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 Over the past fifty years, transition metal-catalyzed cross-
coupling reactions have transformed the field of synthetic 
organic chemistry via the evolution of a wide variety of C–C 
and C–heteroatom bond-forming reactions (1, 2). During 
this time, the seminal studies of Negishi, Suzuki, Miyaura, 
Stille, Kumada, and Hiyama have inspired numerous proto-
cols to construct carbon–carbon bonds using palladium, 
nickel, or iron catalysis. These strategies enable highly effi-
cient and regiospecific fragment couplings with high func-
tional group tolerance, facilitating the application of 
modular building blocks in early- or late-stage synthetic ef-
forts. Traditionally, cross-coupling methods have relied up-
on the use of organometallic nucleophiles such as aryl or 
vinyl boronic acids, zinc halides, stannanes, or Grignard 
reagents that undergo addition to a corresponding metal-
activated aryl or vinyl halide. 

An emerging strategy for C–C bond formation has been 
the application of native organic functionality as latent nu-
cleophilic handles for transition metal-mediated cross-
couplings. In this context, the use of olefin, methoxy, ace-
toxy, and carboxylic acid moieties as organometallic re-
placements has enabled a variety of carbon–carbon bond 
formation protocols using feedstock materials (3–8). How-
ever, without question the most common approach for tran-
sition metal-mediated native functionalization has been the 
use of C–H bonds—the most ubiquitous chemical bonds 
found in nature—as nucleophilic coupling partners. Among 
the well-established challenges with sp3 C–H bond function-
alization, regioselectivity is perhaps preeminent, given that 
organic molecules incorporate a diverse combination of me-
thyl, methylene, and/or methine groups. Several elegant 
methodologies have navigated this question via the use of 

directing groups to accomplish selective sp3 C–H bond func-
tionalization (9–13), or more recently by focusing upon the 
use of inductive effects to deactivate C–H bonds (14). En-
zymes accomplish selective sp3 C–H bond functionalization 
by taking advantage of the diverse electronic and enthalpic 
characteristics of carbon–hydrogen bonds found within 
complex organic molecules (15). Inspired by this biochemi-
cal blueprint, we speculated that a small-molecule catalyst 
platform could be developed that would differentiate be-
tween a diverse range of C–H groups using a combination of 
bond energies and polarization, thereby enabling a unique 
pathway toward native arylation or vinylation. 

A fundamental mechanistic step in organic synthesis is 
the simultaneous movement of a proton and an electron—a 
process termed hydrogen atom transfer (HAT) (16, 17). HAT 
has long served as an effective way to access radical inter-
mediates in organic chemistry; however, the capacity to re-
gioselectively abstract hydrogens among a multitude of 
diverse C–H locations has been notoriously difficult to con-
trol. Recently, driven by developments in small-molecule 
catalyst design, general methods for C–H bond functionali-
zation via HAT have begun to achieve levels of selectivity 
that were previously restricted to enzymatic systems (18, 19). 
In this context, our laboratory has demonstrated that pho-
toredox-mediated HAT catalysis can exploit native sp3 C–H 
bonds for a range of C–C bond constructions, such as Minis-
ci reactions, conjugate additions, and radical–radical cou-
plings (20–23). Nevertheless, a general strategy for 
functionalization of C–H bonds via HAT–transition metal 
cross-coupling has yet to be achieved (24, 25). 

We recently questioned whether it would be possible to 
utilize a tertiary amine radical cation—generated via a pho-
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toredox-mediated single electron transfer (SET) event (23, 
26–28)—to accomplish H-atom abstraction from a diverse 
range of substrates (Fig. 1). Given the electrophilic nature of 
amine radical cations, we proposed that such a catalytic 
strategy might allow the selective abstraction of hydridic, 
electron-rich C–H bonds in the presence of electron-
deficient and neutral C–H bonds, which are abundant 
throughout organic molecules. We envisioned that the ex-
ploitation of polarity effects in the abstraction event would 
impart a high degree of kinetic selectivity into an otherwise 
unselective HAT process (29). Thereafter, we assumed the 
resulting radical intermediate might readily intersect with a 
Ni-catalyzed coupling cycle, thereby enabling C–C bond 
formation with a range of aryl electrophiles. 

A detailed description of our proposed mechanistic cycle 
for the sp3 C–H cross-coupling via photoredox HAT–nickel 
catalysis is outlined in Fig. 2. Initial excitation of the iridi-
um(III) photocatalyst Ir[dF(CF3)ppy]2(dtbbpy)PF6 
[dF(CF3)ppy = 2-(2,4-difluorophenyl)-5-(trifluorometh-
yl)pyridine, dtbbpy = 4,4'-di-tert-butyl-2,2'-bipyridine] (1) 
would produce the long-lived photoexcited state 2 (τ = 2.3 
μs) (30). The *Ir(III) catalyst 2 is sufficiently oxidizing to 
undergo SET with a tertiary amine HAT catalyst (such as 3), 
to generate Ir(II) 4 and amine radical cation 5 (E1/2

red 
[*IrIII/IrII] = +1.21 V vs. saturated calomel electrode (SCE) in 
CH3CN, Ep [3-acetoxyquinuclidine] = +1.22 V vs. SCE in 
CH3CN) (30). As a central design element, we postulated 
that amine radical cation 5 would be sufficiently electron-
deficient to engender a kinetically selective HAT event at 
the most electron-rich site of C–H nucleophile substrate 6, 
thereby exclusively delivering radical intermediate 7. At the 
same time, we hypothesized that this abstraction event 
should also be thermodynamically favorable considering the 
significant difference in the bond dissociation enthalpies 
(BDEs) of hydridic α-amino C–H bonds (α-amino C–H = 89–
94 kcal/mol) and the resultant N–H bond of quinuclidinium 
(H–N+ BDE [quinuclidine] = 100 kcal/mol) (31, 32). Concur-
rent with this photoredox cycle, we assumed that our active 
Ni(0) species 9—generated in situ via two SET reductions of 
(4,7-dOMe-phen)Ni(II)Br2 (4,7-dOMe-phen = 4,7-dimethoxy-
1,10-phenanthro-line) by the iridium photocatalyst (E1/2

red 
[IrIII/IrII] = –1.37 V vs. SCE in CH3CN, E1/2

red [NiII/Ni0] = –1.2 
V vs. SCE in DMF) (30, 33)—would undergo oxidative addi-
tion into the aryl halide electrophile 10, forming the elec-
trophilic Ni(II)-aryl intermediate 11. This Ni(II) species 
would rapidly intercept radical 7 to generate a Ni(III)-aryl-
alkyl complex 12, which upon reductive elimination would 
forge the desired C–C bond to form Ni(I) complex 13 and 
benzylic amine 14. Reduction of 13 by 4, the Ir(II) state of 
the photocatalyst, would then reconstitute both Ni(0) cata-
lyst 9 and Ir(III) catalyst 1. 

We began our investigations into the proposed photore-

dox-mediated HAT nickel cross-coupling by evaluating a 
broad range of photoredox catalysts, nickel–ligand systems, 
and quinuclidine analogs. Upon exposing N-Boc pyrrolidine 
and methyl 4-bromobenzoate to visible light (34 W blue 
LEDs) in the presence of iridium photocatalyst 
Ir[dF(CF3)ppy]2-(dtbbpy)PF6, NiBr2•3H2O, 4,7-dimethoxy-
1,10-phenanthroline, and 3-acetoxyquinuclidine, we were 
pleased to observe 81% yield of the desired α-amino C–C 
coupled product. More importantly, this product was the 
only detectable regioisomer formed, indicating that quinu-
clidine HAT catalyst 3 was selective for the most hydridic 
C–H bond available. Notably, employing quinuclidine in lieu 
of 3-acetoxyquinuclidine resulted in diminished reactivity, 
indicating the necessity for an electron-withdrawing sub-
stituent. This substantial difference in reaction efficiency 
illustrates the capacity to tune the reactivity of the HAT cat-
alyst via electronic modification of the substituent at the 3-
position. It is important to note that under these reaction 
conditions, amine 3 serves as both the HAT catalyst and the 
base (34) 

With the optimal conditions in hand, we next sought to 
examine the generality of this transformation by exploring 
the scope of the electrophilic aryl halide coupling partner. 
As outlined in Fig. 3, a wide variety of bromoarenes function 
efficiently in this HAT cross-coupling protocol. For example, 
electron-deficient aryl bromides containing ketones, trifluo-
romethyl groups, fluorines, sulfones, and esters were all ef-
fective arylating agents (15–18, 71–84% yield). Notably, 4-
chlorobromobenzene gave chlorophenyl amine product 19 
as the only observable arylation product in 70% yield, 
demonstrating that a high degree of chemoselectivity can be 
achieved in the oxidative addition step. The HAT arylation 
strategy is further effective for electron-neutral and elec-
tron-rich aryl bromides, as demonstrated by the installation 
of phenyl, tolyl, t-Bu-phenyl, and anisole groups (20–23, 
64–79% yield). The presence of ortho methyl or fluorine sub-
stitution on the aryl halide was not problematic (24 and 25, 
70% and 60% yield). With respect to heteroaromatic sys-
tems, pyridine rings were incorporated with good efficiency 
via the use of the corresponding heteroaryl bromide (26, 
65% yield). We were satisfied to see that heteroaryl chlo-
rides were also effective electrophiles in the transformation. 
For example, electron-deficient pyridines and pyrimidines 
deliver the benzylic amine products in good efficiency (27–
29, 61–83% yield) (35). The collective one step synthesis of 
the aryl pyrrolidine products 14–29 from simple N-Boc pyr-
rolidine clearly demonstrates that synthetic streamlining 
can be accomplished using this HAT cross-coupling tech-
nology (36). 

We next explored the diversity of amino- and oxy-bearing 
C–H nucleophiles that could be employed as substrates in 
this photoredox-mediated HAT nickel-catalyzed cross-
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coupling. As demonstrated in Fig. 3, many α-amino methyl- 
and methylene-containing substrates can be selectively ary-
lated. For example, differentially N-substituted pyrrolidine 
substrates are effective in the transformation, including 
those bearing tert-butoxycarbonyl (Boc), benzyloxycarbonyl 
(Cbz), pivalate (Piv), and tert-butylaminocarbonyl (Bac) 
groups (14, 30–32, 51–81% yield). Notably, the arylation of 
N-Boc pyrrolidine can be achieved on gram-scale in a single 
batch, delivering 1.34 g of the 2-arylpyrrolidine product 14 
(78% yield). Cyclic amines of various ring size are readily 
tolerated with azetidine, piperidine, and azepane undergo-
ing selective C–H arylation (33–35, 42–69% yield). Remark-
ably, ring systems that incorporate inductively withdrawing 
alcohols and fluorine substituents at the β-amino position 
do not unduly retard the C–H abstraction step (36 and 37, 
45% yield, >20:1 d.r. and 68% yield, 3:1 d.r.). Moreover, lac-
tams and ureas proved effective latent nucleophiles for this 
coupling, with both N-Me and N-H substrates providing the 
corresponding arylated products in good yield (38–42, 62–
84% yield). 

The transformation is not restricted to cyclic substrates, 
as a range of acyclic amines have been efficiently functional-
ized using this HAT arylation protocol. For example, prima-
ry α-amino C–H bonds can be arylated using both N-Boc 
alkyl amines and ureas (43–45, 47–74% yield). N-Boc butyl-
amine, possessing a free N–H bond, undergoes selective α-
arylation in 58% yield (46), leaving this latent functional 
handle available for further derivatization without the need 
for protection or deprotection steps. For acyclic dialkyl 
amines containing methylene C–H bonds, we were delighted 
to see that N-Bac substituted amines delivered the α-
arylated products in excellent yield (47–49, 66–82% yield) 
while the corresponding Boc systems provided diminished 
yet usable efficiencies (20–30% yield). We attribute this in-
teresting reactivity difference to the diminished electron-
withdrawing nature of the Bac group in comparison to Boc, 
resulting in an increased rate of hydrogen atom transfer to 
the electrophilic amine radical cation 5. 

When unsymmetrical amine substrates were exposed to 
this HAT protocol, some interesting regioselectivity patterns 
were discovered. For example, methyl C–H bonds undergo 
preferential coupling over methylene C–H bonds, as shown 
with N-Bac butylmethylamine (48, 78% yield, 4:1 r.r.). Fur-
thermore, methyl and methylene C–H bonds react exclusive-
ly over methine C–H bonds, as demonstrated with N-Bac 
isopropylmethylamine and N-Boc 2-methylpyrrolidine, re-
spectively (49 and 50, 82% and 62% yield, 1:1 d.r.). This 
strategy can also be applied to the HAT arylation of α-oxy 
C–H bonds. Tetrahydrofuran (THF) and oxetane both un-
dergo α-oxy arylation in good efficiency (51 and 52, 76% 
and 53% yield). Finally, we have been able to demonstrate 
that this C–H arylation protocol is effective for benzylic sys-

tems as para-xylene is arylated in 54% yield (53). Indeed, 
we expect that application of this strategy to a broad range 
of α-oxy, α-amino, and benzylic C–H-bearing substrates will 
demonstrate the general utility of this selective C–H aryla-
tion protocol. 

Finally, we recognized that the capacity to control the 
regioselectivity of the outlined HAT abstraction along with 
the opportunity to utilize C–H bonds as latent nucleophiles 
brings forward the possibility of enabling multiple native 
functionalizations to be conducted in sequence—a strategy 
that should allow the rapid construction of molecular com-
plexity from a large variety of readily available organic feed-
stock chemicals. As one example, we postulated that N-Boc 
proline methyl ester (54) might be differentially arylated via 
(i) the photoredox-mediated HAT method presented in this 
work, followed by (ii) a photoredox-mediated Ni(II) decar-
boxylative arylation. As shown in Fig. 4, N-Boc proline me-
thyl ester underwent selective arylation at the 5-methylene 
position using the HAT cross-coupling strategy disclosed 
herein (66% yield, 4:1 d.r.). The observed regioselectivity is 
usefully complementary to that which would be expected 
using established methods for transition metal-catalyzed 
cross-coupling. Whereas many current strategies utilize 
basic conditions to selectively functionalize acidic hydro-
gens (as in enolate arylations), our developed HAT protocol 
targets hydridic hydrogen atoms, thereby providing access 
to fundamentally distinct product classes. Following the 
successful execution of the outlined C–H arylation, the cor-
responding amino acid product 55 successfully underwent 
decarboxylative coupling with 2-fluoro-4-bromopyridine at 
the 2-position delivering the 2,5-diarylated pyrrolidine ad-
duct in excellent yield (56, 73% yield, 4:1 d.r.). We have also 
been able to demonstrate a HAT arylation followed by a 
nickel-catalyzed C–O coupling (37). N-Boc 3-
hydroxyazetidine can be selectively arylated at the 2-
position in 45% yield (36, Fig. 3), leaving the alcohol un-
touched. The free alcohol can then be subsequently arylated 
with 4-bromo-2-methylpyridine to deliver the aryl ether 
product in 77% yield (see Supplementary Material). 

This HAT strategy represents a powerful demonstration 
of the versatility of using sp3 C–H bonds as organometallic 
nucleophile equivalents and will likely find application in 
the realm of late-stage functionalization. We believe that 
this protocol will gain widespread use within the synthetic 
community as a complement to existing cross-coupling 
technologies. 
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Fig. 1. Photoredox-mediated hydrogen atom transfer and nickel 
catalysis enable highly selective cross-coupling using sp3 C–H 
bonds as latent nucleophiles. 
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Fig. 2. Photoredox, HAT, and nickel-catalyzed cross-coupling: proposed mechanistic pathway and 
catalyst combination. Ac, acetyl; t-Bu, tert-butyl; Boc, tert-butoxycarbonyl; LED, light-emitting diode; SET, 
single-electron transfer; HAT, hydrogen atom transfer. 
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Fig. 3. Photoredox, HAT, and nickel-catalyzed cross-coupling: Aryl halide and C–H nucleophile scope. All 
yields are isolated yields. Reaction conditions as in Fig. 2; see Supplementary Material for experimental details. 
Ac, acetyl; t-Bu, tert-butyl; Boc, tert-butoxycarbonyl; Piv, pivalate; Cbz, benzyloxycarbonyl; Bac, tert-
butylaminocarbonyl. *Reaction performed with 4-bromobenzotrifluoride to deliver N-Bac 2-(4-
trifluoromethylphenyl)-pyrrolidine. †Minor regioisomer is arylated on Me position. ‡Minor regioisomer is arylated 
on α-amino methylene position. §Yield determined by 1H NMR. 
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Fig. 4. Regioselective arylation: employing C–H arylation and decarboxylative arylation delivers 
differentially arylated pyrrolidine product. All yields are isolated yields. See Supplementary Material for 
experimental details. 
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