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Abstract: Red Yeast Rice, a kind dMonascuspigments produced by fermentationMdnascusspecies on rice, is
a traditional Chinese medicine and food colorahier@ical modification of natural pigments is a comnstrategy
to diversify the pigments to meet various demantkrein, nativeMonascuspigments as well as some of their
derivates were prepared. SulfonationMiinascuspigments with conjugated double boratfjacent to a carbonyl
group was carried out to produce novel water-selyellow pigments (WSYPs). The chemical structdreavel
WSYPs, i.e., an addition of 80; to the double bond at the side-chairMiinascugpigments, was elucidated by
MS and NMR analysis. The introduction 0$$0; into Monascuspigments makes WSYPs exhibit yellow color
and high water solubility. The yellow color, higtater solubility, as well as relatively high statyilin a wide pH

range contribute the novel WSYPs as a potential fadorant.

Key words. Monascugpigments; Water-soluble yellow pigments; SulfooatiNucleophilic attack; Food colorant
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1. Introduction

Red Yeast Rice, a kind #flonascuspigments produced by solid-state fermentatiodMohascusspecies on
rice, is a traditional Chinese medicine and footbrant It has been widely used as food colorant in Chikaaga,
Japan and Southeast Asia for more than one thoyssnd [1-3]. By virtue of elaboration of the genesters of
Monascusspecies, the biosynthetic pathway of azaphilome catalyzed by polyketide synthase has been ddtalil
[4, 5]. By means of further esterification of treaphilone core witlt-ketoacid, nativéMlonascupigments, such as
orange Monascus pigments (OMPs) I( 2) and yellow Monascus pigments (YMPs) 3, 4) (Fig.1A), are
biosynthesized [6]. However, the natiMonascuspigments are unsuitable for utilizing directly fasd colorant
owing to their low water solubility [7]. Furtherm&rthe embryo-toxicity and teratogenicity of OMRs/é also
been reported [8].

Location of Fig.1

It has been reported that OMPs can be chemicalljifiad by reduction [9], oxidation [10, 11] and aration
[12-18]. Among them, amination of compouBdhto 5 or 6 (Fig.1B) for production of water-soluble red pigne
(WSRPs) has been studied extensivityshown in Fig.1, cascade reactions, i.e., bidmgis of OMPs and further
chemical modification of OMPs by amination reactioocur naturally during microbial fermentation. rilig the
course of microbial culture, primary amines, sushamino acids and glucosamin®]hs well as ammonia, are
produced by microbial metabolism. Thus, the majomant components of Red Yeast Rice are WSRPs with
various primary amines [1, 6, 20, 21]. Due to tkeedlent stability and high water solubility of WBR, Chinese
government has issued the standard for commerciduption of WSRPs (Red/lonascus Pigmefit GB
5009.150-2016). The ReMonascus Pigmefithas been utilized widely as a food additive, esglcifor
substitution of nitrite to enhance meat coldt][2

It is reported that OMPs as well as WSRPs can kbeuchemically modified by sodium borohydride to
produce yellow pigments [9, 23]. Alternatively, @V pigments, which are produced by sulfonatiomahmercial
Red Monascus Pigment [24], have also been approved as commercial fadorant by Chinese government
(Yellow MonascusPigmen?, GB 1886.66-2015). YellowMonascus Pigmefitis being produced by several
biotechnology companies in China [6]. In spite o tpractical application of Yellowlonascus Pigmefit the
chemical reaction about sulfonationbnascuspigments remains largely blurry. There are fewksaabout the
identification of chemical components in Yellddonascus Pigmefitdue to the troublesome separation procedure.

Till now, there is only one report about an isaatof the relatively hydrophobic components in d@lMonascus
3
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Pigmen® by preparative TLC and further deduction of theresponding chemical structure by LC-MS [24].

In the present work, sulfonation of identifiddbnascuspigments to produce water-soluble yellow pigments
(WSYPs) was carried out and the chemical struafitbe novel WSYPs was managed to elucidate. Finsdtive
Monascuspigments (Fig.1A) were isolated after microbiatnfentation. The native OMPs was chemically
modified by amination reaction and then reductinonah aqueous sodium hydroxide solution (Fig.1B)emh
sulfonation ofMonascusigments (including native ones and their derisat® shown in Fig.1) was carried out and
the chemical structure of novel WSYPs was elucitiateUPLC-MS and NMR. Finally, the color charactefshe

novel WSYPs as a potential food colorant, suchoémr,ovater solubility, and stability, were furthelecked.

2. Materials and methods

2.1. Chemicals

Acetonitrile (HPLC grade), was purchased from AearfuS). Water was purified using a Mili-Q Ultrastgm
(Millipore, US). Chloroforme, methanod, and dimethyl sulfoxidel, (DMSO-ds) were purchased from
Adamas-beta (Shanghai, China). Sodium dithionits warchased from TiTan (Shanghai, China). Othentage
were chemical grade.
2.2. ldentification of native Monascus pigments

Native Monascuspigments were produced by submerged culturBafascus rubefESI S1). Crude native
Monascugpigments (Fig.1A) were isolated from the fermantabroth (ESI S2). The crude OMPs and YMPs were
further purified by a preparative HPLC system (Skdzu LC-6AD series equipped with an SPD-20
spectrophotometer using Shimadzu PRC-ODS EV0238mgl. The sample injection volume was 1 ml. Isdcrat
elution (acetonitrile/water, 70:30, V/V) with a ¥lorate of 10 ml/min was employed and OMPs weredleteat the
wavelength 470 nm while and YMPs at 390 nm. Food&iof nativeMonascuspigments (Fig.1A) were obtained.
The purified monascorubrirg) and ankaflavin4) were further identified by mass spectrometer (M68) NMR
analysis.
Monascorubrin Z): orange needle solid; UV-vis (acetonitrilg).yx 243, 286, 468 nm; HRMS Anal. Calcd for
C,aH,70s: 383.1858[M+H]; found, 383.1863(ESI S3). Ankaflavid)( yellow needle solid; UV-vis (acetonitrile)
Amax 224, 386 nm; HRMS Anal. Calcd forgE3;0s: 387.2171[M+H]’; found, 387.2170 (ESI S4). The HRMS data
are consistent with the literature data [ZHje corresponding data dHNMR and “*CNMR analysis were

presented in table 1 and table 2, respectively.rébelts are consistent with the data in literat(e 26, 27].
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Location of table 1 & 2
2.3. Chemical modification of monascor ubrin

OMPs include two chemical entities: rubropunctélinand monascorubrir2), which have similar structural
character and physicochemical property [18, 2¢tording to Fig.1B, monascorubri®)(was chosen as target
reactant for study. Monascorubri) (0.1 g, 0.26 mmol) in ethanol (35 mL) and primayine ((NH).SO, or
monosodium glutamate; 0.52 mmol) in water (pH 75 were mixed, which was stirred at 3D for 72 h until
monascorubrin was consumed completely (monitoredhbylayer chromatography (TLC), developing solven
chloroform/methanol/water=56/10/0.9). The reactimrture was concentrated by a rotary evaporator.

After evaporation of solvent, the solid residueluding (NH,),SO, was redissolved by ethyl acetate/water
(1/2, VIV; 50 mL). The mixture was transferred ira0150 mL separating funnel and an ethyl acetaterla
containing monascorubramin®) (was then separated. The ethyl acetate layer waseotrated in a rotary
evaporator under vacuum to afford the crude prodRetrystallization of the crude pigment from etbiayielded
red needles (91 mg). The purified monascorubramii fas further identified by MS and NMR analysis.
Monascorubramine5j: Red needle solid; UV-vis (acetonitril@).x 300, 415, 531 nm; HRMS Anal. Calcd for
C,aH26NO,, 380.1862 [M-H] found, 380.1853 (ESI S5). The corresponding dateiINMR and**CNMR analysis
were presented in table 1 and table 2, respectiVhaly results are consistent with the data indttees [26, 27].

Similarly, the solid residue including monosgdi glutamatevas redissolved by ethyl acetate/water (1/1, v/v;
50 mL). The pH of water phase was adjusted to 1N&@®H aqueous solution (1 M), and then the watesplwas
separated. The water phase was added ethyl a¢&fatel ) again, of which the pH was adjusted to Zl%e target
compound was partitioned into the ethyl acetatesphander this condition. Then, ethyl acetate phasefetched
and the solvent was removed to get the crude contp6y82 mg). Compound was further identified by MS
analysis.

Compound6: red amorphous solid; UV-vis (acetonitril®)ax 425, 521nm; HRMS Anal. Calcd for,gE1,6NO,,
512.2284 [M+H]J; found, 512.2286 (ESI S6). The results are cogsistith the data in literature [19].

Monascorubramine5j (50 mg) in ethanol (20 mL) and NaOH aqueous gmtufl M, 20 mL) were mixed,
which was stirred at 4% for 10 h. The reaction mixture was concentrated botary evaporator. The solid residue
was redissolved by ethyl acetate/water (1/1, V/¥;naL). The mixture was transferred into a 250 mpasating
funnel and an ethyl acetate layer was then seghrake ethyl acetate layer was concentrated itaayr@vaporator
under vacuum to afford the crude product, which seggarated by preparative TLC (GF254, 200 * 20@*rAm,

Huanghai, China) using chloroform/methanol/wate6/18/0.9, V/V/V) as the developing solvent to githe
5



144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

product?7 (45 mg). The purified compourntiwas further identified by MS and NMR analysis.
Compound?: red amorphous solid; UV-vis (acetonitrilg)ax 238, 299, 477 nm; HRMS Anal. Calcd fos830NO,,
384.2175 [M+H]J; found, 384.2179 (ESI S7). The corresponding ddt*HNMR and **CNMR analysis were
presented in table 1 and table 2, respectively.rétaction o to 7 in the agueous NaOH solution is confirmed by
NMR elucidation in the first time.
2.4. Sulfonation of identified Monascus pigments

Sulfonation of identifiedMonascuspigments 2, 4-7) followed a similar procedure for sulfonation of Red
Monascus Pigmefif24]. Briefly, sodium dithionite (0.2 mmol) wasdet! into a singléonascupigment g, 4-7,
0.1mmol) ethanol aqueous solution (50 %, V/V; pH2@; mL), respectively. The ethanol agueous solutiais
stirred and refluxed at 7C for 6 h. The solvent was evaporated to give cqumeluct, which was separated by
preparative TLC using chloroform/methanol (5/1, Y/ds developing solvent. No sulfonation reaction of
ankaflavin 4) was observed under the same condition. Accordingrig.2, compound®, 5-7 produced the
corresponding WSYP$-11. The corresponding HRMS data are deposited (ES8H8. The'HNMR and
3CNMR analysis of WSYPLL were presented in table 1 and table 2, respegtifédle chemical structures of
WSYP8-11 are reported for the first time.
Location of Fig.2
2.5. Color and stability of WSY Ps

One milliliter of WSYP aqueous solution (pH 7; l1LpgMas diluted by an aqueous solution (pH 7) to

absorbance at the corresponding maximum absorbameelength approximately 1 absorbance unit (AU).
Ultraviolet-visible (UV-vis) spectrum of the WSYBlstion was recorded on a Shimadzu UV-2600 spe&tem
Each WSYPs&-11) exhibited their own character absorbance in an@aegisolution (pH=7), such as compod
was corresponded to the maximum absorbance wavbl&0§ nm;9 to 470 nm;10 to 470 nm:11 to 455 nm. The
influence of pH on color of WSYP aqueous solutioras examined as following: 2 ml WSYP aqueous satuti
(pH 7; 1 g/L) was diluted with 8 ml of Teorell Steagen buffer solution (pH=2-12, 0.2 M boric acid)3M citric
acid, and 0.1 M tri-sodium orthophosphate; adjustreé pH with 1 M hydrochloric acid or 1 M sodiungdroxide
solution). The change of absorbance at the cornelipg maximum absorbance wavelength was regardedeas
influence of pH on color of WSYP in aqueous soluioln order to examine the influence of pH ondtadbility of
WSYPs, those samples were further incubated 4C3or a certain period of time, 3 ml of sample viegished
and the absorbance at the maximum absorbance watielsvas recorded. The decrease of absorbance was

regarded as the stability of WSYP in the buffeusohs.
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2.6. Analysis methods
Ultra-performance liquid chromatography-mass spewetry (UPLC-MS) analysis was performed on a Water

ACQUITY UPLC system. An Acquity BEH C18 (100 mmx2rim i.d., 1.7um, Waters, Milford, USA) analytical
column was used. The column was maintained &C58nd eluted with water (A)/acetonitrile (B) solveystem.
The gradient eluting program was started from 1B,%nd changed to 50 % B within 5 min, then chartgeb %
B within 2 min, and changed to 100 % B within 2 ptimen maintained 100 % B within 2 min, and chanigeti0 %
B within 0.5 min, and at last by equilibration & % B for 2.5 min at a flow rate of 0.4 ml/min. Mé&s performed
in positive ion model otherwise specified. Highaletion mass spectrum (HRMS) analysis was carrigdvia
Masslynx 4.1 software (Waters MS Technologies, Master, UK).

'H Nuclear Magnetic Resonance (NMR) ali€ NMR spectra were obtained on a Avaritke 400 MHz
spectrometer (Bruker, Germany) with TetramethyglTMS) as the internal standard. All chemicaftshivere

given in ppm and coupling constants were givenan H

3. Results and discussion

3.1. Structural elucidation of WSY Ps

Fig.1B shows the famous amination reactior2db 5. MS analysis ofn/z 383.1863 [M+HT is consistent
with the formula GzH»7;Os of 2 while m/z 380.1853 [M-H] with formula G3H,¢NO, of 5 (ESI S3 & S5). For
structure elucidation and signal assignmédtand*°C spectra o, 4, 5, 7 and11 were recorded. The complete
assignments for H and C signals were further gimefables 1 and table 2, respectively. There isigaificant
difference betwee@ and5, where the'H spectrum of N-H irb is undetectable owing to the hydrogen with high
activity (table 1). The compounsl was further reduced to produ@ein an aqueous sodium hydroxide solution
(Fig.1B). UPLC-MS/MS measurement reveals the diffiee between compourtdand 7 is 2H (molecular mass
2.0163) (ESI S5 vs S7), which hints the possibtiction of5 to 7. Both the appearance of peak at 4.83 pfin (
spectrum of7 in table 1) and the disappearance of peak at 19580 (*C spectrum o6 in table 2) reveal the
replacement of the carbonyl at C-3 in compo6ray a hydroxyl moiety in compound Similar structure with a
hydroxyl moiety at C-3, i.e., reduction of OMPsvasl as WSRPs by sodium borohydride, is also reqbj®, 28].

According to Fig.2, variouMonascuspigments are sulfonated into the corresponding R&YAs shown in
Fig.3A, UPLC-MS/MS measurement reveals the diffeeebetween compound and WSYP11 is H,SO;

(molecular mass 81.9725) (ESI S7 vs S11). Furthesmthe corresponding fragments of(m/z 366.2048,

7
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C,aHogNO5", loss of a watenn/z 338.2104, GH,gNO,', further loss of a carbonyl group ) are also foimthe
fragments of11l (m/z 448.1789, GH3;NOgS', loss of a waterm/z 420.1835, GH3NOsS', further loss of a
carbonyl group). This result further confirms tktaé difference between compoundnd WSYPL1 is H,SOs. The

'H and'®C spectra are applied to identify the position e86; in WSYP11 (Table 1 & 2). The spectrograms bf
and 11 are significant differences at C-10 and C-11 pasitiSignals of the vinyl protons (6.38 ppm at posit
C-10 and 6.79 ppm at C-11) in the spectrum of7 disappear while proton signals (1.96 and 2.11 ppposition
C-10 and 3.72 ppm at C-11) in the spectrum ofl1 appear. This information indicates sulfonatiorctiea occurs

at the double bond between C-10 and C-11 of comgbdurProton vicinal coupling constant analysis further
confirms that HS@ connects to the position C-11 of WSYP. On the other hand, peak of 136.36 ppm at the
position C-10 and that of 132.53 ppm at C-11*D spectrum of are also replaced by peaks of 56.49 ppm and
60.70 ppm in*C spectrum ofl1, respectively. The chemical structure of novel VP3Y, i.e., addition of HS@ at
C-11 of Monascuspigments by sulfonation reaction, is reportedtfe first time. Although a chemical with the
same molecular weight as compouids also reported, other chemical structure is deduue to the absence of
NMR datum [24]. UPLC-MS analysis indicates that thhagment of HSO; group is also added into the
correspondingVlonascuspigments for formation of WSYB-10 (Fig.3B). On the contrary, no sulfonation reaction
occurs to ankaflavindj.

Location of Fig.3

3.2. Mechanism for sulfonation of Monascus pigments

Dithionite anion 80, can be decomposed into bisulfate (H3@nd thiosulfate (37 in an aqueous
solution [29]. The conjugated double bormddvionascupigments 2, 5, 6 and7) are adjacent to a carbonyl group
(Red color in Fig.2). Thosklonascugpigments may be tautomerized to the correspondmmerl|. The isomet
involves conjugated double bonds adjacent to adxydirgroup (Green color in Fig.2). Bucherer reatfiae.,
addition of a nucleophilic bisulfate anionraetaC in a-naphthol to form the corresponding sulfonated pobd
shows that conjugated double bonds adjacent taleokyl group ina-naphthol is the key to sulfonation reaction
(ESI S12) [30]. Following the same mechanism of lBarer reaction, the reaction mechanism for sulfonabf
Monascuspigments is proposed (Fig.2). The isorhgivesII via an electrophilic addition of a proton at C-1P.
tautomerizes to form the resonance-stabilized prattductlIl. A nucleophilic bisulfate anion adds to the proton
adductIIl at C-11 to obtainlV and then tautomerizes to the corresponding lowergy form 8-11). This
mechanism indicates conjugated double bonds adjaoerm carbonyl group is necessary for sulfonatidn

Monascuspigments. This principle is consistent with thet$athat sulfonation reaction occurs for monascanub
8
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(2), WSRP< & 6, as well as reduced produttvhile not for ankaflaving).
3.3. Color and pH stability of WSY Ps

Sulfonation reaction introduces,$; into the double bond between C-10 and C-1l1Maihascuspigments
(Fig.2). The reduction ofi-conjugated system in WSYPs leads to blue shifuliraviolet-visible absorbance
spectrum. The visible spectrum of every WSYPs ab agethe picture of the corresponding pigment agse
solution was presented (Fig.4A). Each WSYP hastimeesponding maximum absorbance wavelength asasell
extinction coefficient§, UV (H,O) Amax(l0g €) 500 (3.9);9, UV (H,0) Amax(log €) 470 (3.6);10, UV (H;0) Amax
(log €) 470 (3.7); andll, UV (HO) Amax (log €) 470 (3.6)). Most of WSYPs in aqueous solution ileith
orange-yellow while WSYR1 exhibits bright yellow in an aqueous solution (i=Compound® and11, as well
as their reactants and 7, show very different colors and UV spectra, whinhy be attributed to the different
conjugation lengths in the correspondingonjugated system. The influence of pH on coloM#BYPs was
examined by recording the absorbance at the camelspgy maximum absorbance wavelength in differddt p
buffer solutions (Fig.4B). WSYRO and 11 maintained the original color within a wide pH gan The color of
WSYP 8 aqueous solution was relatively stable at pH 4vhlle got yellow color at pH below 3. The strong
influence of pH on color of WSYB aqueous solution was exhibited as a marked chahtie absorbance in the
buffer solutions. The influence of pH on stabilitfythese WSYPs was further examined (Fig.4C). Afteubation
for 1 day, most of WSYPs (except @y were stable within a wide pH range. This trendulihe influence of pH
on WSYP stability was further confirmed by the prajed incubation time for 2 days (ESI S13). Thailtes
indicate that the color as well as the stabilitydBYPs is strongly dependent on their chemicaktstre, such as X
or Y group as shown in Fig.2. WSYR&11) also exhibit good thermal stability in an aquesatsitions because the
WSYPs are obtained by reflux reaction af@uring the preparative process.

Location of Fig.4

4. Conclusions

Monascugigments with conjugated double borat§acent to a carbonyl group can be sulfonatedddyze
novel WSYPs by addition of 4$0; at the double bond between C-10 and C-1Mohascuspigments. The
introduction of HSG;into Monascugpigments makes the novel WSYPs exhibit yellow cdi@h water solubility,
as well as relatively high stability in agueoususion within a wide pH range. All those charactstwould

contribute WSYPs as a potential novel food colar8ivucture diversity of WSYPs and the correspogdaxicity

9
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Table 1. *H NMR Assignments of 2, 4, 5, 7 and 5] gpm;J, Hz)?

Position 2 4 5 7 11
(chloroform+) (chloroform<) (chloroform+) (methanoldy) (DMSO-dg)
1 7.86 (s) 5.01 (d, 12.6) 9.27 (s) 7.79 (s) 8.25 (s)
4.68 (d, 12.6)
3 4.83 (s) 4.55 (s)
5 2.43 (dd, 17.6, 11.6)
6 6.88 (s) 3.20 (dt, 4.2, 13.2) 6.77 (s) 7.00 (s) 6.79 (s)
2.97 (dt, 7.4, 18.1)
8 6.14 (s) 5.25 (s) 6.76 (s) 6.65 (s) 6.43 (s)
10 6.04 (d, 14.3)  5.88(dd, 1.6, 15.4)  6.36 (d9)L5. 6.38 (d, 15.9) 2.11 (dd, 1.2,12.2)
1.96 (dd, 7.9,15.8)
11 6.57 (M) 6.49 (m) 7.04 (m) 6.79 (M) 3.72 (m)
12 1.94(d, 7.0,1.7) 1.84(dd,7.0,1.4) 2.04(d) 1.99 (dd, 6.8,1.6) 1.08(d, 13.5)
13 1.70 (s) 1.42 (s) 1.80 (s) 1.21 (s) 1.45(s)
15 3.69 (d, 13.3)
17 2.92 (m) 2.62 (M) 2.87 (M) 2.80 (M) 2.58 (m)
18 1.59 (m) 1.58 (m) 1. 65 (m) 1.60 (m)
23 0.86 (t, 7.1) 0.84 (t, 6.8) 0.85 (t, 6.8) 0.96(9) 0.81 (t, 6.8)
N * * 5.29 (s)

%s, singlet; d, doublet; t, triplet; m, multiplet.

*: Undetectable peak of the active hydrogePtHINMR spectrum due to its volatility.
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Table 2 **C NMR Assignments of 2, 4, 5, 7 and 51 §pm)

Position 2 4 5 7 11
(chloroformd) (chloroformd) (chloroformd) (methanold,) (DMSO-de)
1 153.00 63.74 138.37 123.00 124.50
2 109.77 135.37 100.95 128.70 130.11
3 191.00 189.86 195.30 71.89 61.66
4 85.97 103.29 86.77 113.78 72.73
5 169.41 28.91 153.64 167.56 174.82
6 113.40 42.97 98.53 97.09 118.51
7 141.82 150.92 140.83 146.82 139.61
8 104.35 83.19 86.77 82.52 84.84
9 156.61 160.45 147.55 153.61 171.45
10 116.48 113.87 123.28 136.36 56.49
11 136.59 124.36 117.53 132.53 60.70
12 18.96 17.70 19.25 17.72 19.03
13 28.52 18.44 29.19 17.54 15.59
14 171.83 169.62 174.24 174.50 174.92
15 122.55 54.82 116.20 98.49 96.42
16 197.60 202.50 196.32 197.45 209.08
17 41.85 42.97 40.46 39.24 53.57
18 23.91 23.05 24.89 25.30 29.16
19 29.38 29.38 29.66 29.29 31.75
20 29.38 28.98 29.55 28.92 29.47
21 31.92 31.59 31.80 31.61 35.57
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22 22.83 22.54 22.64 22.22 22.56
23 14.30 14.01 14.12 13.02 14.43
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Fig.1 Preparation of Monascus pigments

A: Native Monascugpigments. OMPs including two entities rubropurintét) and monascorubrir2f while YMPs
including monascin3) and ankaflavin 4); B: Diversifying of monascorubrin by chemical modd#imn. One of
OMPs, monascorubrin2), is chemical modification into WSRPs5,(6) by amination reaction, where

GLU=glutamic acid. The WSRPis further reduced inté in 1 M NaOH aqueous solution
Fig.2 Proposed mechanism for sulfonation of Monascus pigments

Monascugpigments, includin@ and5-7, having the characteristic structure of conjugatedble bondadjacent to
carbonyl group (Red color), can be tautomerizegite the corresponding isomér The isomei, having the
characteristic structure of conjugated double bamjacent to a hydroxyl group (Green color), cansbkated
following the same mechanism as that of Bucherattien (ESI S12).

Fig. 3UPLC-M SM S analysis of sulfonated product WSY Ps

A: Fragments involving in compountand1l (ESI S7 vs S11)B: The fragment EB5G;involvingin WSYPs8-10
(ESI S3vs S8, S5 vs S9 and S6 vs S10), where HRidlysas is performed in negative ion model for coompd5
while in positive ion model for the others.

Fig. 4 Colorant characters of WSY Ps

A: Visible spectra of WSYP in agueous solutions (gHénserted the pictures of WSYP in the aqueolistion).
B: Influence of pH on the absorbance of WSYPs (meakat the corresponding maximum absorbance waytslen
as shown in Fig.4A)C: Stability of WSYPs in an aqueous solution atetiit pH values (incubation in 3G for

1 day).
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Highlights

Sulfonation of Monascus pigments with a conjugated double bonds adjacent to a carbonyl group

Production of WSY Ps) by addition of H,SO; at the double bond of Monascus pigments

® \WSYPsexhibiting yellow color, high solubility in water as well as pH stability

® Dependence of the colorant character of WSY Ps on the structure of Monascus pigments
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