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Cascade Reaction to Synthesis of Carbolines from O-

Methylketoximes and Styrenes via Palladium-Catalyzed C–H bond 

Activation and Sequential Annulation 

 Xiao-Pan Fu,+a Shi-Biao Tang,+a Jin-Yue Yang, a Li-Li Zhang,a Cheng-Cai Xia*b and Ya-Fei Ji*a   

 

Abstract: A novel cascade reaction has been described for synthesis of 

Carbolines via palladium-catalyzed successive C–C/C–N formation 

from O-methylketoximes and styrenes. The oxime ether auxiliary not 

only serve as a traceless directing group, but also be partly transformed 

into the value-added pharmacophore in a two-step, one-pot fashion.  

Introduction 

Carbolines are important structural motifs in numerous natural 

products and bioactive molecules.1 Carboline derivatives have a 

wide range of applications not only in the pharmaceutical 

chemistry,2,3a-e but also in the materials.3f,3g (Figure 1) Therefore, 

many methods have been established for synthesis of carbolines 

derivatives, including Graebe-Ullmann, Fischer indolization, 

Bischler-Napieralski, and Pictet-Spengler reactions. However, the 

reactions are required to assemble the carboline frameworks.4 

Therefore, the development of simple and efficient method for 

construction of the carbolines has attracted significant attention. 

Over the past few decades, transition-metal-catalyzed C–H bond 

functionalization assisted by DG (directing groups) has become an 

efficient method for C-C and C-X bond formation.5 Especially in 

recent years, the ortho alkenylation directed by DG provides an 

atom- and step-economic fashion in contrast to the traditional 

transformations, such as Heck reaction.6 Significant progress with 

the help of various DG such as pyridine,7 ester,8 amide,9 carboxyl 
10and others11 has been accomplished. 

Oxime ethers as heteroatom-containing directing group, have a 

superior directing ability to assist the C–H bond 

functionalization.12 The oxime ethers directed ortho C(sp2)–H 

functionalization such as acyloxylation,13h,13d arylation,13a,13c 

hydroxylation 13g arylation,13a,13c which generally go through a 

five-membered endo-palladacycle intermediate.13 Apart from these 

reactions, Ellman,13e Sun13f and Jeganmohan13i groups respectively 

reported the ortho olefination assisted by oxime ethers via different 

catalysts  There are several reports for metal-catalyzed annulation 

reactions starting from oxime ethers.14 (Scheme 1A). Despite 

tremendous efforts have been made, these reports are limited in the 

intermolecular alkenylation.14 Therefore, oxime ethers serve as a 

traceless directing group, go through a tandem, 2-fold C-H bond 

functionalization in a one pot fashion with sole catalyst would be 

of great significance. 

To continue our interest,14h we here report the palladium-catalyzed 

the protected Indol-O-methyloxime-directed 2-fold C−H bond 

functionalization with substituted styrenes, providing carbolines in 

good yields (Scheme 1B). The newly dual functionalization 

strategy can not only make the step concise and efficient but also 

could be applied in the synthesis of key functional units. 

Results and Discussion 

Figure 1. Some Bioactive Compounds Containing Carboline 

Structures 

 

Scheme 1. O-Methyloxime Directed Oxidative Heck Reaction 
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At the outset of the experiment, a variety of reaction conditions 

were examined. we initially tested the model substrate O-

methyloxime ether 1a and 4-fluorostyrene 2a using the catalyst 

Pd(OAc)2 (10 mol %), the oxidant AgTFA (1.5 equiv), the base 

pyridine (20.0 equiv) in AcOH at 110 oC under air (Table1). To our 

delight, the product 3a was observed in the yield of 19%. Inspired 

by that result, different solvents were tested, the yield was 

improved significantly in HFIP (entries 1-4). Next, oxidants were 

screened, Ag3PO4 gave a better yield than other Ag salts including 

AgOAc, Ag2CO3 and Ag2O (entries 5-8). When we tested the 

catalysts, Pd(OAc)2 holding the best transformation other than Pd 

salts (entries 9-12). Base can improve the reaction15a,15b and the 

pyridine evidently facilitate the transformation (entries 13-19). 

Different amount of the pyridine was examined (entry 20). When 

increasing the temperature to 120 oC or decreasing to 100 oC, we 

observed that the yields were slightly decreased. 

Having the optimized reaction conditions, we continued to explore 

the scope of substrates in this reaction. First, a remarkably broad of 

the styrenes with 1-(1-phenyl-1H-indol-3-yl) ethan-1-one O-methyl 

oxime (1a) was achieved. As shown in Table 2. The styrenes with 

electron-withdrawing groups, such as F (3a), Cl (3b), Br (3c), CF3 

(3d) on the para-position of the phenyl ring, could afford the 

corresponding alkenylation-cyclization products in good yields. 

Notably, the DG was directly removed under basic conditions. 

Moreover, the introduced DG can not only assist the C–H bond 

functionalization but also be transformed into Carboline units. The 

electron-donating groups (3e, 3f) gave the satisfactory yield. It is 

Table 3. Substrate scope of various indoles.a,b  

 

 

 
a Reaction conditions: 1 (0.3 mmol), 2a (0.6 mmol), Pd(OAc)2 (10 

mol%), Ag3PO4 (1.5 equiv), Pyridine (20.0 equiv), HFIP (3.0 mL), 

110 oC, 20 h. b Isolated yields of 4. 
 

Table 1 Optimization of reaction conditions a,b 

 

Entry Catalyst Oxidant Additive Yield b(%) 

1 Pd(OAc)2 AgTFA Pyridine 19c 

2 Pd(OAc)2 AgTFA Pyridine 24d 

3 Pd(OAc)2 AgTFA Pyridine 12e 

4 Pd(OAc)2 AgTFA Pyridine 57f(67)g 

5 Pd(OAc)2 Ag3PO4 Pyridine 79 

6 Pd(OAc)2 AgOAc Pyridine 67 

7 Pd(OAc)2   Ag2CO3 Pyridine 54 

8 Pd(OAc)2 Ag2O Pyridine 37 

9 Pd(TFA)2 Ag3PO4 Pyridine 73 

10 PdCl2 Ag3PO4 Pyridine 70 

11 Pd(PPh3)2Cl2 Ag3PO4 Pyridine 68 

12 Pd(CH3CN)2Cl2 Ag3PO4 Pyridine 61 

13 Pd(OAc)2 Ag3PO4 NaOAc <10 

14 Pd(OAc)2 Ag3PO4 CsOAc <5 

15 Pd(OAc)2 Ag3PO4 Cu(OAc)2 NR 

16 Pd(OAc)2 Ag3PO4 Et3N 43 

17 Pd(OAc)2 Ag3PO4 DBU 68 

18 Pd(OAc)2 Ag3PO4 DABCO trace 

19 Pd(OAc)2 Ag3PO4 / <10 

20 Pd(OAc)2 Ag3PO4 Pyridine 54h(66)i(70)j 

21 Pd(OAc)2 Ag3PO4 Pyridine  77k (76) l 
a Reaction conditions: 1a (0.3 mmol), 2a (0.6 mmol), catalyst (10 

mol %), oxidant (1.5 equiv), additive (20.0 equiv), HFIP (3.0 mL), 

110 oC, 20 h. b Isolated yield of 3a. c AcOH (3.0 mL). d DCE (3.0 

mL). e Dioxane (3.0 mL). f HFIP (3.0 mL). g TFE (3.0 mL). h 

Pyridine (5.0 equiv). i Pyridine (10.0 equiv). j Pyridine (30.0 

equiv). k 100 oC. l 120 oC. 

Table 2. Substrate scope of Styrenes.a,b  

 

a Reaction conditions: 1a (0.3 mmol), 2 (0.6 mmol), Pd(OAc)2 (10 

mol%), Ag3PO4 (1.5 equiv), Pyridine (20.0 equiv), HFIP (3.0 mL), 

110 oC, 20 h. b Isolated yields of 3. 
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worth mentioning that electron-withdrawing groups on the para-

position provide higher yield than those electron-donating groups. 

The substitution at the meta-position were also isolated (3g-3i). 

The ortho-substituted styrenes were also transformed into the 

cyclization products in good yields (3j-3l). In addition, 1-

vinylnaphthalene and 2-vinylnaphthalene could be also delivered 

the desired product (3n, 3o). 

Next, we explored the substrates scope in the alkenylation-

cyclization reaction. To our delight, a various of substituted 

substrates proved to be compatible in the transformation, obtaining 

the desired products in moderate to good yields (Table 3). The 

substrates with electron-donating groups (4a, 4b) gave better yield 

than electron-withdrawing groups (4c, 4d) on the para-position of 

the phenyl. Gratifyingly, the meta-substituted substrates (4e, 4f, 4g) 

are tolerated under the standard reaction conditions. As we all 

know, the Br group could be transformed into different functional 

groups via cross-coupling reaction. Benzyl (4h), multiply-

substituted (4i, 4j), naphthalene (4k) were well reacted with 2a, 

affording the desired products in good yields. The alkyl-protected 

indole derivatives offered the moderate yield (4l, 4m). 

Respectively, the phenyl protected indole is crucial for the 

transformation. Then, substituted on the indol afforded a good 

yield in 83% (4n). 2-Acetyl-indole was also obtained the 

corresponding product (4o). Unfortunately, removable protecting 

group such as N-Boc (4p) and the unprotecting group N-H (4q) 

were not suitable for reaction. In addition, 3-aldoximine (4r) was 

unable to afford any desired product.  

Additionally, we carried out the intermolecular competition 

experiments to probe the electronic effect of the alkenylation-

cyclization reaction (Scheme 2). Firstly, different substituted 

styrenes 2a and 2e (1:1 equiv) with substrate 1a was performed in 

110 oC for 20 h. We isolated the products 3a and 3e with the ratio 

of 3.1/1.0, revealing that the electron-deficient styrene kinetically 

favored. In contrast, competition experiment between 

electronically biased para-substituted substrates 1b and 1c (1:1 

equiv) reacted with styrene 2a, showing the electron-rich substrate 

(4b) reacted preferentially. These observations have agreement 

with the mode of electrophilic activation.9a Moreover, the reaction 

of gram scale was also examined (Scheme 3). 

Based on documented reports,13f,14h,15 a plausible reaction pathway 

through CMD (concerted metalation-deprotonation) pathway13f,14,16 

or an agnostic intermediate14h,17 was proposed in Schemes 4. 

Firstly, the substrate 1a coordinates with Pd(OAc)2 reversible to 

form endo-cyclopalladated (II) intermediate A. The ligand of the 

endo-cyclopalladated A interchanges with alkene to provide B, 

which followed by 1,2-migratory insertion, β-hydride elimination 

and reductive elimination to form the product D and liberation of 

Pd (0) species. After the oxidative addition, the N-O bond was 

cleaved and an alkenylpalladium species (II) was generated the key 

intermediate E.14h,15a-e Then C−N bond formation/N−O bond 

cleavage and β-hydride elimination provide the product. 

Conclusions 

In conclusion, we have developed a novel method for synthesis of 

carbolines via palladium-catalyzed dual C–C/C–N formation and 

annulation with styrenes. This protocol provides a simple, direct, 

efficient method to construct diversified carbolines for the 

screening of the potential natural products and medicines. 
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Scheme 4. Postulated reaction mechanism 
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