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ABSTRACT: New approaches for the synthesis of enantiopure 

trifluoromethylthiolated molecules by chiral selenide catalyzed 

allylic trifluoromethylthiolation and intermolecular difunctionali-

zation of unactivated alkenes are disclosed. In these transfor-

mations, functional groups were well tolerated, and the desired 

products were obtained in good yields with excellent chemo-, 

enantio- and diastereoselectivities. This work is nicely comple-

mentary to enantioselective trifluoromethylthiolation, allylic func-

tionalization and intermolecular alkene difunctionalization. 

Fluorine and fluorine-containing moieties can adjust the chemical, 

physical and biological properties of parent molecules.1 Conse-

quently, synthesis of fluorinated molecules is of great interest in 

the field of pharmaceuticals and agrochemicals.2,3 Owing to the 

prevalence of alkene structural unit on molecules, much attention 

has been paid to the synthesis of fluorinated compounds by incor-

poration of a fluorine or fluorine-containing moiety into parent 

alkenes. However, construction of chiral fluorinated molecules 

from alkenes has been largely limited.2b,d In particular, utilizing 

very useful enantioselective allylic C–H functionalization and 

intermolecular difunctionalization of alkenes to synthesize fluori-

nated molecules remains a formidable challenge. Only recently, a 

few elegant approaches have been developed.4-8 For example, 

Toste reported directed allylic fluorination via C–H bond cleavage 

by chiral anion phase transfer catalysis (Scheme 1a),4 and Liu 

demonstrated Cu-catalyzed enantioselective intermolecular CF3-

functionalization of terminal alkenes via radical process (Scheme 

1b).7c,d In comparison with fluoro and trifluoromethyl groups, 

trifluoromethylthio (CF3S) group has higher lipophilicity value.3a 

Compounds bearing a CF3S group may possess some unique 

properties. Herein, we report our discovery that C–SCF3 stereo-

genic molecules could be efficiently produced by chiral selenide-

catalyzed allylic functionalization via C–H bond cleavage and 

intermolecular difunctionalization of alkenes (Scheme 1c). 

In recent years, many efforts have been devoted to the synthesis 

of CF3S-molecules.3,9-11 But, the successful examples of enanti-

oselective trifluoromethylthiolation are rare.10,11 To expand this 

area, we have developed efficient approaches to construct chiral 

CF3S-molecules through bifunctional chalcogenide-catalyzed 

intramolecular reactions of alkenes.11b-e In these transformations, 

an additional functional group had to be installed on substrates as 

a nucleophile group to promote the cyclizations and prevent the 

racemization of thiiranium ion. Due to this installation, the scopes 

are limited to the relatively specialized substrates, which led to 

specific stereogenic CF3S-products. We questionated whether 

chiral CF3S-molecules could be accessed not by the former intra-

molecular mode, but by allylic functionalization and intermolecu-

lar difunctionalization of alkenes. To achieve this goal, two chal-

lenging issues needed to be overcome: (i) The difficulty of enan-

tiocontrol of reactions, especially without a binding group assis-

tance.4 (ii) The racemization of thiiranium ion intermediate 

through C–S bond cleavage to form a unstable carbocation and 

olefin-to-olefin degeneration of thiiranium ion.12 On the basis of 

the previous studies,11,12h we envisioned that relatively stable 

thiiranium ion might not be easy to racemize. Furthermore, a 

proper chiral environment to control the enantioselectivity would 

be feasible to provide by tuning catalysts and additives. Thus, it is 

possible to gain chiral allylic and difunctionalization products in 

high enantioselectivities when allylic proton elimination and nu-

cleophilic attack proceed smoothly after the formation of relative-

ly stable thiiranium ion. 

 

Scheme 1. Catalytic Enantioselective Construction of 

Fluorinated Molecules with Alkenes 
(a) Directed allylic fluorination

(c) Synthesis of C-SCF3 stereogenic molecules by allylic reaction
and intermolecular alkene difunctionalization: This work
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Keeping the assumption in mind, we first investigated allylic 

trifluoromethylthiolation via C–H bond cleavage. Considering 

that the formed thiiranium ion from trisubstituted alkenes with an 

appropriate electronic property might be relatively stable, easily 

prepared (E)-(5-bromopent-2-en-2-yl)benzene (1a) was selected 

as the model substrate. Lewis basic selenium catalysis has exhib-

ited great potentials11-13 and different chiral selenide catalysts 

were examined for this reaction (Table 1). When 1a was treated 

with electrophilic (PhSO2)2NSCF3 (2) using Boc-protected sele-

nide catalyst C1, it was found that allylic reaction occurred to 

give the desired product 3a in 42% yield with 10% ee in the pres-

ence of TfOH (entry 1). Although the enantioselectivity was quite 

low, this indicated that enantioselective implementation was via-

ble by chiral selenide catalysis. Ts-protected catalyst C2 was fur-

ther tested. Product 3a was generated in trace amounts (entry 2). 
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When selenide catalyst C3 with NHTf group was employed, 3a 

was formed with 78% ee (entry 3). These results revealed that the 

NHTf group was crucial and might bind to the TfO- anion to set 

up a proper steric hindrance for high enantiocontrol.11e To probe 

this spectulation, catalyst C4 with nitrogen protected by two Tf 

groups was examined. The enantioselectivity decreased to 43% 

(entry 4). Next, effect of electron density and steric hindrance of 

aryl group on catalysts was studied (entries 5 and 6). It was found 

that methyl and methoxy groups installed at the ortho positions of 

the phenyl ring led to improved yield and ee (entry 5). Less steri-

cally hindered C6 resulted in the drop of yield (entry 6). In con-

trast, the sulfide catalyst was not effective for this transformation 

(entry 7). We realized that an appropriate anion from the corre-

sponding acid could not only accelerate allylic proton elimination 

but also bind to catalyst to provide a proper chiral environment. 

So different acids combined with catalyst C5 were screened. The 

reactivity and enantioselectivity were largely affected (entries 8-

10). Finally, product 3a was obtained in high yield with 91% ee 

using Tf2NH as the acid (entry 10). Less loading of acid affected 

the yield slightly (entry 12). 

 

Table 1. Condition Optimization
a
 

Ph
+

acid

CH2Cl2/toluene

-78 oC, 12 h
1a 2

3a

Me

Br (PhSO2)2N
Ph

Br

SCF3

cat.
SCF3

NHTs

SePh

C1 C2 NHTf

SePh

NHBoc

SePh

C3

C5 C6 C7NHTf

Se

Me

OMe

NHTf

Se

MeO

OMe

NHTf

S

Me

OMe

NTf2

SePh

C4

 
entry cat. acid yield (%)b ee (%)c 

1 C1 TfOH 42 10 

2 C2 TfOH <5 -- 

3 C3 TfOH 45 78 

4 C4 TfOH 14 43 
5 C5 TfOH 50 90 

6 C6 TfOH 42 87 

7 C7 TfOH 12 67 
8 C5 BF3

.OEt2 18 82 

9 C5 TMSOTf 90 87 

10 C5 Tf2NH 99(95) 91 
11d C5 Tf2NH 87 83 

12e C5 Tf2NH 92 91 
aConditions: 1a (0.05 mmol), 2 (1.5 equiv), acid (2.0 equiv), cata-

lyst (20 mol%), CH2Cl2/toluene = 1 mL/1 mL, -78 oC, 12 h. 
bNMR yield using trifluoromethylbenzene as the internal standard. 

Isolated yield is in parentheses on 0.1 mmol scale. cDetermined by 

chiral HPLC analysis. dAt -40 oC. eTf2NH (0.5 equiv). 

Then, we evaluated the substrate scope of reaction. Different 

functional groups on the long chain of alkenes 1 were first studied 

under the similar conditions (Scheme 2). When bromo group was 

replaced by chloro or iodo group, the corresponding products 

were generated in good yields with high enantioselectivities. The 

replacement by OAc, OBz or alkyl ester groups slightly affected 

the enantioselectivities of the transformation (3d-g, 91-93% ees). 

Functional groups containing double bond, triple bond, heterocy-

cle and conjugated diene were well tolerated (3h-q). It is notewor-

thy that when the substrates having two allylic units were used, 

the allylic trifluoromethylthiolation always took place at the al-

lylic side where three substituents including aryl group was at-

tached to the double bond. For example, products 3n-q were suc-

cessfully obtained with 88-92% ees. No byproducts derived from 

the other allylic unit were observed, even using substrate 1o with 

a phenylallylic moiety. The high selectivity of allylic unit might 

stem from the slight stabilization difference between the formed 

ion intermediates from the two double bonds. Based on these 

results, this method provides a good pathway for the selective 

trifluoromethylthiolation of alkenes with multiple double bonds. 

 

Scheme 2. Functional Group Tolerance
a
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aConditions: 1 (0.1 mmol), 2 (1.5 equiv), Tf2NH (2.0 equiv), C5 

(20 mol%), CH2Cl2 (2 mL) + toluene (2 mL), -78 oC, 12 h. The 

yields refer to isolated yields. The ee value was determined by 

HPLC analysis. 

Scheme 3. Allylic Trifluoromethylthiolation of Different 

Alkenes
a
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aConditions: As described in Scheme 2. 

We turned our attention to the allylic trifluomethylthiolation of 

different aryl-substituted alkenes (Scheme 3). Bromo-substituted 

substrates bearing para- or meta-substitutent on the phenyl ring 

could efficiently undergo trifluoromethylthiolation to form the 

products in good yields with excellent enantioselectivities (e.g. 

3r-x, 70-89% yields and 91-94% ees). Electron-rich naphthyl and 

thiophen-3-yl alkenes also underwent the same conversion to give 

the corresponding products with excellent enantioselectivities (3y, 

93% ee; 3z, 92% ee). When 1,1-ethylphenyl-substituted alkene 
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was used as the substrate, the isomer products with acceptable 

isomer ratio Z/E = 3.3:1 were obtained. The enantioselectivities of 

the isomers were excellent. Similarly, the allylic trifluoromethyl-

thiolation of ester-tethered alkenes proceeded efficiently to give 

the corresponding products in good yields (3ab-al, 70-95% 

yields). The enantioselectivities were excellent for most cases 

except for the formation of 3ak (3ak, 70% ee). The decrease of 

enantioselectivity might ascribe the change of steric hindrance 

around the double bond on substrate. 

 

+
CH2Cl2/toluene

Tf2NH, -78 oC, 12 h4 2

(PhSO2)2N
C5 (20 mol%)

SCF3

Ph
Ph

SCF3

(1)

5, 89%, 84% ee

+

6 2

(PhSO2)2N
same as above

SCF3

Me

Ar

Me

Ar

SCF3

(2)

7a: Ar = 4-PhC6H4, 88%, 94% ee; 7b: Ar = 3-MeOC6H4, 85%, 95% ee

+
CH2Cl2/toluene

Tf2NH, -78 oC, 72 h1e, 1.0 g 2

(PhSO2)2N
C5 (0.5 mol%)

SCF3

Me

Ph
Ph

SCF3

(3)

3e, 1.32 g
90%, 93% ee

OBz
OBz

Me

7

 
 

This method was extended to the trifluoromethylthiolation of 

pure hydrocarbons. When commerically available alkene 4 was 

treated with 2 under the similar conditions,  product 5 was ob-

tained in good yield with good ee (eq. 1). When alkene 6a, 3ag’s 

analogue, and 6b, 3ah’s analogue, were tested under the condi-

tions, the corresponding products were obtained in high yields 

with almost unchanged ees in comparision to 3ag and 3ah, re-

spectively (eq. 2). To evaluate reaction efficiency, the reaction 

was scaled up using gram-scale 1e as the substrate in the presence 

of 0.5 mol% catalyst C5 (eq. 3). The desired product was still 

obtained in excellent yield with the same ee, which indicates that 

this method has great potential for practical synthetic application. 

It is rationalized that difunctionalization products could be gen-

erated in the presence of a nucleophile in reactions. Satisfactorily, 

when nucleophilic reagents such as Et3N·3HF, H2O, TMSNCS, 

AcOH, MeOH, propargyl alcohol and methallyl alcohol were 

added into reactions, the corresponding difunctionalization prod-

ucts were obtained in moderate to good yields with excellent en-

antio- and stereoselectivities (Scheme 4). Functional groups, i.e. 

Br–, double bond and triple bond, were well tolerated under the 

conditions. Selectivity for different double bond on substrates was 

excellent as what was observed in aforementioned allylic reaction 

(i.e. 9k). It is noteworthy that this method provides a intriguing 

route for the synthesis of chiral fluorinated compounds with al-

kenes. For instance, 9a was obtained with 85% ee. Its absolute 

configuration was determined by X-ray crystallagraphic analysis. 

Allylic products are versatile synthetic intermediates and could 

be further converted to various compounds (Scheme 5). For ex-

ample, 3a bearing a removable bromo group could be efficiently 

transformed to sulfone 10 and nitrile 11 in high yields by substitu-

tion reactions. It also underwent hydroboration-oxidation reaction 

to give primary alcohol 12 in good yield with 3:1 dr by an anti-

Markovnikov fashion. The bromo group on 3a was easily re-

placed by TsNH group. The formed product 13 could undergo 

bromo-aminocyclization to give a quaternary-containing product 

14 with the slight erosion of enantioselectivity. Furthermore, 3e 

having a ester group could be easily deprotected to form alcohol 

15 under basic conditions, then followed by selenide-catalyzed 

cyclization to generate cyclic ether 16 in high yield. The CF3S 

group could be oxidized to Tf group, another type of useful fluor-

inated group. These results indicate that a series of CF3S-

compounds including important cyclic amines and ethers with a 

quaternary center can be easily accessed by the developed method. 

 

Scheme 4. Intermolecular Difunctionalization of Alkenes
a
 

R2 CH2Cl2/toluene
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SCF3

Me OAc

OBz

9j, 73%, 93% ee

Ph
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9k, 62%, 86% ee

O

O
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Nu = R'Nu:F 9a, 68%, 85% ee

OH 9b, 80%, 93% ee H2O (20 equiv)b

SCN 9c, 58%, 93% ee TMSNCS (4 equiv)

OAc 9d, 76%, 90% ee AcOH (50 equiv)

OMe 9e, 80%, 91% ee MeOH (4 equiv)

9f, 72%, 89% ee

9i, 74%, 93% ee

Et3N  3HF (4 equiv)

O
(4 equiv)

HO

Me

O

O

 
aConditions: 1 or 6 (0.1 mmol), 2 (1.5 equiv), 8 (4 equiv) unless 

noted, Tf2NH (2.0 equiv), C5 (10 mol%), AcOH (50 equiv) or 

MeOH (4 equiv), CH2Cl2 (1 mL) + toluene (1 mL), -78 oC, 12 h. 

The yields refer to isolated yields. The ee value was determined 

by HPLC analysis. All the diastereoselectivities are >99:1. bTM-

SOTf (1 equiv) instead of Tf2NH. 

Scheme 5. Further Transformations of Products 

Ph
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Ph
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OH
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Ph
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Ph
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Ph
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O
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Ph

BrOBz OH
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(d)

(c)

(e)
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Conditions: (a) PhSO2Na, DMF, 80 oC, 12 h. (b) TMSCN, K2CO3, 

MeCN, 80 oC, 12 h. (c) BH3, THF, rt, 12 h; then NaOH, H2O2, rt, 

2 h. (d) TsNH2, K2CO3, acetone, reflux, 12 h. (e) NBS, MsOH, 

CH2Cl2, rt, 12 h. (f) KOH, MeOH, rt, 12 h. (g) NBS, PhSePh, 

CH2Cl2, rt, 12 h. (h) RuCl3, NaIO4, MeCN/H2O/CCl4, rt, 14 h. 

A plausible mechanism is proposed in Scheme 6.11 Ion pair I is 

first formed after the reaction of catalyst C5 with 2 in the pres-

ence of Tf2NH. It interacts with alkene 1 to give thiiranium ion II. 

Intermediate II is relatively stable and undergoes deprotonation to 

generate allylic product 3 with the aid of anion as the base. When 

this intermediate is attacked by nucleophilic group, difunctionali-

zation product 9 is formed. In these transformations, trisubstituted 

alkenes as the substrates are important to more favor the for-

mation of thiiranium ion intermediate14 than disubstituted al-

kenes.15 

 

 

Scheme 6. Proposed Mechanism 
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In summary, we have developed efficient approaches toward 

enantioselective allylic C–H trifluoromethylthiolation and inter-

molecular difunctionalization of alkenes by chiral selenide cataly-

sis. Notably, these transformations proceeded without an addi-

tional binding group assistance. As practical applications, the 

products were further converted into various valuable compounds 

and the reaction was scaled up to gram-scale with low catalyst 

loading (0.5 mol%). This work provides a new pathway for the 

synthesis of C–SCF3 stereogenic compounds and implicates the 

possibility of successful enantiocontrol in other types of alkene 

functionalizations without a directing group assistance. 

Experimental details, characterization data, NMR spectra of new 

compounds, and HPLC traces. This material is available free of 

charge via the Internet at http://pubs.acs.org. 
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Information). Furthermore, tetrasubstituted alkenes such as (E)-2,3-

diphenyl-2-butene did not work under the standard conditions either. 
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