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ABSTRACT: Oxidized iodoarenes (OIAs), prepared via mCPBA-mediated oxidation, have been demonstrated as versatile
precursors for the synthesis of [18F]fluoroarenes in the absence of catalysts. OIAs have been identified as intermediates in single-
pot syntheses of iodonium salts and ylides but have never been recognized as radiofluorination precursors. Here, the isolated
OIAs were used without any catalysts to produce functionalized [18F]fluoroarenes, regardless of the electronic nature of the
arenes. This method was also applied to the production of radiolabeling synthons for use as aromatic 18F-labeled building
blocks.

Positron emission tomography (PET) is a noninvasive
imaging technique used to trace radioisotope-labeled

chemical compounds in vivo.1 Among the many radionuclides
used for PET, fluorine-18 is considered ideal due to its half-life
(t1/2 = 109.8 min) and decay characteristics, which are suitable
for chemical modification and PET imaging, respectively.2 In
vivo stability is a key criterion for PET radiopharmaceuticals. In
most cases, whereas aliphatic radiotracers are relatively easily
prepared, they can undergo radiodefluorination in physio-
logical conditions.3 This issue has been resolved for many
aliphatic PET radiotracers,4 but aromatic fluoro-congeners are
still considered more stable against in vivo radiodefluorination.5

Many studies have focused on developing efficient means of
introducing fluorine-18 onto aromatic substrates.6 However,
facile radiofluorination protocols that consistently yield
aromatic PET radiotracers remain a longstanding challenge.
One recent development is the use of hypervalent compounds
as labeling precursors for transition-metal-free radiofluorina-
tion.2,5,6c,d Another strategy is to employ transition-metal-
catalyzed radiofluorination to produce [18F]fluoroarenes.5,7

The former approach showcases the different classes of
hypervalent compounds, including diaryliodonium salts,
iodonium ylides,8 diaryl sulfoxides,9 and sulfonium salts.10

The latter approaches include the use of transition-metal
catalysts in addition to synthetically demanding organometallic
precursors.11 Despite the advantages of the use of these

substrates as PET precursors, difficulties associated with the
synthesis of labeling precursors continue to limit the broader
application of this technology in 18F-radiochemistry.
Recently, Pike et al.12 have reported the use of

(diacetoxyiodo)arenes, a class of λ3-hypervalent iodine
compounds, as precursors for [18F]fluoroarenes. They reported
the syntheses of [18F]fluoroarenes from λ3-aryliodanes with
two acetoxy ligands on the central iodine and pivaloyl or
trifluoroacetyl ligands. One particularly interesting aspect of
their report is the radiofluorination of isolated oxo-μ-
aryliodane acquired from 1-iodo-4-(trifluoromethyl)benzene
to provide 1-[18F]fluoro-4-(trifluoromethyl)benzene. Although
the use of λ5-iodoxyarenes as a labeling precursors for
[18F]fluoroarenes has been patented, studies employing the
patented process are rare.13 These reports suggest that
oxidized, higher valent iodoarenes can be radiofluorinated,
regardless of the oxidation state of the iodine atom. This
prompted us to investigate the possibility that oxidized
iodoarene (OIA) intermediates could be directly employed
as potential precursors for radiofluorination, obviating
cumbersome synthetic procedures involving diaryliodonium
salts or iodonium ylides (Scheme 1). The following are the
foreseeable advantages of our approach: (1) OIAs can be
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conveniently prepared by the simple oxidation of aryl iodides
with meta-chloroperbenzoic acid (mCPBA). This strategy is
also applicable to aromatic systems with an activatable iodine
using a simple oxidant. (2) Radiofluorination of OIAs can be
performed in the absence of a catalyst. This simplifies
downstream purification processes and quality control
procedures for the potential production of clinical PET
radiotracers.
Higher valent oxidized iodoarenes as precursors of [18F]-

fluoroarenes were prepared by reacting iodoarenes with
mCPBA, a commercially available, widely employed oxidant.14

We used commercial mCPBA (70−77% active peroxy content;
stabilized with H2O and meta-chlorobenzoic acid). No
iodometric titration was made to determine the exact peroxy
content. Although the resulting OIAs have been used as in situ
intermediates in the syntheses of diaryliodonium salts and
iodonium ylides,8e,15 they have never been isolated and
recognized as viable precursors for radiofluorination. To
reiterate our method, iodoarenes were oxidized with mCPBA
in CH2Cl2 at room temperature for 1−24 h and without any of
the precautionary conditions often required for organic
syntheses, such as an anhydrous environment, inert atmos-
phere, or high reaction temperature. After the reaction, the
product mixture was concentrated under reduced pressure, and
the precipitation of a white to pale yellow solid was triggered
by adding Et2O to the resulting residue. The oxidation
products were filtered to recover OIAs. In order to avoid
unexpected explosive behavior of higher valent OIAs, we used
a plastic filter funnel and spatula during filtration where
appropriate. The removal of excess mCPBA and mCBA
byproduct was easily achieved by washing with Et2O.
To streamline the synthetic procedure, 1-fluoro-4-iodoben-

zene was oxidized by three different relative amounts of
mCPBA: 0.4, 1, and 2.5 equiv. The reaction time, which was
determined by the complete consumption of iodoarene, was
shorter with higher proportions of mCPBA in the reaction
mixture. The yield of the resulting oxidized precursor was also
higher when higher concentrations of mCPBA were employed.
The OIAs used in the following labeling experiments and
throughout this study were prepared with 2.5 equiv of mCPBA
(Scheme 2; see preparation details in the Supporting
Information (SI)).
Simple oxidations of 4-iodoanisole, 4-iodotoluene, and 1-

fluoro-4-iodobenzene with mCPBA (2.5 equiv) gave the
corresponding OIAs (compounds 8, 13, and 17) as white
precipitates. However, the difficulties encountered in identify-

ing and characterizing the resulting products are worthy of
discussion (see the SI for details). Initial 1H and 19F NMR
analyses indicated that the resulting precipitate was a mixture
of iodoarene species of different oxidation states, such as λ3-
and λ5-hypervalent species, or presumably, a mixture of other
oxidized species. Elemental analyses revealed that the carbon,
hydrogen, and oxygen content do not exactly match any single
component among the higher valent iodine intermediates,
indicating a mixture. Further assessments with high-resolution
mass spectrometry (HRMS) confirmed the simultaneous
presence of multiple oxidation species. Similar mixtures of
the oxidation products of iodoarene were reported when
dimethyldioxirane (DMDO) was used as the oxidant for
iodobenzene.16 Note that disproportionation is a well-known
process between iodoso- and iodoxyarenes and seems to have
occurred during oxidation with commercial mCPBA with a
relatively high H2O content.17 This made the exact
identification of individual oxidation products more challeng-
ing. In addition, the observed broad melting point ranges were
also indicative of a variety of oxidation products.
Notwithstanding the difficulties associated with exact

characterization of isolated OIAs, we explored the feasibility
of radiofluorination with the acquired precursors to give
[18F]fluoroarenes under catalyst-free conditions. A preliminary
investigation was made with 8, which was labeled with a
cyclotron-produced [18F]fluoride ion. Radiofluorination per-
formed with 4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]-
hexacosane (K 2.2.2.)/K2CO3 as a phase-transfer agent (PTA)
gave a 6% radiochemical yield (RCY) of 4-[18F]fluoroanisole
([18F]8a). Interestingly, changing from K 2.2.2./K2CO3 to
tetrabutylammonium hydrogen carbonate (TBAHCO3) in-
creased the RCY from 6% to 27%. Additional screening of
solvents helped identify an ideal radiofluorination medium for
oxidized precursors. The most common solvents for
nucleophilic radiofluorination were evaluated, including
dimethyl sulfoxide (DMSO), N,N-dimethylformamide
(DMF), and N,N-dimethylacetamide (DMA). Although
many studies have used acetonitrile (MeCN) in PET
radiotracer syntheses, we found MeCN to be limiting in
terms of the solubility of OIAs and unattainable reaction
temperatures above 100 °C. DMSO has been deemed nonideal
in the radiofluorination of diaryliodonium salts,18 whereas
some OIA precursors yielded high RCYs in DMSO. Among

Scheme 1. Radiosyntheses of [18F]Fluoroarenes via
Oxidized Iodoarenes and Hypervalent Aryliodane
Precursors

Scheme 2. Oxidized Iodoarene Precursors Used in This
Study

aOxidized 1-[(4-iodophenyl)methyl]-4-phenyltriazole.
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the radiofluorination reactions conducted with different PTAs,
TBAHCO3 yielded the highest RCY when 8 was radio-
fluorinated in DMSO. However, the suitability of a particular
PTA and solvent is not universal when considering different
substrates. The reproducibility of this methodology was
demonstrated using oxidized 4-iodotoluene (see the SI for
details).
Taking this into account, OIAs were radiolabeled with a

[18F]fluoride ion. This was initially performed with meta-
substituted iodoarenes (Scheme 3), as the unactivated meta-

position on an aryl ring is known to be difficult to
radiofluorinate using the conventional SNAr approach.
Although recent advances with diaryliodonium salts and
iodonium ylides have overcome some of the major limitations
associated with meta-[18F]fluoroarenes, the ability to radio-
fluorinate meta-substituted, weakly activated aryl rings is a
good criterion for evaluating the efficacy of this new method.
Radiofluorination of 1 in DMA at 120 °C yielded a 39% RCY.
Likewise, radiofluorination proceeded smoothly, yielding RCYs
of 31% ([18F]2a) and 68% ([18F]3a), respectively, when
electron-donating methoxy (2) or phenyl (3) substituents were
placed at the meta-position. Radiofluorination was also
relatively well tolerated with meta-electron-withdrawing
substituents, such as nitro- (4), cyano- (5), or trifluoromethyl
(6) groups. In general, meta-[18F]fluoroarenes were obtained
in RCYs of 31−68%, as determined by reversed-phase radio-
HPLC chromatography. Compared with fully identified and
isolated λ3-(diacetoxyiodo)arenes12 and λ5-iodoxyarenes,13

RCYs were significantly higher with OIAs bearing NO2-,
CN-, and CF3-groups at the meta-position.
Radiofluorination with OIAs bearing ortho- and para-

substitutions proceeded smoothly to provide the correspond-
ing [18F]fluoroarenes in moderate to excellent RCYs,
regardless of the electronic nature of the substituents (Table
1). Notably, 2-[18F]fluoroanisole ([18F]7a) was acquired in
22% RCY, which had been previously accessible only with low
RCY using unsymmetrical diaryliodonium salts (entry 1, Table
1).19 Labeling precursors with other ortho-substituents, such as
2-methoxymethyl (9) and 2,6-dimethyl (10) groups, were
radiofluorinated with 68% and 25% RCY, respectively (entries
3 and 4, Table 1). Unlike the “ortho-effect” that is observed in
the radiofluorination of diaryliodonium salts, RCYs of these
OIA precursors via radiofluorination were not dramatically
influenced by bulky substituents or substituents at the ortho-
position in aromatic systems. For example, 2-[18F]-
fluorotoluene ([18F]12a) was obtained with an RCY

comparable to that of 4-[18F]fluorotoluene ([18F]13a) (entries
6 and 7, Table 1). When producing [18F]fluorobiphenyls, 2-
[18F]fluorobiphenyl ([18F]14a) was acquired in high RCY
(81%) compared to 3- and 4-[18F]fluorobiphenyl (([18F]3a)
and ([18F]15a), respectively), which yielded good RCYs
(compound [18F]3a, Scheme 3; entries 8 and 9, Table 1).
Electron-rich 4-[18F]fluorophenetole ([18F]16a) was also
obtained in a single step from the corresponding OIA
precursor. Useful RCYs were obtained with para-substituted
4-[18F]fluorobenzonitrile {([18F]18a); 64% RCY} and 4-
[18F]fluoronitrobenzene {([18F]19a); 17% RCY}. Radiosyn-
theses of [18F]fluoroaryl ketones yielded 4-[18F]-
fluoroacetophenone {([18F]20a); 59% RCY} and 4-[18F]-
fluorobenzophenone {([18F]21a); 14% RCY}.
Regioselective radiofluorination with aromatic systems is

also an important issue in the production of [18F]fluoroarenes.
Grushin and Marshall20 demonstrated the formation of an
aryne intermediate in the nucleophilic halex-exchange
fluorination of 2-bromonaphthalene with a Pd(II) catalyst.
Analogous radiofluorination of oxidized iodonaphthalene in
the absence of catalyst provided a single [18F]-
fluoronaphthalene isomer in a regioselective manner, thereby
excluding the possible formation of an aryne intermediate with
an oxidized iodonaphthalene (entries 16 and 17, Table 1).
Potential radiolabeling synthons were also evaluated to

determine the efficacy of this method for producing 18F-labeled
aromatic building blocks. We hypothesize that the operational
simplicity of the method described herein for preparing
labeling precursors would be equally applicable to the
production of radiolabeling synthons for use in subsequent
labeling reactions. To test this hypothesis, oxidized iodoaryl
precursors for [18F]fluoroaryl azide, alkyl [18F]fluorobenzoate,

Scheme 3. Radiosyntheses of Meta-Substituted
[18F]Fluoroarenes from OIAsa,b

aReaction conditions: Precursor (2 mg), K 2.2.2. (3.7 mg, 9.7 μmol),
K2CO3 (0.7 mg, 4.8 μmol), solvent (2 mL). bRCY was determined on
the basis of radio-HPLC (n = 2). cDMA, 120 °C. dDMA, 160 °C.
eDMF, 140 °C. fDMA, 140 °C.

Table 1. Ortho- or Para-Substituted [18F]Fluoroarenes from
OIA Precursors

entry substratea, Ar, no. conditionsb,c [18F]fluoroarene RCY (%)d

1 2-MeOC6H4, 7 A [18F]7a, 22
2 4-MeOC6H4, 8 A [18F]8a, 27
3 2-MeOCH2-C6H4, 9 B [18F]9a, 68
4 2,6-di-MeC6H3, 10 C [18F]10a, 25
5 2,4,6-tri-MeC6H2, 11 C [18F]11a, 14
6 2-MeC6H4, 12 B [18F]12a, 37
7 4-MeC6H4, 13 B [18F]13a, 24e

8 2-PhC6H4, 14 B [18F]14a, 81
9 4-PhC6H4, 15 C [18F]15a, 31
10 4-EtOC6H4, 16 D [18F]16a, 29
11 4-FC6H4, 17 D [18F]17a, 26
12 4-NCC6H4, 18 B [18F]18a, 64
13 4-O2NC6H4, 19 D [18F]19a, 17
14 4-MeCOC6H4, 20 E [18F]20a, 59
15 4-PhCOC6H4, 21 C [18F]21a, 14
16 1-naphthyl, 22 F [18F]22a, 53
17 2-naphthyl, 23 F [18F]23a, 59

aSubstrate (2 mg). bPTA/Base (K 2.2.2. (3.7 mg, 9.7 μmol) and
K2CO3 (0.7 mg, 4.8 μmol); or TBAHCO3 (10 μL, 13.2 μmol; 40%
aq. solution)), solvent (2 mL). cConditions: (A) TBAHCO3/DMSO,
160 °C; (B) K 2.2.2./K2CO3/DMA, 120 °C; (C) TBAHCO3/DMA,
160 °C; (D) K 2.2.2./K2CO3/DMA, 160 °C; (E) K 2.2.2./K2CO3/
DMA, 140 °C; (F) K 2.2.2./K2CO3/DMF, 140 °C. dRCY was
determined based on radio-HPLC (n = 2). eRCY = 24 ± 6% (n = 12).
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[18F]fluorohaloaryl compounds, and [18F]fluoroaryl ether were
prepared (Figure 1). Radiofluorinated “click” labeling synthon

([18F]24a) was prepared in good RCY. Various alkyl
[18F]fluorobenzoates ([18F]25a−29a) were prepared for
potentially labeling proteins/peptides via N-succinimidyl
[18F]fluorobenzoate ([18F]SFB). Particularly noteworthy are
the good RCYs that were attained even from meta-substituted
substrates. Ethyl 3-[18F]fluorobenzoate ([18F]26a) and methyl
3-[18F]fluorobenzoate ([18F]28a) were acquired in 44% and
61% RCY, respectively. Other methyl and ethyl [18F]-
fluorobenzoic acid esters were obtained in RCYs up to 80%,
regardless of the substituent position. Considering the ensuing
chemical steps that are required to obtain [18F]SFB,21 high
RCYs attained at the initial fluorine-18 labeling stage facilitate
the building of more complex molecules in subsequent
reactions. 18F-Fluorinated coupling agents with chloro-,
bromo-, or iodo-substituents at the ortho-, meta-, and para-
positions unequivocally produced 18F-labeled haloaromatic
coupling synthons ([18F]30a−36a) in 15−63% RCYs.
Halogen-functionalized 4-bromo-4′-[18F]fluorobenzophenone
([18F]36a) was radiosynthesized in a useful RCY, thereby
extending the use of bromo-substituents to more complex
systems. The operational simplicity of preparing labeling
precursors from haloiodoarenes makes this approach much
easier and more attractive to implement than approaches
involving diaryliodonium salts and iodonium ylides. This is
especially true when the relative difficulties of concomitant
labeling with 18F-fluorinated synthons are weighed against the
difficulties in preparing [18F]fluoro-building blocks. In the
same manner, [18F]fluorohalopyridine ([18F]35a) yielded a
useful RCY (21%) for heteroaryl coupling agents, despite the
presumably uncontrollable formation of aryl N-oxide during
the oxidative activation of iodine at the pyridinyl ring. The
high-yielding radiosynthesis of [18F]37a provides ready access
to 4-[18F]fluorophenol as a versatile radiolabeling building

block. Extending this process to labeling synthons for potential
coupling reactions was also successful. Following radio-
fluorination, 4-(benzyloxy)[18F]fluorobenzene ([18F]37a) was
acquired in 47% RCY, which is a noticeable improvement over
the previously reported thienyl(aryl)iodonium salt approach.22
18F-labeled triazole derivative ([18F]38a) was also accom-
plished using this methodology.
In conclusion, OIAs were prepared as radiofluorination

precursors through the oxidation of iodoarenes with
commercially available mCPBA. Although not yet fully
characterized, the catalyst-free radiofluorination of higher
valent OIAs gave comparable or better RCYs than those
obtained with other hypervalent aryliodine approaches and
proved to be an expeditious method to provide various
[18F]fluoroarenes. In depth characterization to identify the
isolated oxidized intermediates is ongoing, and future work will
describe the application of this method to the synthesis of
relevant clinical PET radiotracers and nonradioactive fluoroar-
enes.
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