck ^a	Blk ^a	Lyn ^a	Fgr ^a	T-Cell prolif. IC ₅₀ , μM ⁶
2	4	158	32	960	84	330	60	1.1
71	7	57	1.5	92	46	5	3	1.58
7p	7	57	23	650	47	100	10	3.53
7g	3	12	5	NT	NT	22	7	1.45
8u	7	200	3	>600	300	150	17	0.96
8v	4	84	0.5	325	16	185	6	2.80

^aSelectivity ratio: IC₅₀/IC₅₀ (Lck); NT, not tested.

selective against several additional receptor and nonreceptor tyrosine kinases, and serine/threonine kinases (>6000-fold selectivity over cdk2, IGF1R, Kdr, and p38 kinases). Compound **2** inhibited anti-CD3/anti-CD28 induced PBL proliferation with an IC₅₀ of $1.1 \,\mu$ M.

A binding model for these benzothiazole Lck inhibitors was developed based on the published coordinates of the activated Lck kinase domain bound to ANP (phosphoaminophosphonic acid-adenylate ester, a nonhydrolyzable ATP mimic).⁷ As illustrated in Figure 2, BMS-243117 (2) binds in an extended conformation to the ATP-binding site of Lck. The 2,6-disubstituted aniline of 2 occupies a clearly defined hydrophobic pocket (common to all Src family kinases) which is not occupied by ATP. The 2,6-disubstitution skews the aniline ring out of plane with respect to the benzothiazole core and this in turn allows the phenyl ring to fit into the narrow and angular hydrophobic pocket. The SAR observed regarding the aniline substitution pattern in this series is consistent with this proposed model. In addition, compound 2 makes several productive hydrogen bond interactions within the active site: the NH of the aniline is hydrogen bonded to Thr316 side-chain hydroxyl, the benzothiazole nitrogen is in H-bond contact with Tyr318, and the two NHs of the urea moiety are in contact with Met319, and Glu320, respectively. The high degree of selectivity exhibited by the urea analogue 2 is not clearly understood but it may be due to differences in the amino acid side chains found at the edge of the ATP binding pocket in other kinases. For example, Lck residues Glu320 and Asn321 are replaced

Figure 2. Proposed conformation of 2 bound to the ATP binding site of Lck.

in Src by Ser 320 and Lys321, respectively, and in Fyn by Asn320 and Lys321, respectively.

In summary, we have developed a novel series of benzothiazole Lck inhibitors based on our initial thiazole lead 1. SAR studies identified several carboxamide and urea analogues as potent and selective inhibitors. BMS-243117 (2) was shown to be a potent, and selective lck inhibitor with good potency in a T-cell proliferation assay.

References and Notes

1. (a) Molina, T. J.; Kishihara, K.; Siderovski, D. P.; van Ewijk, W.; Narendran, A.; Timms, E.; Wakeham, A.; Paige, C. J.; Hartman, K.-U.; Veillette, A.; Davison, D.; Mak, T. W. *Nature* **1992**, *357*, 161. (b) Levin, D. S.; Anderson, S. J.; Forbush, K. A.; Perlmutter, R. M. *EMBO J.* **1993**, *12*, 1671.

2. (a) Straus, D. B.; Weiss, A. Cell **1992**, 70, 585. (b) Chan, A. C.; Desai, D. M.; Weiss, A. C. Ann. Rev. Immunol. **1994**, 12, 555. (c) Weiss, A.; Littman, D. Cell **1994**, 76, 263. (d) Hanke, J. H.; Gardner, J. P.; Dow, R. L.; Changelian, P. S.; Brissette, W. H.; Weringer, E. J.; Pollok, B. A.; Connelly, P. A. J. Biol. Chem. **1996**, 271, 695. (e) Van Oers, N. S. C.; Lowin-Kropt, B.; Finlay, D.; Connolly, K.; Weiss, A. Immunity **1996**, 5, 429.

3. Hanke, J. H.; Pollok, B. A.; Changelian, P. S. Inflammation Res. 1995, 44, 357.

4. (a) Chen, P.; Norris, D.; Iwanowicz, E. J.; Spergel, S. H.; Lin, J.; Gu, H. H.; Shen, Z.; Wityak, J.; Pang, S.; De Fex, H. F.; Pitt, S.; Doweyko, A. M.; Bassolino, D. A.; Roberge, J. Y.; Poss, M. A.; Chen, B.-C.; Schieven, G. L.; Barrish, J. C. *Bioorg. Med. Chem. Lett.* **2002**, *12*, 1361. (b) Chen, P.; Iwanowicz, E. J.; Norris, D.; Gu, H. H.; Lin, J.; Moquin, R. V.; Das, J.; Wityak, J.; Spergel, S. H.; De Fex, H.; Pang, S.; Pitt, S.; Shen, D. R.; Schieven, G. L.; Barrish, J. C. *Bioorg. Med.* Chem. Lett. 2002, 12, 3153. (c) Snow, R. J.; Cardozo, M. G.; Morwick, T. M.; Busacca, C. A.; Dong, Y.; Eckner, R. J.; Jacober, S.; Jakes, S.; Kapadia, S.; Lukas, S.; Panzenbeck, M.; Peet, G. W.; Peterson, J. D.; Prokopowicz, A. S., III; Sellati, R.; Tolbert, R. M.; Tschantz, M. A.; Moss, N. J. Med. Chem. 2002, 45, 3394. (d) Arnold, L. D.; Calderwood, D. J.; Dixon, R. W.; Johnston, D. N.; Kamens, J. S.; Munschauer, R.; Rafferty, P.; Ratnofsky, S. E. Bioorg. Med. Chem. Lett. 2000, 10, 2167. (e) Burchat, A. F.; Calderwood, D. J.; Hirst, G. C.; Holman, N. J.; Johnston, D. N.; Munschauer, R.; Rafferty, P.; Tometzki, G. B. Bioorg. Med. Chem. Lett. 2000, 10, 2171.

5. Dave, A. M.; Bhatt, K. N.; Undavia, N. K.; Trivedi, P. B. J. Ind. Chem. Soc. 1988, 65, 365.

6. (a) Lck enzyme assay: Recombinant Lck expressed as a Histagged protein in insect cells using a baculovirus expression system and purified by nickel affinity chromatography was incubated in kinase buffer (20 mM MOPS, pH 7, 10 mM MgCl₂) in presence of the test compound. The reaction was initiated by addition of substrates to the final concentration of 1 µM ATP, 3.3 µCi/mL [³³P}g-APT, and 0.1 mg/mL acid denatured enolase, and stopped after 10 min by addition of 10% trichloroacetic acid, 100 mM sodium pyrophosphate followed by 2 mg/mL bovine serum albumin. The labeled enolase protein substrate was precipitated at 4°C, harvested onto Packard Unifilter plates and counted in a Topcount scintillation counter. (b) Enzyme assays for Src, Fyn, Hck, Blk, Lyn, and Fgr were run under the same conditions as for Lck. (c) PBL proliferation assay: A 96-well plate was coated with monoclonal antibody to CD3 (G19-4), the antibody was allowed to bind, and the plate was washed. Normal human peripheral blood T-cells were added to the wells along with the test compound and anti-CD28 (E.3) antibody. After 3 days, ^{[3}H]-thymidine was added to the cells, after further incubation, the cells were harvested and counted in a scintillation counter. 7. (a) Two crystal structures of the catalytic domain of Lck (Tyr394 phosphorylated) were published. See: Yamaguchi, H.; Hendrickson, W. A. Nature 1996, 384, 484. (b) Zhu, X.; Kim, J. L.; Newcomb, J. R.; Rose, P. E.; Stover, D. R.; Toledo, L. M.; Zhao, H.; Morgenstern, K. A. Structure 1999, 7, 651. Protein Data Bank (1QPC pdb, Research Collaboratory for Structural Bioinformatics.