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ABSTRACT: The reactions of N-dichlorophosphoryl-
P-trichlorophosphazene CIL;P=N—P(O)Cl, (1) with
benzylmagnesium bromide, 2-phenylethylmagnesium
bromide, trimethylsilylmethylmagnesium chloride, n-
butylmagnesium bromide, cyclohexylmagnesium bro-
mide, cyclopentylmagnesium bromide, tert-butylmag-
nesium bromide, iso-propylmagnesium bromide, and
ethylmagnesium bromide were studied. Tri- and pen-
taalkyl phosphazenes were obtained in very poor
yield from trimethylsilylmethylmagnesium chloride
and cyclohexylmagnesium bromide, respectively. Tri-
alkylphosphoryl compounds formed from benzyl-, 2-
phenylethyl-, and wn-butylmagnesium bromide. No
phosphorus compound could be isolated from the re-
action of 1 with t-butyl-, cyclopentyl-, iso-propyl-, and
ethylmagnesium bromide. © 2003 Wiley Periodicals,
Inc. Heteroatom Chem 14:413-416, 2003; Published on-
line in Wiley InterScience (www.interscience.wiley.com).
DOI 10.1002/hc.10153

INTRODUCTION

Since short open-chain phosphazenes are sensi-
tive to air and moisture, only a few of them have
been characterized in detail [1-5]. The reactions of
Cl,P=N—P(0O)Cl, (1) with amines and alcohols have
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been reviewed [6,7]. The structures of 1 [8] and
of pentaamino [9,10] and pentaalkoxy derivatives
[11-15] have been obtained. The partial aminoly-
sis and alcoholysis of 1 with methylamine and fert-
butylamine [16], diisopyropylamine [17], o-dichloro
and o-dimethylphenol [18], 2,4,6-tert-butylphenol
and 2,6-di-tert-butyl-4-methylphenol [19], and allyl
alcohol [20] have been reported. These molecules
can be used as structural models for phosphazene
polymers with a large range of properties [2,21] and
applications [22-29].

The reactions between halogenophosphazenes
and main-group organometallic reagents can be
complex [2,30,31]. Several transition-metal-con-
taining cyclic phosphazenes have been synthesized
[32]. In the synthesis of alkyl- and aryl-substituted
phosphazenes, halophosphazenes are reacted with
organolithium or Grignard reagents [33-39]. Al-
though there are many publications about cyclic
or polymeric alkyl- or arylphosphazenes [39-46],
the synthesis of alkyl-substituted phosphazenes has
been performed with only limited success [47-49].
Here we report the reactions of 1 with alkyl Grignard
reagents.

RESULTS AND DISCUSSIONS

Tri- and pentasubstituted monophosphazenes 4 and
6 were obtained in 4 and 1% yield from the reac-
tion of 1 with trimethylsilylmethylmagnesium chlo-
ride (b), and cyclohexylmagnesium bromide (c), re-
spectively. Phosphoryl compounds 2, 3, and 5 were
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detected from the reaction of 1 with benzyl-, 2-
phenyl-ethyl-, and n-butylmagnesium bromide (a),
respectively.

Cl,P=N—P(0)Cl, + 5 RMgX
1

—> (a) R3P=O
[R PhCHz (2), PhCHzCHz (3), n—C4H9 (5)]

(b) RsP=N—P(0)Cl,
[R: Me3 SICH2 (4)]

(c) R;P=N—P(O)R,
[R: cyclo-CcHy, (6)]

The products were isolated from the reaction mix-
ture by column chromatography. All these com-
pounds have been characterized by elemental anal-
ysis (Table 1), 'H, 3C, 3P NMR, FT-IR, and mass
spectrometry. From the analogous reaction of 1 with
tert-butyl, cyclopentyl, iso-propyl, and ethylmagne-
sium bromide, no phosphorus compound could be
isolated.

In the reactions of halophosphazene with
organolithium or Grignard reagents, P—N bond
cleavage can compete with halogen replacement
[50]. The phosphoryl compounds 2, 3, and 5 also
result only from a P—N bond cleavage.

The P=N and P=0 stretching vibrations, 1220~
1338 cm™!' and 1153-1263 cm™' respectively (Ta-
ble 2), are characteristic of phosphazenes. In the or-
der of 1, 4, 6, they are shifted to longer wavelengths.

The NMR data are presented in Tables 3-5. While
both phosphorus signals for 1 are observed at high
field, they move to lower field on alkyl substitution
in 4 and 6 (Table 3). The 3C NMR signals of the
carbon atoms attached directly to phosphorus atoms

TABLE 1 MS and Analytical Data of 2—-6
Mol. Weight @ %
Calcd Found Caled Found
2 320 320 C 76.76  76.0
91 (C7H7™) H 6.44  6.08
N — —
3 362 No M+ C 79.55  78.51
91 (C7H7 1), H 7.46 7.39
105 (CgHg+) N - -
4 423 423 C 33.37 33.56
73 (SiC3Hg™) H 7.84 754
N 3.30 3.18
5 218 218
6 507 -

aMolecular ion and only the first one or two peaks of MS in the relative
abundance order are shown.

TABLE 2 Characteristic IR Vibrations of 1-6 (cm~")

VC—Ha.  VC—Hal. VP=N VP=0 VP—N VP—CI
1 - - 1338 1263 770 650
2 3050 2900 - 1187 - -
3 3050 2900 - 1153 - -
4 - 2900-2800 1319 1251 761 536
5 - 2950-2850 - 1160 - -
6 - 2930-2852 1220 1170 750 -

are generally observed at the lowest field and they
show the largest Jpc values. In compound 6, the POR,
and PNR; environments can be distinguished, espe-
cially, C; in PNR; are shielded more than in POR,
(Table 5).

The electron impact MS spectra of 2 showed the
well-defined molecular ion at m/z 320 (25%). The
molecular ion peak of 3 was not observed, but the
peaks at m/z values of 91 and 105 correspond to the
loss of C;H; and CygH, groups. The peak at m/z 423
(10%) with the expected isotope pattern shows the
molecular ion for 4.

EXPERIMENTAL
General Remarks

Solvents were dried by conventional methods. All re-
actions were monitored by using Kieselgel 60 F254
(silica gel) precoated TLC plates and the separating
conditions were determined. The separation of prod-
ucts was carried out by flash column chromatogra-
phy using Kieselgel 60 (60-230 mesh).

IR spectra were recorded with an ATT Unicam
Mattson 1000 FTIR spectrophotometer. 'H, *C, and
3P NMR spectra were recorded using a Bruker DPX-
400 High Performance Digital FT-NMR spectrom-
eter operating at 400.13, 100.63, and 161.98 MHz,
respectively. All data were recorded for solutions in
CDCl;. The 'H and '3C chemical shifts were mea-
sured using SiMe, as an internal standard, and the
3P chemical shifts were measured using 85% H;PO,

TABLE 3 3'P NMR Data of 1-6

SpN 6po Jpnp
1 —-2.6 —-10.6 21.3
2 - 41.8 -
3 - 47.2 -
4 33.5 —6.3 3.4
5 - 50.3 -
6 59.9 52.3 a

2Not determined.
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TABLE4 'HNMR Data of 2-6 (Coupling Constants J in Hz)

(CHy, 2Jpy: 13.8, 2H), 7.3-7.4 (5H)

(2-H, 2H), 2.9 (1-H, 2H), 7.2-7.3 (5H)

(CH3, 9H), 1.4 (CHy, 2Jpy: 16.2, 2H)

(4-H, 3H), 1.1 (3-H, 2H), 1.2 (2-H, 2H), 1.4 (1-H, 2H)

ouhWON
—oo MpW

as an external standard. Chemical shifts downfield
from the standard are assigned positive § values.
Electron impact mass spectra were obtained by Mi-
cromass UK Platform-II spectrometer. Microanaly-
sis was carried out by LECO 932 CHNS-O apparatus.
The starting material 1 was prepared by the method
of Emsley, Moore, and Udy and purified by vacuum
distillation [51].

Reaction between 1
and Benzylmagnesium Bromide

Benzylmagnesium bromide (17 ml, 2 M in THF) was
added dropwise to 1 (1.80 g, 7 mmol) in 150 ml of
toluene by stirring for 0.5 h at ambient temperature.
The mixture was then refluxed for 48 h. After the
reaction was complete, the precipitated salt (MgBr;)
was filtered off and the solvent was removed under
vacuum. The residue was examined by TLC using
chloroform/acetone (3:1), R; = 0.66, and separated
by column chromatography. After the solvent was
removed, a white solid (compound 2) was obtained
in 7% yield, m.p. 208°C.

Reaction between 1
and 2-Phenylethylmagnesium Bromide

2-Phenylethylmagnesium bromide (40 ml, 1 M in
THF) and 1 (2.15 g, 8 mmol, in 150 ml of
toluene) were used for the reaction as for 2. The

TABLE 5 '3C NMR Data of 2-6 (Coupling Constants J in
Hz)

2 35.9(CHy, "Jpc = 61.4),127.4 (Cp, °Jpc = 2.5), 129.2
(Cm, *Jpc = 1.9), 130.3 (Cop, 3Jpc = 5.0), 132.2 (C;,
2Jpc =6.7)

3 28.2 (2-CHy, 2Jpc = 3.0), 30.6 (1-CHy, " Jpc = 62.5),
126.9 (Cp), 128.5 (Cm), 129.2 (Co), 141.3 (C;)

4 0.9 (CHs, 3Jpc =3.1), 21.7 (CHyp, ' Jpc = 56.9)

5 13.9 (CHg), 24.0 (3-CHy, 3 Jpc = 3.8), 24.5 (2-CHp,
2Jpc = 14.4),28.0 (1-CHy, ' Jpc = 65.1)

6 Phosphinyl part: 25.2 (Cmp, 3Jpc = 2.7), 26.3 (Cp), 26.6
(Co), 36.0 (Ci, 'Jpc = 7.4)

Phosphazene part: 26.4 (Cp), 26.6 (Cm, 3Jpc = 2.6),
27.2 (Co, 2Jpc = 11.6), 35.2 (C;, 1 Jpc = 22.8)

residue was chromatographed (R; = 0.52, chloro-
form/acetone 1:1). The white solid (compound 3) was
obtained in 7% yield, m.p. 154°C.

Reaction between 1
and Trimethylsilylmethylmagnesium Chloride

Trimethylsilylmethylmagnesium chloride (34 ml,
1 M in ether) and 1 (1.80 g, 7 mmol, in 150 ml of
toluene) were used for the reaction as for 2. The
mixture was refluxed for 24 h, however. The residue
was chromatographed (R; = 0.39, chloroform). The
white solid (compound 4) was obtained in 4% yield,
m.p. 109°C.

Reaction between 1
and n-Butylmagnesium Bromide

n-Butylmagnesium bromide (24 ml, 2 M in ether)
and 1 (2.50 g, 9 mmol, in 150 ml of toluene) were
used for the reaction as for 2. The residue was chro-
matographed (R; = 0.39, chloroform). The viscous
compound (5) was obtained in 1% yield.

Reaction between 1
and Cyclohexylmagnesium Bromide

Cyclohexylmagnesium bromide (48 ml, 1 M in ether)
and 1 (2.50 g, 9 mmol, in 150 ml of toluene) were
used for the reaction as for 2. The residue was chro-
matographed (R; = 0.53, chloroform/acetone 1:1).
The viscous compound (6) was obtained in 1% yield.

CONCLUSION

Tri- and pentasubstituted monophosphazenes were
isolated from the reaction between N-dichloro-
phosphoryl-P-trichloromonophosphazene and tri-
methylsilylmethylmagnesium chloride, and cyclo-
hexylmagnesium bromide, respectively. Phosphoryl
compounds formed due to a P—N bond cleavage with
benzyl-, 2-phenylethyl-, and »n-butylmagnesium bro-
mide. No phosphorus compound could be isolated
with tert-butyl-, cyclopentyl-, iso-propyl- and ethyl-
magnesium bromide.
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