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Abstract: The regioselective N2-substitution of 4-bromo-5-iodo-
1,2,3-triazole with alkyl/aryl halides in the presence of K2CO3 in
DMF produced the desired 2-substituted 4-bromo-5-iodo-1,2,3-tri-
azoles as a major products in good to excellent regioselectivity.
Subsequent chemoselective Suzuki–Miyaura cross-coupling reac-
tion of N2-substituted 4-bromo-5-iodo-1,2,3-triazoles provided
polysubstituted 1,2,3-triazoles efficiently.
Key words: 4-bromo-5-iodo-1,2,3-triazole, regioselectivity, N2-
substitution, chemoselectivity, cross-coupling

1,2,3-Triazoles have been studied and utilized for over a
century1 in the chemical industry, medicinal chemistry,
and biological sciences.2 Although a number of methods
have been developed for the synthesis of N1/N3-substitut-
ed triazoles,3 an effective general synthetic method for
N2-substituted triazoles is still lacking.4 Recently, we re-
ported a N2-regioselective direct alkylation/arylation with
4,5-dibromo-1,2,3-triazole 1.5,6 Attempts to utilize these
4,5-dibromo-1,2,3-triazoles 1R for the synthesis of un-
symmetrical triazoles by conducting sequential Suzuki–
Miyaura cross-coupling reactions8 failed to significantly
differentiate between the two bromo substituents (Scheme
1). A significant amount of double cross-coupling product
11 was produced when monocoupling product 8 reached
a conversion of about 70%. Typically, >25% of 11 was
observed with a complete consumption of the starting di-
bromotriazoles. We envisioned that Suzuki–Miyaura
cross-coupling of 4-bromo-5-iodo-1,2,3-triazole 5 could
chemoselectively lead to monocoupling product 8 due to
the lower dissociation energy of the C–I bond relative to
the C–Br bond.9 Subsequent Suzuki coupling of 8 would
furnish unsymmetrical 2,4,5-trisubstituted 1,2,3-triazoles
10.
4-Bromo-5-iodo-1,2,3-triazole 3 was obtained in 76%
yield by treating 4-bromo-5-trimethylsilyl-1,2,3-triazole
26 with N-iodosuccinimide in ethyl acetate.7 Next, we
conducted the regioselective N2-alkylation of 3 following
the protocol we established previously.6,10 The results of
the N2-substitution reaction of 3 with halides 4a–j are
summarized in Table 1. The reactions were performed us-
ing K2CO3 as base in DMF at temperatures ranging from
–10 °C to 80 °C, depending on the reactivity of various
substrates. Among the substrates, reaction with 2-fluoro-

nitrobenzene at 80 °C afforded the desired N2-arylated
product as a single isomer in 93% isolated yield (Table 1,
entry 10). While alkylation with α-bromoacetate 4h at –10
°C to 20 °C afforded 5h/(6h + 7h) in 10:1 ratio (Table 1,
entry 8), the alkylation with α-branched bromoacetate 4i
yielded 5i/(6i + 7i) in a 15:1 ratio (Table 1, entry 9). The
alkylation of 3 with 2-bromoethylbenzene (4e) at room
temperature gave over 10:1 selectivity of 5e/(6e + 7e, Ta-
ble 1, entry 5). The regioselectivity deteriorated to about
4–6:1 with other alkyl halides (Table 1, entries 1–4, 6, and
7). Nevertheless, compound 5 was isolated easily via flash
column chromatography from other isomers due to their
substantial difference in polarity. For all these experi-
ments the substitution reaction gave good to excellent iso-
lated yields of the desired product 5. In general, the N2-
regioselectivity of 4-bromo-5-iodo-1,2,3-triazole (3) is
slightly less than that of the analogous 4,5-dibromo-1,2,3-
triazole (1), which is consistent with the conclusion we
obtained in an earlier account.6

We selected 4-bromo-5-iodo-1,2,3-triazole (5a) and 4-
methoxyphenyl boronic acid for the initial study on che-
moselective Suzuki–Miyaura cross-coupling, and the re-
sults are summarized in Table 2. Screening of reaction
conditions revealed that choices of solvent, catalyst, and
stoichiometry of the boronic acid were critical to the che-

Scheme 1 Designed approach to unsymmetrical triazoles
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moselectivity. As shown in Table 2, entry 1, the cross-
coupling reaction proceeded slowly in toluene–water
(3:1) at 100 °C, with complete consumption of 5a after 16
hours with 5 mol% of PdCl2(PPh3)2 and 1.3 equivalents of

boronic acid in the presence of K3PO4. The desired selec-
tive cross-coupling product 8a was obtained in 85% iso-
lated yield, along with 5% of double-coupling product
11a. While the use of dioxane–water (3:1) as solvent un-
der the same conditions showed no improvement of the
chemoselectivity, the reaction was completed in two
hours (Table 2, entry 2). With a mixture of MeCN–water
as solvent, more double-coupling product 11a was ob-
served under the same conditions (Table 2, entries 3 and
4). The large excess of boronic acid contributes to the for-
mation of 11a, as shown in entry 5 (Table 2) where the
cross-coupling with 5 mol% of PdCl2(PPh3)2 and reduced
amount of boronic acid (1.1 equiv) in a 1:1 mixture of
MeCN–water produced 8a in 95% yield with only 3% of
11a.11 The results with other solvents such as aqueous
EtOH or DMF were not comparable to that with aqueous
MeCN (Table 2, entries 6 and 7). The use of other cata-
lysts such as Pd(PPh3)4, Pd2(dba)3, and Pd(OAc)2 showed
either lower conversion and higher boronic acid consump-
tion, or more formation of 11a (Table 2, entries 8–10).
With the optimized conditions in hand, the scope of che-
moselective Suzuki–Miyaura cross-coupling of several
N2-substituted 4-bromo-5-iodo-1,2,3-triazoles 5 with a
variety of boronic acid derivatives was studied (Table 3).
Generally, the cross-coupling of 5 with boronic acids was
very chemoselective, producing the desired monocou-
pling products 8 in good to excellent isolated yields with
less than 5% of double-coupling products 11. The cou-
pling of 5h bearing a carboxylate ester in aqueous MeCN
gave rise to the hydrolysis product, which was circum-
vented by using toluene as solvent instead (Table 3, entry
10).10 Under Molander’s conditions of Xphos as ligand12a

or aqueous THF solvent,12b the coupling of 5b with alkyl
trifluoroborate led to poor chemoselectivity (Table 3, en-
try 5). A satisfactory chemoselectivity of >95:5 of 8e/11e
was achieved under milder conditions.12c

Further functionalization of the bromides 8 provides an
efficient and versatile way to synthesize 2,4-disubstituted
and 2,4,5-trisubstituted 1,2,3-triazoles (Scheme 2). Hy-
drogenation of 8f and 8j produced 2,4-disubstituted tri-
azoles 9a and 9b,10 while Suzuki–Miyaura cross-coupling
of 8a, 8f, and 8i yielded 2,4,5-trisubstituted triazoles 10a,
10b,10] and 10c. With the many available methodologies

Table 1  N2-Substitution of 3 with Halides 4

Entry RX 4 5/(6 + 7) Yield of 5 (%)

1a

4a

5:1 5a 80

2a

4b

5:1 5b 77

3a

4c

4:1 5c 74

4a

4d

4:1 5d 76

5b

4e

10:1 5e 87

6b

4f
6:1 5f 84

7b

4g

5:1 5g 81

8a

4h

10:1 5h 85

9a

4i

15:1 5i 91

10c

4j

single isomer 5j 93

a Reactions completed at –10 °C to 20 °C for 2–5 h.
b Reactions completed at 20 °C for 10 h.
c Reaction completed at 80 °C for 16 h.
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for the transformation of aromatic bromides,13,14 this strat-
egy can be expanded to synthesize many different poly-
substituted 1,2,3-triazoles.
In summary, we have developed an efficient synthesis of
polysubstituted 1,2,3-triazoles via N2-alkylation/aryla-
tion of 4-bromo-5-iodo-1,2,3-triazole in a regioselective
fashion. The subsequent chemoselective Suzuki–Miyaura
cross-coupling followed by further elaboration of the bro-
motriazole intermediates unveil a convenient and versa-
tile synthetic strategy for the synthesis of N2-
polysubstituted 1,2,3-triazoles.
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Table 2  Selective Suzuki–Miyaura Cross-Coupling of 5a

Entry Solvent system Catalyst Temp (°C) Time (h) Yield of 8a (%)c Yield of 11a (%)c

1a toluene–H2O (3:1) PdCl2(PPh3)2 100 16 85 5

2a dioxane–H2O (3:1) PdCl2(PPh3)2 100 2 88 4

3a MeCN–H2O (3:1) PdCl2(PPh3)2 85 2 88 12

4a MeCN–H2O (1:1) PdCl2(PPh3)2 85 1 82 18

5b MeCN–H2O (1:1) PdCl2(PPh3)2 85 1 95 3

6b EtOH–H2O (1:1) PdCl2(PPh3)2 85 1 42 6

7b DMF–H2O (1:1) PdCl2(PPh3)2 85 2 49 1

8a MeCN–H2O (1:1) Pd(PPh3)4 85 1 90 2

9b MeCN–H2O (1:1) Pd2(dba)3 85 1 81 7

10b MeCN–H2O (1:1) Pd(OAc)2 85 1 46 3

a With 1.3 equiv of boronic acid, 5 mol% of catalyst and 2.5 equiv of K3PO4.
b With 1.1 equiv of boronic acid, 5 mol% of catalyst and 2.5 equiv of K3PO4.
c Isolated yield.
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Table 3  Selective Suzuki–Miyaura Cross-Coupling of 5 

Entry Triazole 5 R2B(OH)2 Yield of 
8 (%)
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