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ABSTRACT: The expanding “toolbox” of biocatalysts opens 
new opportunities to redesign synthetic strategies to target 
molecules by incorporating a key enzymatic step into the 
synthesis. Herein, we describe a general biocatalytic ap-
proach for the enantioselective preparation of 2,6-
disubstituted piperidines starting from easily accessible pro-
chiral ketoenones. The strategy represents a new biocatalytic 
disconnection, which relies on an ω-TA-mediated aza-
Michael reaction. Significantly, we show that the reversible 
enzymatic process can power the shuttling of amine func-
tionality across a molecular framework, providing access to 
the desired aza-Michael products.   

The intramolecular aza-Michael reaction (IMAMR) is a pow-
erful method for the preparation of simple and architectural-
ly complex nitrogen heterocycles and alkaloid skeleta.

1
  

An ideal strategy for the synthesis of such heterocycles and 
alkaloids is a tandem reductive amination/IMAMR sequence 
(Figure 1), allowing direct, one-pot conversion of readily 
available prochiral ketoenones 2 to stereodefined, highly 
functionalized cyclic products 1. However, the approach is 
dependent upon amination conditions where there is i) no 
reduction of the double bond, ii) no amination of the enone 
carbonyl, iii) stereoselective amination of the desired ketone 
and iv) no amination of the pendent piperidine ketone. Ow-
ing to these demands, the strategy outlined in Figure 1 is 
currently beyond traditional chemical synthesis and IMAM 
strategies are characterised by step-wise introduction of 
N/O-functionality with a consequent reliance on protecting 
group manipulations.

2
  

Biocatalysis allows us to reevaluate synthetic strategies and 
enables disconnections that are not possible using traditional 
chemical synthesis or catalysis.

3
 ω-Transaminase (ω-TA) 

enzymes are emerging as extremely important catalysts for 
the synthesis of optically pure chiral amines starting from 
readily available prochiral ketones.

4
 Despite the challenges 

associated with the use of ω-TAs, including the necessity for 
high equivalents of sacrificial amine donor, the application of 
an (R)-selective ω-TA variant for the industrial-scale synthe-
sis of the anti-diabetic drug, Sitagliptin, highlights their 
enormous synthetic potential.

4a
 These enzymes rely on the 

cofactor pyridoxyl-5’-phosphate (PLP) to mediate the amina-
tion of ketones,

5
 with no requirement for reducing agents, 

and therefore have the potential to be applied effectively for 
the synthesis of a broad range of piperidines following the 
strategy outlined in Figure 1. While previous studies have 
shown that excellent regioselectivity can be achieved in the 
conversion of sterically demanding 1,4- and 1,5-diketones 
bearing one bulky group,

6
 there is no literature precedence 

for such selectivity on substrates with two accessible ketones. 

 

Figure 1. An attractive retrosynthesis for the preparation of 
heterocycles and alkaloids starting from ketoenones.  

Here we describe a new biocatalytic disconnection for the 
regio- and stereoselective synthesis of a range of 2,6-
disubstituted piperidines exploiting a key biocatalytic trans-
amination followed by a spontaneous IMAMR. Furthermore, 
for substrates where high regioselectivity is not expected, we 
specifically exploit the reversible nature of the biocatalytic 
amination process to ensure that the amine functionality is 
ultimately installed at the desired position in a strategy that 
would not be possible using a classical reductive amination.   

Two commercially available ω-TA biocatalysts from Codexis, 
which have complementary selectivity, were chosen to evalu-
ate the methodology on a small panel of diketones 3a-e. 
These diketones are readily available via oxidative cleavage of 
1-methylcyclopentene

 
followed by reaction with a suitable 
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phosphorus ylid (see ESI). Complete regioselectivity in the 
amination step of ketones 3a-d was anticipated from previ-
ous literature.

6
 As expected, both the (S)- and (R)-selective 

ω-TA enzymes mediated the transamination reaction exclu-
sively on the methyl ketone in >99% ee (Table 1). Following 
transamination, a spontaneous IMAMR occurs, providing the 
2,6-disubstituted piperidines

7
 as a mixture of diastereoiso-

mers. Conveniently, epimerization readily occurred upon 
standing in MeOH, presumably via a retro-aza-Michael reac-
tion,

8 
providing products 4a-d in >99% de. A particularly 

important aspect of this transformation is the requirement 
for only 2 equivalents of the low-cost isopropylamine donor 
in the absence of in-situ by-product removal strategies, ow-
ing to the powerful driving force of the 1,4-addition reaction. 
Firstly, this gave us confidence that the reversible amination 
strategy could be successfully exploited for the conversion of 
substrates with two accessible ketones. Additionally, employ-
ing these conditions does not lead to any undesired amina-
tion of the product pendent ketone. The aza-Michael reac-
tion also drives amination of bulkier ketones and a reversal 
in the selectivity previously observed during transamination 
of 1,4/1,5-dicarbonyls.

6
 Thus, ethylketoenone 3e provides 

piperidine 4e, albeit with reduced yield/ee, using the alter-
nate (S)-selective ATA256.

8
  

Table 1. ω-TA-mediated transamination/IMAMR cas-
cade of ketoenones 3a-e.a  

O

R

R'

O

N
H

R' R

O

3a-e

CH2

(S,S)-4a-e

N
H

R' R

O (ii)

N
H

R' R

O

(R,R)-4a-e

N
H

R' R

O (ii)

(S)-ATA113

(R)-ATA117

(S)

(R)

NH2 O

2 eq.

R = tBu, 3a

R = , 3b
R' = Me,

R' = Et, R = Me, 3e

R = Ph, 3c

R = OEt, 3d

 

Substrate ω−ΤΑ
  Conv 

(%)b 
ee 
(%)c 

de 
(%)d 

Yield  
(%)e 

3a ATA113 >99f >99 >99g  78 (S,S)h 
3a ATA117 >99f >99 >99g 88 (R,R)h 
3b ATA113 >99 >99 >99 92 (S,S)h 
3bi ATA117 >99f >99 >99 90 (R,R)h 
3c ATA113 >99 >99 >99 76 (S,S)h 

3ci ATA117 50f >99 >99 44 (R,R)h 

3d ATA113 >99 >99 >99j 72 (S.S)h 
3d ATA117 >99 >99 >99j 70 (R,R)h 
3ei,k ATA256 >99f 70l >99 50(S,S)h, 

a Reaction conditions: (i) ω-TA (5 mg/mL), substrate (50 mM), iso-
propylamine (100 mM), pyridoxyl-5’-phosphate (PLP, 2 mM), HEPES 
buffer (100 mM, pH 7.5), 30 °C, 150 RPM, 24 h; (ii) MeOH, r.t., 24 h. b 

Conversion determined by 1H-NMR after 24 h. c 
ee determined by 

chiral GC or HPLC (see ESI). d 
de determined by NMR after the 

epimerization step. e Isolated yield after flash chromatography. f 

Conversion after 48 h. g Epimerization was carried out at 65 oC for 24 
h. h Configuration assigned by analogy with 3f and in agreement with 
NOESY experiments (see ESI). i 4 equivalents of isopropylamine were 
used. j

 Epimerization was carried out in EtOH at 80 oC for 24 h. k 
Reaction carried out at 50 oC. l See reference 8. 

In light of this, it was envisaged that the same methodology 
could be employed to access the naturally occurring defense 

alkaloid (−)-pinidinone 4f9,10
 from the corresponding dime-

thyl ketoenone 3f (Scheme 1). An additional level of complex-
ity is associated with this diketone as the ω-TA is not ex-
pected to show any regioselectivity in the amination step. 
We reasoned that while two amine products would initially 
be formed resulting from amination of the methyl ketone 
and enone, the reversible nature of the biocatalytic amina-
tion coupled with the spontaneous 1,4-addition would drive 
the shuttling of the undesired amine to allow exclusive isola-

tion of (−)-pinidinone 4f and trans-5f. As expected, incuba-
tion of 3f with ATA117 afforded a mixture of diastereoisomers 
4f and 5f with >99% conversion and >99% ee, which was 

easily epimerized to (−)-pinidinone 4f with >99% de (Table 
2). Comparable results were obtained with (S)-selective 
ATA113. We have also demonstrated that 1.1 equivalents of 
the amine donor were sufficient to achieve >99% conversion 
(Table 2, footnote f). The synthetic utility of our methodolo-
gy is showcased by the ease of upscaling, allowing access to 

0.48 g of (−)-pinidinone employing only 2 eq of isopropyla-
mine (Scheme 1).  

Table 2. Results from biotransformations with 3f 
employing ATA113 and ATA117.a  

Substrate ω−ΤΑ
  

Conv 
(%)b 

ee 
(%)c 

de 
(%)d 

Yield  
(%)e 

3f ATA113 >99f >99 >99 91 (S,S)g 

3f ATA117 >99f >99 >99 90 (R,R)g 

a-e See Table 1 footnotes. f This transformation could also be carried 
out using 1.1 eq. of isopropylamine (55 mM) with identical conver-
sion. g Absolute configuration determined by correlation with known 
compounds (see ESI).   

Scheme 1. Preparative scale conversion of 3f to 4f (−−−−)-
pinidinone using (R)-selective ATA117.  

 

To support our hypothesis that the amine functionality can 
be shuttled across the molecular framework, amino ketone 
6f was synthesized in 5 steps (see ESI) and exposed to ATA117 
in the absence of any additional amine donor or acceptor 
(Scheme 2). After 24 h, complete consumption of 6f was 

observed along with the formation of a mixture of (−)-
pinidinone 4f and trans-5f. To our knowledge, this is the first 
example of an ω-TA reaction that does not require a separate 
donor and acceptor. The enzyme bound PLP forms pyridox-
amine phosphate (PMP) using 6f as the amine donor and 
generates diketone 3f. The amine functionality is then shut-
tled to the more thermodynamically stable ketone, which 
readily undergoes an IMAMR. While bis-amine 7f was not 
observed during the course of the reaction, it is likely that it 
is an intermediate. The efficiency of this conversion is strik-
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ing, as the single amine equivalent available in the reaction 
has come from the starting material 6f.   

Scheme 2. Proposed mechanism for the formation of 

(−−−−)-pinidinone 4f and trans-5f from the single amine 
equivalent 6f. 

 

In conclusion, we have developed an extremely efficient 
biocatalytic aza-Michael strategy for the enantioselective 
conversion of pro-chiral ketoenones to 2,6-disubstituted 
piperidines, with excellent conversion and isolated yield. Our 
approach reveals that coupling a reversible ω-TA reaction 
with a strong thermodynamic driving force allows the amine 
functionality to be shuttled across a molecular framework to 
form the desired product. This work significantly expands 
the scope of ω-TA methodology in total synthesis and we are 
currently exploring the utility of this dynamic chemistry for 
the synthesis of more complex alkaloid scaffolds.  
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