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Bi(OTf); was found to be a good catalyst for the direct syn-
thesis of multisubstituted pyrroles from the readily accessible
2-propynylamine and activated methylene compounds in which
the bismuth played two roles: o- and 7-activations.

New synthetic strategies for multisubstituted pyrroles are
of continuous interest due to the ubiquity of this heterocycle in
natural products' and pharmaceuticals.? For their construction,
there are a number of classic methods and modified processes,
such as the Paal-Knorr,> and Hantzsch syntheses.4 Recently,
these methods have been improved and partly altered into cycli-
zations such as hetero-annulation and cycloisomerization to
achieve more complex pyrrole skeletons.’ However, these meth-
odologies typically require the initial synthesis of the correctly
adjusted precursors prior to the cyclization, which makes struc-
tural modifications of substituted pyrroles complicate. There-
fore, the development of more practical and efficient approaches
to the pyrroles from readily available and easily diversified
building blocks remains an active research area.® In this commu-
nication, we report a new direct synthesis of multisubstituted
pyrroles from 2-propynylamine and 1,3-diketones and B-keto
esters with a bismuth catalyst.”

When N-tosyl-2-propynylamine (1a) was treated with two
equivalents of 2,4-pentanedione (2a) and Bi(OTf); (10 mol %)
in toluene at 100 °C for 9h, the substituted pyrrole 3a and 4a
were isolated in 74% total yield (3a/4a = 36/64) (Entry 1,
Table 1). The high catalytic performance of the bismuth on the
reaction was specific. Thus, any other Lewis acid catalysts like
BF;:0OEt,, AICls, Sc(OTf)s, La(OTf);, Zn(OTf),, and TfOH
showed negligible or no catalytic activities. Although complete
conversions of 1a were observed by means of noble metal cata-
lysts, PdCI, and PtCl,, insoluble white polymeric materials were
obtained instead of the pyrrole. In contrast, Fe(OTf),0s3,
Ni(OTf),, and Cu(OTf), catalysts were slightly effective for
the transformation (3—12% yield of 3a and 4a). Another bismuth
catalysts Bi(ClO4); was moderately active (38% yield), but
Bi(BF.); was useless.® 1,2-Dichloroethane was suitable solvent
as well as toluene, whereas tetrahydrofuran and acetonitrile pre-
vented the reaction.

Next, we investigated the scope and limitation of the
Bi(OTf)3-catalyzed reaction of 2-propynylamine 1 with the ac-
tive methylene compounds 2 (Entries 2-11, Table 1). With opti-
mized conditions in hand,’ the reaction with 1,3-diphenyl-1,3-
propanedione (2b) provided the corresponding pyrroles in 64%
total yield (3b/4b = 42/58) as well as with 1a (Entry 2). Elec-
tron-deficient aromatic diketone 2¢ was also permitted to par-
ticipate at the transformation (Entry 3). Notably, electron-rich
diketones, 2d (R = 4-MeCgHy) and 2e (R = 4-MeOCgH,), were
mainly converted to the 3-acylpyrroles 3 (Entries 4 and 5).

Table 1. Direct synthesis of pyrroles 3 and 4 from the reaction
of 2-propynylamine 1a and various diketones and B-keto esters 2

Ts Ts
O O  10mol%Bi(OTf); N_ gt N gt
RS SRl I G W
1a (2 equiv) C(O)R?

2 3 4
Ketone 2 ) Total yield
Entry Rl R2 Time/h 3/4)/%
1 2a Me Me 9 74 (36/64)
2 2b Ph Ph 6 64 (42/58)
3 2¢  4-CIC¢Hy 4-CICgH4 6 57 (45/55)
4 2d 4-MeC¢Hy 4-MeCgHy 8 67 (54/46)
5 2e  4-MeOC¢Hs  4-MeOCgHy [§ 58 (81/19)
6 2f Me OEt 6 55 (100/0)
7 2g Ph OMe 12 41 (100/0)
8 2h Ph OEt 10 55 (100/0)
9 2i  4-CIC¢Hy OEt [§ 34 (100/0)
10 2j  4-MeCg¢Hy OEt 12 54 (100/0)
11 2k  2-MeC¢Hy OEt 12 36 (100/0)

Isolated yield.

The present reaction could be applied to various B-keto esters
(Entries 6-11). It is noteworthy that the reaction with B-keto
esters afforded 3-acylpyrroles 3 only, albeit with slightly lower
conversions to the product in comparison with the diketone.
Unfortunately, the alternation of the terminal proton of the
alkyne 1 with aryl and alkyl groups caused the substitution
reaction of the TsNH moiety of 1 by the methylene compound
2, exclusively. Additionally, when the protecting group on nitro-
gen was replaced to benzyl and H, no reaction was observed.
We envisioned two possible processes of the present reac-
tion as illustrated in Scheme 1. In path a, the addition of the
methylene compound 2 to the alkyne part of 1 would provide
the intermediate A, whose amine and ketone functions would in-
tramolecularly condensed to afford the pyrroles 3 and/or 4, and
H,0. However, it seems less likely, because the C—C bond for-
mation did not proceed in a similar reaction of 5§ with 2h under
the present reaction conditions (eq 1). Another plausible process
(path b), involves the formation of 3-aza-1,5-enyne B from the
amine 1 and the methylene compound 2,'° which is followed
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Scheme 1.
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by the enyne-cycloisomerization and the subsequent olefinic iso-
merization to yield the desired pyrroles.'! Evidence to support
definitely the latter process was obtained in eq 2. When aza-
enyne (E)-6, independently prepared, was treated with Bi(OTf);
catalyst in the presence of one equivalent of water for 5h at
100°C, the product 3h was obtained in 80% yield. It was note-
worthy that the presence of water and the stereochemistry of 6
drastically affected the present reaction. Thus, the product yield
decreased under anhydrous conditions and in the reaction of
azaenyne (Z)-6.

CgHy7TsN \
5
10 mol%Bi(OTf) BH|7TSN
" ey
toluene (0.5 M) ﬁ
U 100 °C, 22 h
Ph OEt
2h not obtained
Ts 10 mol%Bi(OTf)5 Ts
N__Ph 1 equiv additive N__ph
( \ll toluene (0.5 M) S—Z/
‘ | CO.Et 100 °C CO,Et
6 3h
E/Zratioof 6  Additve  Time/h Yield/ % (2)
100/0 H,O 5 80
100/0 none 17 37
67/33 H,0 10 61
0/100 H,O 22 21

Based on these results, we proposed the reaction mechanism
in Scheme 2. In the initial step (i), the bismuth catalyst would act
as a Lewis acid for the enamine formation to provide the meta-
lated 3-aza-1,5-enyne B. In contrast, 77-acidity of the same cata-
lyst would accelerate the cycloisomerization of the enyne unit of
B to give the zwitterion intermediate C (ii), which could sponta-
neously deprotonate or deacylate to liberate the two types of
products and the catalyst (iii). In this step, the deprotonation
could occur in the case of B-keto ester due to instability of
TC(O)OR. About effect of water, it might induce other pyrrole
route via N,O-acetal D.

In conclusion, we have demonstrated a new method for the
direct synthesis of multisubstituted pyrroles from simple 2-pro-
pynylamine and various 1,3-diketones or f-keto esters by the
bismuth catalyst. The transformation depended on the presence
of water generated in the initial step. Moreover, the stereochem-
istry of the 3-aza-1,5-enyne intermediate influenced the reaction
efficiency, i.e., the E isomer was more active than the Z isomer.

We thank Dr. Eigo Miyazaki for the X-ray structure deter-
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